Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

555 #5

Open
dreamlychina opened this issue Sep 24, 2024 · 0 comments
Open

555 #5

dreamlychina opened this issue Sep 24, 2024 · 0 comments

Comments

@dreamlychina
Copy link
Owner

import torch
import clip
from PIL import Image
from torchvision import transforms
import json
import cv2
import numpy as np
from sklearn.cluster import OPTICS, KMeans
from sklearn.manifold import TSNE
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
import matplotlib
import random
matplotlib.use('TkAgg')

import os
import pdb

all_img_text_features = {"coco/train2017/":[], "vg/VG_100K/":[], "vg/VG_100K_2/":[],
"gqa/images/":[], "ocr_vqa/images/":[], "textvqa/train_images/":[]}

all_img_path = {"coco/train2017/":[], "vg/VG_100K/":[], "vg/VG_100K_2/":[],
"gqa/images/":[], "ocr_vqa/images/":[], "textvqa/train_images/":[]}

if name == "main":
device = "cuda" if torch.cuda.is_available() else "cpu"
model, processor = clip.load("ViT-B/32", device=device)
tokenizer = clip.tokenize

input_json = "llava_v1_5_mix665k.json"
# 从文件解析JSON
merged_datas = []
count = 0
batch_size = 2

img_paths = []
all_descriptions = []

with open(input_json, 'r', encoding='utf-8') as json_file:
    datas = json.load(json_file)
    print("all data num: ", len(datas))
    #datas = random.sample(datas, 103)
    print("all data num: ", len(datas))
    max_num = -1
    max_num_list = []
    max_num_img_path = []
    for data in datas:
        img_text_id = data['id']

        if "image" not in data.keys():
            count +=1
            img_path = os.path.join("textvqa/train_images", img_text_id+".jpg")
        else:
            img_path  = data['image']
        print(img_path)

        #test
        #img_path = "med_1.png"
        #img = Image.open(img_path)
        conversations = data['conversations']
        descriptions = ""
        for index, conversation in enumerate(conversations):
            #print("num: ", len(conversation['value'].split(" ")))
            if len(conversation['value'].split(" ")) > max_num:
                max_num = len(conversation['value'].split(" "))
                max_num_list.append(max_num)
                max_num_img_path.append(img_path)
    print("max_num: ", max_num_list)
    print("max_num_img_path: ", max_num_img_path)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant