-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem_013_00.py
398 lines (318 loc) · 10.1 KB
/
problem_013_00.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
##The sequence of triangle numbers is generated by adding the natural numbers.
##So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first
##ten terms would be:
##
##1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
##
##Let us list the factors of the first seven triangle numbers:
##
## 1: 1
## 3: 1,3
## 6: 1,2,3,6
##10: 1,2,5,10
##15: 1,3,5,15
##21: 1,3,7,21
##28: 1,2,4,7,14,28
##We can see that 28 is the first triangle number to have over five divisors.
##
##What is the value of the first triangle number
##to have over five hundred divisors?
import numpy as np
import time
def pyttrp(number):
listpossiblevalues =[]
for i in range(1,number+1):
listpossiblevalues.append(i)
listabc = []
## while (z + x + y) != number and y <((number)/2):
## z = int((x**2 + y**2)**0.5)
## for a in range(1, int(number/2+1)):
## x = a
## for b in range(1, int(number/2+1)):
## y=b
## z = int((x**2 + y**2)**0.5)
## if (z + x + y) == number and (z**2 == x**2 +y**2):
## print("helo",x,y,z, x+y+z, x**2, y**2,z**2)
## return (x,y,z)
for a in listpossiblevalues:
for b in listpossiblevalues:
c = number - (a+b)
if c**2 == a**2 + b**2:
listabc.append((a,b,c))
if a%100 ==0:
print(a)
listpossiblevalues.remove(a)
## for a in range(1, int(number)):
## for b in range(1, int(number)):
## c = number - (a+b)
## if c**2 == a**2 + b**2:
## listabc.append((a,b,c))
## print(a,b,c, a**2,b**2,c**2)
## print(a,b)
return listabc
def largestprod(string,length):
n = 1
for i in range(0,len(string)-(length)):
npd = np.arange(1,length+1)
for j in range(0, len(npd)):
npd[j] = int(string[i+j])
n = max(n,np.prod(npd))
return n
def smallestnumber(Nmax):
# find the list of prime numbers in range(Nmax)
listprimes2ton = primesfrom2to(Nmax)
# create an array for the factorization
valueeachprime = np.ones(len(listprimes2ton))
# create an array starting in number 2 ranging to Nmax, type float64
numbers = np.arange(2,Nmax, dtype=np.float64)
# factorize each number in the range. Update the factorization_array
for i in numbers:
while i not in listprimes2ton:
eachvalueprime = factorize(i, listprimes2ton)
for i in range(0,len(valueeachprime)):
valueeachprime[i] = max(valueeachprime[i],eachvalueprime[i])
valuearray = listprimes2ton**valueeachprime
# Calculate the least common multiple: with np.prod() I get an error or
# inconsistent results. I've tried several dtype = int, np.float64, but still get the error.
# So I use an alternative:
value = 1
for i in valuearray:
value = value * i
print(listprimes2ton)
print(valueeachprime)
return value
def factorize(n,listofprimes):
valueeachprime = np.zeros(len(listofprimes))
for i in range(1, len(listofprimes)):
while n >= listofprimes[i-1] and n % listofprimes[i-1] == 0:
n = n / listofprimes[i-1]
valueeachprime[i-1] = valueeachprime[i-1] + 1
return valueeachprime
def primesfrom2to(n):
""" Input n>=6, Returns a array of primes, 2 <= p < n """
sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
for i in range(1,int((n**0.5)/3+1)):
if sieve[i]:
k=3*i+1|1
sieve[ k*k/3 ::2*k] = False
sieve[k*(k-2*(i&1)+4)/3::2*k] = False
return np.r_[2,3,((3*np.nonzero(sieve)[0][1:]+1)|1)]
def calculatedivisors(maxlimit):
npdivisors = []
k = 0
while k == 0:
for i in range(2, int(maxlimit/2)):
if maxlimit % i == 0:
npd = np.ones(len(npdivisors), dtype=bool)
m = 0
try:
for j in npdivisors:
if i % j == 0:
npd[m] = False
break
m += 1
if npd.all():
npdivisors.append(i)
product = 1
for element in npdivisors:
product = element * product
if product == maxlimit:
k = 1
return npdivisors
except:
npdivisors.append(i)
print(npdivisors)
return npdivisors
def findpalind(Nmax):
list1 = []
for i in range(1, Nmax):
list1.append(i)
list1.reverse()
list2 = list1[:]
listpalind = set()
m = 0
while m == 0:
for i in list1:
for j in list2:
k = i * j
if str(k) == str(k)[::-1]:
## print("str(k) == str(k)[-1:1]", str(k), str(k)[::-1])
listpalind.add(k)
## print("appending ", k)
m = 1
## print(listpalind)
return listpalind
def isPal(s):
if len(s) <= 1:
return True
else:
return s == s[::-1]
def checkpals(Nmax):
val = 0
for i in range(Nmax,1,-1):
for j in range(Nmax,1,-1):
if isPal(str(i*j)) and i*j > val:
val = i*j
return val
def biggestprod(arrayn, howmanynumbers):
a = arrayn
nm = howmanynumbers
nmax = 0
for j in range(0, len(a[0])-nm):
for i in range(0,len(a)):
k = np.prod(a[i,j:j+nm])
nmax = max(nmax,k)
if nmax == k:
f = a[i,j:j+nm]
for i in range(0, len(a)-nm):
for j in range(0,len(a[0])):
k = np.prod(a[i:i+nm,j])
nmax = max(nmax,k)
if nmax == k:
f = a[i:i+nm,j]
for j in range(-len(a)+nm,len(a[0]-nm)):
m = np.diag(a,j)
for h in range(0, max(1,len(m)-nm)):
k = np.prod(m[h:h+nm])
nmax = max(nmax,k)
if nmax == k:
f = m[h:h+nm]
a = np.fliplr(a)
for j in range(-len(a)+nm,len(a[0]-nm)):
m = np.diag(a,j)
for h in range(0, max(1,len(m)-nm)):
k = np.prod(m[h:h+nm])
nmax = max(nmax,k)
if nmax == k:
f = m[h:h+nm]
return nmax,f
##
## while len(np.diag(a,j)) >= nm:
## print(j, np.diag(a,j))
## for h in range(0, len(np.diag(a,j))-nm):
## m = np.diag(a,h)
## k = np.prod(m[h:h+nm])
## print("m",m)
## print("m[h:h+nm]",m[h:h+nm])
## nmax = max(nmax,k)
##def calculatedivisorsnotconsecutive(n):
## npdivisors = 1 # The biggest divisor is n itself.
## # This is slower
#### a = n/2 + 1
#### b = 1
#### while b < a:
#### if n%b == 0:
#### npdivisors +=1
#### b +=1
####
## for i in range(1, int(n/2 +1)):
#### if n % i == 0:
#### npdivisors += 1
####
##
## return npdivisors
def calculatedivisorsnotconsecutive(n):
npdivisors = []
for i in range(1, int(n/2 +1)):
if i in npdivisors:
break
else:
if n % i == 0:
npdivisors.append(i)
npdivisors.append(n/i)
return npdivisors
def readfromfilesamplenames(filename):
fo = open(filename,"r")
list1 =[]
for line in fo:
list1.append(line.replace("\n", ""))
fo.close()
return list1
def sumbigarray(array, number):
n = number
h = array
k = len(h)
z = a = np.int64(0)
m = []
for i in range(0, k):
r = k-i-1
b = array[r] + a
m.append(b)
## print(str(h[r]),str(h[r])[:-3])
a = int(str(h[r])[:-3])
m.reverse()
print(m)
for i in range(0, n):
print(i, n, m[n-i-1])
print(int(m[n-i-1]),int(m[n-i-1])**i)
z += int(m[n-i-1])**int(i)
print(z)
return m, z
def main():
start = time.time()
## n = 6
## i = 4
## n = 1249975000 #6
## i = 50000 #4
## a = 0
## j = 50001
## for b in range(i,j-i):
## a +=b
## mi = n + i*(j-i) + a
## print(mi,a,calculatedivisorsnotconsecutive(mi))
## while len(calculatedivisorsnotconsecutive(n)) < 500:
## n = (n) + i
## i +=1
## print("The end")
## print(n, i)
## print(calculatedivisorsnotconsecutive(n))
a = readfromfilesamplenames("F:\VirtualBOX\DropBox\Dropbox\python\Euler\problem_013_data.txt")
b = np.ones((len(a), len(a[0])))
## b = np.reshape(b, (len(str(a)),len(a[0])))
for i in range(0,len(a)):
for j in range(0, len(a[i])):
b[i,j] = a[i][j]
print(a)
print(b)
print("lena", len(a), "len(a[0])", len(a[0]),"lenb",len(b))
h = np.sum(b,axis=1)
print(h)
testme = np.float64(0)
for i in a:
testme += np.float64(i)
print("solution",i)
print(len(str(i)))
print("the first 10 digits...",str(i)[0:10:1])
kk, k2 = sumbigarray(h, 10)
## v = 0
## for i in range(0, len(h)):
## k = len(h)
## r = k-i-1
##
## z = (h[r])*(10**i)
## v += z
#### print(h[r],i,k,r,z, v)
## print("solution...", str(v)[0:11])
##print(z)
## a = np.loadtxt("F:\VirtualBOX\DropBox\Dropbox\python\Euler\problem_011_data.txt")
## maxvala, lista = biggestprod(a,4)
##
## print(maxvala)
## print(lista)
##
## k = primesfrom2to(2000000)
## print(k)
## print(len(k))
## s = 0
## for i in k:
## i = int(i)
## s = s+i
## print(s)
## print(np.sum(k, axis=0))
## palind = findpalind(1000)
## print(max(palind))
## minnum = smallestnumber(40)
## print(minnum)
end = time.time()
print(end -start)
main()