-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
76 lines (67 loc) · 2.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import scipy
import numpy as np
def lambertWlog(logx, mode='lowerbound'):
# compute lambertW(x) with log x as the input
# stolen from Greg Yang et al's rs4a @ GitHub
z = logx
'''Computes LambertW(e^z) numerically safely.
For small value of z, we use `scipy.special.lambertw`.
For large value of z, we apply the approximation
z - log(z) < W(e^z) < z - log(z) - log(1 - log(z)/z).
'''
if z > 500:
if mode == 'lowerbound':
return z - np.log(z)
elif mode == 'upperbound':
return z - np.log(z) - np.log(1 - np.log(z) / z)
else:
return np.NaN
# raise ValueError('Unknown mode: ' + str(mode))
else:
return scipy.special.lambertw(np.exp(z)).real
# def calc_adaptive_sigma(sigma:float, d:int, k:int):
# return sigma * np.sqrt((d + 2) / (d + 2 - 2 * k))
def read_pAs(file_path):
"""
The format of sampling file:
line could be empty, start with x, or start with o
If start with x, metadata
If start with o, then it will follow three numbers: #no, pA lower bound, pA upper bound
Here, the pA is the probability of the true class.
:param file_path:
:return:
"""
arr = list()
no_set = set()
with open(file_path, 'r') as f:
lines = f.readlines()
for line in lines:
fields = line.split(' ')
if len(fields) > 0 and fields[0] == 'o':
no, pAL, pAU = fields[1:]
no, pAL, pAU = int(no), float(pAL), float(pAU)
if no not in no_set:
arr.append((no, pAL, pAU))
no_set.add(no)
return arr
def read_orig_Rs(file_path, num_stds):
"""
The format of original R file:
Each line corresponds to a sample.
:param file_path:
:param aux_stds:
:return: [instance_no, radius, p1low, p1high, [[other-p1low1, other-p1high1], ..., [other-p1lowN, other-p1highN]]]
"""
res = list()
res_in_dict = dict()
with open(file_path, 'r') as f:
lines = f.readlines()
for line in lines:
if len(line) > 0:
fields = line.strip().split(' ')
no, r = int(fields[0]), float(fields[1])
cur_line = [no, r, None, None, [[None, None] for _ in range(len(num_stds))]]
res_in_dict[no] = cur_line
for i in sorted(res_in_dict.keys()):
res.append(res_in_dict[i])
return res