-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
executable file
·238 lines (185 loc) · 8.03 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/env python3
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
# Size notations:
# B = batch_size, H = hidden_size, M = block_size, L = attn_span
class SeqAttention(nn.Module):
"""Sequential self-attention layer.
"""
def __init__(self, hidden_size, enable_mem, attn_span,
dropout, adapt_span_params, **kargs):
nn.Module.__init__(self)
self.dropout = nn.Dropout(dropout)
self.hidden_size = hidden_size # size of a single head
self.attn_span = attn_span
self.enable_mem = enable_mem
self.adapt_span_enabled = adapt_span_params['adapt_span_enabled']
if self.adapt_span_enabled and self.enable_mem:
self.adaptive_span = AdaptiveSpan(attn_span=attn_span,
**adapt_span_params, **kargs)
def forward(self, query, key, value):
# query size = B x M x H
# key, value sizes = B x (M+L) x H
if self.adapt_span_enabled:
# [optional] trim out memory to reduce unnecessary computation
key, value, key_pe = self.adaptive_span.trim_memory(
query, key, value)
# compute attention from context
# B x M (dest) x (M+L) (src)
attn = torch.matmul(query, key.transpose(-1, -2))
attn = attn / math.sqrt(self.hidden_size) # B x M X (M+L)
attn = F.softmax(attn, dim=-1)
if self.adapt_span_enabled and self.enable_mem:
# trim attention lengths according to the learned span
attn = self.adaptive_span(attn)
attn = self.dropout(attn) # B x M X (M+L)
out = torch.matmul(attn, value) # B x M x H
return out
def get_cache_size(self):
if self.adapt_span_enabled:
return self.adaptive_span.get_cache_size()
else:
return self.attn_span
class MultiHeadSeqAttention(nn.Module):
def __init__(self, hidden_size, enable_mem, nb_heads, **kargs):
nn.Module.__init__(self)
assert hidden_size % nb_heads == 0
self.nb_heads = nb_heads
self.head_dim = hidden_size // nb_heads
self.attn = SeqAttention(
hidden_size=self.head_dim, enable_mem=enable_mem, nb_heads=nb_heads, **kargs)
self.proj_query = nn.Linear(hidden_size, hidden_size, bias=False)
self.proj_out = nn.Linear(hidden_size, hidden_size, bias=False)
self.proj_val = nn.Linear(hidden_size, hidden_size, bias=False)
self.proj_key = nn.Linear(hidden_size, hidden_size, bias=False)
# note that the linear layer initialization in current Pytorch is kaiming uniform init
def head_reshape(self, x):
K = self.nb_heads
D = self.head_dim
x = x.view(x.size()[:-1] + (K, D)) # B x (M+L) x K x D
x = x.transpose(1, 2).contiguous() # B x K x (M+L) x D
x = x.view(-1, x.size(-2), x.size(-1)) # B_K x (M+L) x D
return x
def forward(self, query, key, value):
B = query.size(0)
K = self.nb_heads
D = self.head_dim
M = query.size(1)
query = self.proj_query(query)
query = self.head_reshape(query)
value = self.proj_val(value)
value = self.head_reshape(value)
key = self.proj_key(key)
key = self.head_reshape(key)
out = self.attn(query, key, value) # B_K x M x D
out = out.view(B, K, M, D) # B x K x M x D
out = out.transpose(1, 2).contiguous() # B x M x K x D
out = out.view(B, M, -1) # B x M x K_D
out = self.proj_out(out)
return out
class FeedForwardLayer(nn.Module):
def __init__(self, hidden_size, inner_hidden_size, dropout, **kargs):
nn.Module.__init__(self)
self.fc1 = nn.Linear(hidden_size, inner_hidden_size)
self.fc2 = nn.Linear(inner_hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout)
def forward(self, h):
h1 = F.relu(self.fc1(h))
h1 = self.dropout(h1)
h2 = self.fc2(h1)
return h2
class Normalization(nn.Module):
def __init__(self, embed_dim, normalization='batch'):
super(Normalization, self).__init__()
normalizer_class = {
'batch': nn.BatchNorm1d,
'instance': nn.InstanceNorm1d,
'layer': nn.LayerNorm
}.get(normalization, None)
self.normalizer = normalizer_class(embed_dim, affine=True)
# Normalization by default initializes affine parameters with bias 0 and weight unif(0,1) which is too large!
self.init_parameters()
def init_parameters(self):
# xavier_uniform initialization
for name, param in self.named_parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, input):
if isinstance(self.normalizer, nn.BatchNorm1d):
return self.normalizer(input.view(-1, input.size(-1))).view(*input.size())
elif isinstance(self.normalizer, nn.InstanceNorm1d):
return self.normalizer(input.permute(0, 2, 1)).permute(0, 2, 1)
elif isinstance(self.normalizer, nn.LayerNorm):
return self.normalizer(input)
else:
assert self.normalizer is None, "Unknown normalizer type"
return input
class TransformerSeqLayer(nn.Module):
def __init__(self, hidden_size, enable_mem, normalization, **kargs):
nn.Module.__init__(self)
self.attn = MultiHeadSeqAttention(
hidden_size=hidden_size, enable_mem=enable_mem, **kargs)
self.ff = FeedForwardLayer(hidden_size=hidden_size, **kargs)
self.norm1 = Normalization(hidden_size, normalization)
self.norm2 = Normalization(hidden_size, normalization)
self.enable_mem = enable_mem
def forward(self, h, h_cache):
# h = B x M x H
# h_cache = B x L x H
if self.enable_mem:
h_all = torch.cat([h_cache, h], dim=1) # B x (M+L) x H
else:
h_all = h_cache # B x M x H
attn_out = self.attn(h, h_all, h_all)
h = self.norm1(h + attn_out) # B x M x H
ff_out = self.ff(h)
out = self.norm2(h + ff_out) # B x M x H
return out
class EncoderSeq(nn.Module):
def __init__(self, state_size, hidden_size, nb_heads, encoder_nb_layers,
attn_span, **kargs):
nn.Module.__init__(self)
# init embeddings
self.init_embed = nn.Linear(state_size, hidden_size)
self.layers = nn.ModuleList()
self.layers.extend(
TransformerSeqLayer(
hidden_size=hidden_size, enable_mem=True, nb_heads=nb_heads,
attn_span=attn_span, **kargs)
for _ in range(encoder_nb_layers))
def forward(self, x, h_cache):
# x size = B x M
block_size = x.size(1)
h = self.init_embed(x) # B x M x H
h_cache_next = []
for l, layer in enumerate(self.layers):
cache_size = layer.attn.attn.get_cache_size()
# B x L x H
h_cache_next_l = torch.cat(
[h_cache[l][:, -cache_size + 1:, :], h[:, 0:1, :]],
dim=1).detach()
h_cache_next.append(h_cache_next_l)
h = layer(h, h_cache[l]) # B x M x H
return h, h_cache_next
class QDecoder(nn.Module):
def __init__(self, state_size, hidden_size, nb_heads, decoder_nb_layers,
attn_span, **kargs):
nn.Module.__init__(self)
# init embeddings
self.init_embed = nn.Linear(state_size, hidden_size)
self.layers = nn.ModuleList()
self.layers.extend(
TransformerSeqLayer(
hidden_size=hidden_size, enable_mem=False, nb_heads=nb_heads,
attn_span=attn_span, **kargs)
for _ in range(decoder_nb_layers))
def forward(self, x, embedding):
# x size = B x Q_M
block_size = x.size(1)
h = self.init_embed(x) # B x Q_M x H
h_cache_next = []
for l, layer in enumerate(self.layers):
h = layer(h, embedding) # B x Q_M x H
return h