-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathstacked_images_with_swin.py
402 lines (339 loc) · 15.9 KB
/
stacked_images_with_swin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Imports for transform and dataset prepration
import numpy as np
from torch.optim.lr_scheduler import StepLR, ExponentialLR
from torch.utils.data import TensorDataset, DataLoader, Dataset, WeightedRandomSampler
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from sklearn.metrics import confusion_matrix, f1_score, accuracy_score
import torch.nn.functional as func
from torch import nn
from torch.utils.data import DataLoader, Dataset
import torch
from torch.autograd import Variable
from tqdm import tqdm
#from movinets import MoViNet
#from movinets.config import _C
#from c3d_pytorch.C3D_model import C3D
#from pytorchvideo.transforms import (
# ApplyTransformToKey,
# Normalize,
# RandomShortSideScale,
# RemoveKey,
# ShortSideScale,
# UniformTemporalSubsample
#)
def topk(output, target, maxk=5):
"""Computes the precision@k for the specified value of maxk"""
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
correct_k = correct[:maxk].view(-1).float().sum(0)
return correct_k.mul_(100.0 / batch_size)
# Train transform and other utils
from torchvision.transforms.transforms import ToTensor
data_flip = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomVerticalFlip(p=0.5),
transforms.Normalize(0,1)
#AddGaussianNoise(0., 10/255)
])
# Resize, normalize and rotate image
data_rotate = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.RandomRotation(30),
transforms.Normalize(0,1)
])
test_transform = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Normalize(0,1)
])
# Resize, normalize and shear image
data_shear = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.RandomAffine(degrees = 15,shear=2),
transforms.Normalize(0,1)
])
# Resize, normalize and translate image
data_translate = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.RandomAffine(degrees = 15,translate=(0.1,0.1)),
transforms.Normalize(0,1)
])
# Resize, normalize and crop image
data_center = transforms.Compose([
transforms.Resize((36, 36)),
transforms.CenterCrop(28),
transforms.ToTensor(),
transforms.Normalize(0,1)
])
# Resize, normalize and jitter image brightness
data_jitter_brightness = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.ColorJitter(brightness=5),
transforms.Normalize(0,1)
])
# Resize, normalize and jitter image saturation
data_jitter_saturation = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.ColorJitter(saturation=5),
transforms.Normalize(0,1)
])
# Resize, normalize and jitter image contrast
data_jitter_contrast = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.ColorJitter(contrast=5),
transforms.Normalize(0,1)
])
# Resize, normalize and jitter image hues
data_jitter_hue = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.ColorJitter(hue=0.4),
transforms.Normalize(0,1)
])
batch_size = 16
FRAME = 16
def tofloat(x):
return x[:FRAME].float()
class shift():
def __init__(self, sz):
self.sz = sz
def __call__(self, x):
return torch.permute(x, self.sz)
def pr(x):
print(x.shape)
return x
train_transform = transforms.Compose([
#transforms.Lambda(lambda x: x / 255.0),
#transforms.functional.uniform_temporal_subsample_repeated(32, (1,0), temporal_dim = 2),
transforms.ToTensor(),
transforms.CenterCrop(224),
transforms.Resize(224),
transforms.Normalize((123, 116, 103), (58, 57, 57)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ColorJitter(brightness=25/225),
transforms.RandomRotation(15)
])
test_transform = transforms.Compose([
#transforms.Lambda(lambda x: x / 255.0),
#transforms.functional.uniform_temporal_subsample_repeated(32, (1,0), temporal_dim = 2),
tofloat,
transforms.CenterCrop(224),
transforms.Resize(224),
transforms.Normalize((123, 116, 103), (58, 57, 57)),
# transforms.RandomHorizontalFlip(p=0.5),
# transforms.ColorJitter(brightness=25/225),
# transforms.RandomRotation(15)
])
from torchvision.transforms import RandomAffine
random_affine = RandomAffine(15, (0.1, 0.1), shear=10)
def image_to_vid(image, frames=16):
video = image.unsqueeze(2).expand(-1, -1, 32, -1, -1)
for i in range(frames):
video[:,:,i] = random_affine(video[:,:,i])
return video
# Load Dataset
def collate_fn(batch):
# print(batch[:10])
x = torch.stack([torch.tensor(data_item[0]) for data_item in batch])
y = [int(data_item[2]) for data_item in batch]
# return x[:32], y
return x, y
DUMMY = '../../../k400val_dummy'
VALIDATION = '../../../k400val_pytorch'
TRAIN = '../../../coco_person_dataset'
train_ds = datasets.ImageFolder(TRAIN, train_transform)
# train_kinetics = datasets.Kinetics(TRAIN, frames_per_clip= FRAME, split='train', num_classes= '400', step_between_clips= FRAME*2, transform = train_transform, download= False, num_download_workers= 1, num_workers= 80)
test_kinetics = datasets.Kinetics(VALIDATION, frames_per_clip= FRAME, split='val', num_classes= '400', step_between_clips= 2000000, transform = test_transform, download= False, num_download_workers= 1, num_workers= 80)
#train_ucf = datasets.Kinetics("../UCF101", split='train', frames_per_clip= FRAME, step_between_clips = 16, transform = train_transform, download=False, num_workers= 80)
#train_hmdb51 = datasets.Kinetics("../hmdb51", split='train', frames_per_clip= FRAME, step_between_clips = 16, transform = train_transform, download=False, num_workers= 80)
#train_ds = torch.utils.data.ConcatDataset([train_kinetics, train_ucf, train_hmdb51])
# train_ds = torch.utils.data.ConcatDataset([train_kinetics])
test_ds = test_kinetics
train_dl = DataLoader(train_ds, batch_size = batch_size, shuffle = True);
test_dl = DataLoader(test_ds, collate_fn=collate_fn, batch_size = batch_size, shuffle = True);
# Main code for network extraction
torch.cuda.empty_cache()
import warnings
warnings.filterwarnings('ignore')
from ignite.metrics import Accuracy, Loss
from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator
from mmaction.datasets import build_dataloader, build_dataset
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from mmaction.models import build_model
from mmcv import Config, DictAction
config = 'configs/recognition/swin/swin_base_patch244_window877_kinetics400_1k.py'
checkpoint = '../../../swin_base_patch244_window877_kinetics400_1k.pth'
DEVICE = 'cuda:0'
SPATIAL_DIM = 224
TEMPORAL_DIM = 16
NUM_CHANNELS = 3
class MMActionModelWrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, X):
return self.model.forward_dummy(X)[0]
def get_accuracy(pred, actual):
correct_labels = 0
# print(f'length of pred {len(pred)}', pred, actual)
for i in range(len(pred)):
if (pred[i]==actual[i]):
correct_labels+=1
return (correct_labels/len(pred))*100.0
def size_changer(x, tm, sz):
return torch.nn.functional.upsample(x, size=(tm,sz,sz), scale_factor=None, mode='nearest', align_corners=None)
def accuracy(output, target, topk=(1,)):
"""
Computes the accuracy over the k top predictions for the specified values of k
In top-5 accuracy you give yourself credit for having the right answer
if the right answer appears in your top five guesses.
ref:
- https://pytorch.org/docs/stable/generated/torch.topk.html
- https://discuss.pytorch.org/t/imagenet-example-accuracy-calculation/7840
- https://gist.github.com/weiaicunzai/2a5ae6eac6712c70bde0630f3e76b77b
- https://discuss.pytorch.org/t/top-k-error-calculation/48815/2
- https://stackoverflow.com/questions/59474987/how-to-get-top-k-accuracy-in-semantic-segmentation-using-pytorch
:param output: output is the prediction of the model e.g. scores, logits, raw y_pred before normalization or getting classes
:param target: target is the truth
:param topk: tuple of topk's to compute e.g. (1, 2, 5) computes top 1, top 2 and top 5.
e.g. in top 2 it means you get a +1 if your models's top 2 predictions are in the right label.
So if your model predicts cat, dog (0, 1) and the true label was bird (3) you get zero
but if it were either cat or dog you'd accumulate +1 for that example.
:return: list of topk accuracy [top1st, top2nd, ...] depending on your topk input
"""
with torch.no_grad():
# ---- get the topk most likely labels according to your model
# get the largest k \in [n_classes] (i.e. the number of most likely probabilities we will use)
maxk = max(topk) # max number labels we will consider in the right choices for out model
batch_size = target.size(0)
# get top maxk indicies that correspond to the most likely probability scores
# (note _ means we don't care about the actual top maxk scores just their corresponding indicies/labels)
_, y_pred = output.topk(k=maxk, dim=1) # _, [B, n_classes] -> [B, maxk]
y_pred = y_pred.t() # [B, maxk] -> [maxk, B] Expects input to be <= 2-D tensor and transposes dimensions 0 and 1.
# - get the credit for each example if the models predictions is in maxk values (main crux of code)
# for any example, the model will get credit if it's prediction matches the ground truth
# for each example we compare if the model's best prediction matches the truth. If yes we get an entry of 1.
# if the k'th top answer of the model matches the truth we get 1.
# Note: this for any example in batch we can only ever get 1 match (so we never overestimate accuracy <1)
target_reshaped = target.view(1, -1).expand_as(y_pred) # [B] -> [B, 1] -> [maxk, B]
# compare every topk's model prediction with the ground truth & give credit if any matches the ground truth
correct = (y_pred == target_reshaped) # [maxk, B] were for each example we know which topk prediction matched truth
# original: correct = pred.eq(target.view(1, -1).expand_as(pred))
# -- get topk accuracy
list_topk_accs = [] # idx is topk1, topk2, ... etc
for k in topk:
# get tensor of which topk answer was right
ind_which_topk_matched_truth = correct[:k] # [maxk, B] -> [k, B]
# flatten it to help compute if we got it correct for each example in batch
flattened_indicator_which_topk_matched_truth = ind_which_topk_matched_truth.reshape(-1).float() # [k, B] -> [kB]
# get if we got it right for any of our top k prediction for each example in batch
tot_correct_topk = flattened_indicator_which_topk_matched_truth.float().sum(dim=0, keepdim=True) # [kB] -> [1]
# compute topk accuracy - the accuracy of the mode's ability to get it right within it's top k guesses/preds
topk_acc = tot_correct_topk / batch_size # topk accuracy for entire batch
list_topk_accs.append(topk_acc)
return list_topk_accs # list of topk accuracies for entire batch [topk1, topk2, ... etc]
def train_with_extraction(model, victim):
# again, batch_size=1 due to compute restrictions on colab
ct = 0
ls1 = []
ls2 = []
for child in model.children():
ct += 1
if ct >= 7:
ls2+=list(child.parameters())
else:
ls1+=list(child.parameters())
optim1 = torch.optim.AdamW(ls1, lr=0.00003)
optim2 = torch.optim.AdamW(ls2, lr=0.00003)
sc1 = torch.optim.lr_scheduler.ReduceLROnPlateau(optim1, factor=0.99, patience=45)
sc2 = torch.optim.lr_scheduler.ReduceLROnPlateau(optim2, factor=0.99, patience=45)
criterion = nn.KLDivLoss(reduction = "mean")
#optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
#criterion = nn.MSELoss()
for idx in range(10):
print('\nStarting Epoch: {}\n'.format(idx))
rloss = 0.0;
model.train()
for step,(image, label) in enumerate(train_dl):
# if step>-1:
# break
torch.cuda.empty_cache()
optim1.zero_grad()
optim2.zero_grad()
image = Variable(image.to(DEVICE), requires_grad=False)
video = image_to_vid(image, FRAME)
label_ = victim(video)
label_ = torch.nn.functional.gumbel_softmax(label_, tau=1, hard=False, eps=1e-10, dim=- 1)
video = size_changer(video, FRAME, 112)
pred = model(video)
pred = torch.nn.functional.log_softmax(pred)
## Debugging
# print("##################################################################")
# print("#### Prediction #####")
# print(pred, pred.size())
# print("##################################################################")
# print("#### Label ######")
# print(label_, label_.size())
# print("##################################################################")
loss = criterion(pred,label_)
rloss+=loss.item()
loss.backward()
optim1.step()
optim2.step()
sc1.step(rloss/(step+1))
sc2.step(rloss/(step+1))
# print(f'Predicted class: {torch.argmax(pred, dim=1)}, Teacher class: {label_}, Actual label: {label}')
print(rloss/(step+1), step)
if (step % 100):
torch.save(model, 'stacked_images_with_swin.pth')
print(f'avg loss: {rloss/len(train_dl)}')
print('evaluation:')
model.eval()
with torch.no_grad():
acc1 = []
acc5 = []
e = tqdm(test_dl)
for step,(video, label) in enumerate(e):
#if step > 3:
# break
video = Variable(video.to(DEVICE), requires_grad=False)
video = video.permute(0, 2, 1, 3, 4)
l_ = victim(video)
l_ = torch.nn.functional.gumbel_softmax(l_, tau=1, hard=False, eps=1e-10, dim=- 1)
video = size_changer(video, FRAME, 112)
prediction = model(video)
# l_ = victim(video)
print(f'Predicted class: {torch.argmax(prediction, dim=1)}, Teacher class: {torch.argmax(l_, dim=1)}, Actual label: {label}')
# print(torch.argmax(prediction, dim=1), label)
# print(f'Accuracy : {(torch.sum(torch.argmax(prediction, dim=1) == label)/len(label))*100.0}%')
# print(f'Accuracy : {get_accuracy(torch.argmax(prediction, dim=1).tolist(), label)}')
acc_list = accuracy(prediction.cpu(), torch.argmax(l_, dim=1).cpu(), topk=(1,5))
acc1.append(acc_list[0])
acc5.append(acc_list[1])
print('top1 =',torch.mean(torch.stack(acc1)))
print('top5 =',torch.mean(torch.stack(acc5)))
cfg = Config.fromfile(config)
if __name__ == '__main__':
model_victim = build_model(cfg.model, train_cfg=None, test_cfg=None)
# loading pretrained weights to victim
load_checkpoint(model_victim, checkpoint, map_location=DEVICE)
model_victim.to(DEVICE)
victim = MMActionModelWrapper(model_victim)
for param in victim.parameters():
param.requires_grad = False
victim.eval()
adversary = torch.load("../../../final_submission_grey/r21_weights.pth")
adversary.to(DEVICE)
train_with_extraction(adversary, victim)