forked from riscv/riscv-debug-spec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebugger_implementation.tex
440 lines (382 loc) · 14.9 KB
/
debugger_implementation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
\chapter{Debugger Implementation}
This section details how an external debugger might use the described debug
interface to perform some common operations on RISC-V cores using the JTAG DTM
described in Appendix~\ref{sec:jtagdtm}.
All these examples assume a 32-bit core but it should be easy to adapt the
examples to 64- or 128-bit cores.
To keep the examples readable, they all assume that everything succeeds, and
that they complete faster than the debugger can perform the next access. This
will be the case in a typical JTAG setup. However, the debugger must always
check the sticky error status bits after performing a sequence of actions. If
it sees any that are set, then it should attempt the same actions again,
possibly while adding in some delay, or explicit checks for status bits.
\section{Debug Module Interface Access} \label{dmiaccess}
To read an arbitrary Debug Module register, select \Rdmi, and scan in a value
with \Fop set to 1, and \Faddress set to the desired register address. In
Update-DR the operation will start, and in Capture-DR its results will be
captured into \Fdata. If the operation didn't complete in time, \Fop will be 3
and the value in \Fdata must be ignored. The busy condition must be cleared by
writing \Fdmireset in \Rdtmcs, and then the second scan scan must be performed again.
This process must be repeated until \Fop returns 0.
In later operations the debugger should allow for more time between Capture-DR and
Update-DR.
To write an arbitrary Debug Bus register, select \Rdmi, and scan in a value
with \Fop set to 2, and \Faddress and \Fdata set to the desired register
address and data respectively. From then on everything happens exactly as with
a read, except that a write is performed instead of the read.
It should almost never be necessary to scan IR, avoiding a big part of the
inefficiency in typical JTAG use.
\section{Main Loop}
A debugger continuously monitors \Rhaltsum to see if any harts have spontaneously
halted.
\section{Halting} \label{deb:halt}
To halt a hart, the debugger sets \Fhartsel and \Fhaltreq. Then it waits for
\Fallhalted to become 1.
\section{Accessing Registers}
\subsubsection{Using Abstract Command} \label{deb:abstractreg}
\noindent Read \Szero using abstract command:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rcommand & \Fsize$=2$, \Ftransfer, 0x1008 & Read \Szero \\
\hline
Read & \Rdatazero & - & Returns value that was in \Szero \\
\hline
\end{tabulary}
\medskip
\noindent Write \Rmstatus using abstract command:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rdatazero & new value & \\
\hline
Write & \Rcommand & \Fsize$=2$, \Ftransfer, \Fwrite, 0x300 & Write \Rmstatus \\
\hline
\end{tabulary}
\medskip
\subsubsection{Using Program Buffer} \label{deb:regprogbuf}
Abstract commands are used to exchange data with GPRs. Using this mechanism, other
registers can be accessed by moving their value into/out of GPRs.
\noindent Write \Rmstatus using program buffer:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rprogbufzero & {\tt csrw s0, MSTATUS} & \\
\hline
Write & {\tt progbuf1} & {\tt ebreak} & \\
\hline
Write & \Rdatazero & new value & \\
\hline
Write & \Rcommand & \Fsize$=2$, \Fpostexec, \Ftransfer, \Fwrite, 0x1008 &
Write \Szero, then execute program buffer \\
\hline
\end{tabulary}
\medskip
\noindent Read \Fone using program buffer:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rprogbufzero & {\tt fmv.x.s s0, f1} & \\
\hline
Write & {\tt progbuf1} & {\tt ebreak} & \\
\hline
Write & \Rcommand & \Fpostexec & Execute program buffer \\
\hline
Write & \Rcommand & \Ftransfer 0x1008 & read \Szero \\
\hline
Read & \Rdatazero & - & Returns the value that was in \Fone \\
\hline
\end{tabulary}
\medskip
\section{Reading Memory}
\subsubsection{Using System Bus Access} \label{deb:mrsysbus}
\noindent Read a word from memory using system bus access:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rsbaddresszero & address & \\
\hline
Write & \Rsbcs & \Fsbaccess$=2$, \Fsbsingleread & Perform a read \\
\hline
Read & \Rsbdatazero & - & Value read from memory \\
\hline
\end{tabulary}
\medskip
\noindent Read block of memory using system bus access:
\begin{tabulary}{\textwidth}{|r|r|L|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rsbaddresszero & address & \\
\hline
Write & \Rsbcs & \Fsbaccess$=2$, \Fsbsingleread, \Fsbautoread,
\Fsbautoincrement & Turn on autoread and autoincrement, and perform a
read \\
\hline
Read & \Rsbdatazero & - & Value read from memory \\
\hline
Read & \Rsbdatazero & - & Next value read from memory \\
\hline
... & ... & ... & ... \\
\hline
Write & \Rsbcs & 0 & Clear \Fsbautoread \\
\hline
Read & \Rdatazero & - & Get last value read from memory. \\
\hline
\end{tabulary}
\medskip
\subsubsection{Using Program Buffer} \label{deb:mrprogbuf}
\noindent Read a word from memory using program buffer:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rprogbufzero & {\tt lw s0, 0(s0)} & \\
\hline
Write & {\tt progbuf1} & {\tt ebreak} & \\
\hline
Write & \Rdatazero & address & \\
\hline
Write & \Rcommand & \Fwrite, \Fpostexec, 0x1008 & Write \Szero, then execute program buffer \\
\hline
Write & \Rcommand & 0x1008 & Read \Szero \\
\hline
Read & \Rdatazero & - & Value read from memory \\
\hline
\end{tabulary}
\medskip
\noindent Read block of memory using program buffer:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rprogbufzero & {\tt lw s1, 0(s0)} & \\
\hline
Write & {\tt progbuf1} & {\tt addi s0, s0, 4} & \\
\hline
Write & {\tt progbuf2} & {\tt ebreak} & \\
\hline
Write & \Rdatazero & address & \\
\hline
Write & \Rcommand & \Fwrite, \Fpostexec, 0x1008 & Write \Szero, then execute program buffer \\
\hline
Write & \Rcommand & \Fpostexec, 0x1009 & Read \Sone, then execute program buffer \\
\hline
Write & \Rabstractauto & \Fautoexecdata[0] & Set \Fautoexecdata[0] \\
\hline
Read & \Rdatazero & - & Get value read from memory, then execute program buffer \\
\hline
Read & \Rdatazero & - & Get next value read from memory, then execute program buffer \\
\hline
... & ... & ... & ... \\
\hline
Write & \Rabstractauto & 0 & Clear \Fautoexecdata[0] \\
\hline
Read & \Rdatazero & - & Get last value read from memory. \\
\hline
\end{tabulary}
\medskip
TODO: Table~\ref{tab:memread} shows the scans involved in reading a single word using
this method.
\begin{table}[htp]
\centering
\caption{Memory Read Timeline}
\label{tab:memread}
\begin{tabulary}{\textwidth}{|r|l|L|}
\hline
& JTAG State & Activity \\
\hline
TODO & TODO & TODO \\
% 1 & Shift-DR & Debugger shifts in write of 0x41002403 to dram[0], and
% gets back the result of whatever happened previously. \\
% & Update-DR & DTM starts read from dram[0], followed by write to
% dram[0]. \\
% \hline
% 2 & Capture-DR & DTM captures results of read from dram[0]. \\
% & Shift-DR & Debugger shifts in write of 0x42483 to dram[1], and gets
% back the old contents of the first word in Debug RAM. \\
% & Update-DR & DTM starts read from dram[1], followed by write to
% dram[1]. \\
% \hline
% 3 & Capture-DR & DTM captures results of read from dram[1]. \\
% & Shift-DR & Debugger shifts in write of 0x40902823 to dram[2], and
% gets back the old contents of the second word in Debug RAM. \\
% & Update-DR & DTM starts read from dram[2], followed by write to
% dram[2]. \\
% \hline
% 4 & Capture-DR & DTM captures results of read from dram[2]. \\
% & Shift-DR & Debugger shifts in write of 0x3f80006f to dram[3], and
% gets back the old contents of the third word in Debug RAM. \\
% & Update-DR & DTM starts read from dram[3], followed by write to
% dram[3]. \\
% \hline
% 5 & Capture-DR & DTM captures results of read from dram[3]. \\
% & Shift-DR & Debugger shifts in write of the address the user wants to
% read from to dram[4], using the interrupting Debug RAM register to assert
% the Debug Interrupt. The old contents of the fourth word in Debug RAM
% are shifted out. \\
% & Update-DR & DTM starts read from dram[4], followed by write to
% dram[4], and then sets the interrupt bit. The hart will respond to the
% Debug Interrupt by executing the program in Debug RAM which in this
% case will read the address written, and replace the entry in Debug RAM
% with the data at that address. \\
% \hline
% 6 & Capture-DR & DTM captures results of read from dram[4]. \\
% & Shift-DR & Debugger shifts in read from dram[4], and gets back the
% old contents of the fourth word in Debug RAM. (This is the value that
% was there just before the address was written there.) \\
% & Update-DR & DTM starts read from dram[4]. \\
% \hline
% 7 & Capture-DR & DTM captures results of read from dram[4]. \\
% & Shift-DR & Debugger shifts in nop, and gets back the contents of the
% fourth word in Debug RAM. This is the value that was there during the
% previous Update-DR, which is the result of the Debug Program execution.
% \\
\hline
\end{tabulary}
\end{table}
\section{Writing Memory} \label{writemem}
\subsubsection{Using System Bus Access} \label{deb:mrsysbus}
\noindent Write a word to memory using system bus access:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rsbaddresszero & address & \\
\hline
Write & \Rsbdatazero & value & \\
\hline
\end{tabulary}
\medskip
\noindent Write block of memory using system bus access:
\begin{tabulary}{\textwidth}{|r|r|L|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rsbaddresszero & address & \\
\hline
Write & \Rsbcs & \Fsbaccess$=2$, \Fsbautoincrement & Turn on autoincrement \\
\hline
Write & \Rsbdatazero & value0 & \\
\hline
Write & \Rsbdatazero & value1 & \\
\hline
... & ... & ... & ... \\
\hline
Write & \Rsbdatazero & valueN & \\
\hline
\end{tabulary}
\medskip
\subsubsection{Using Program Buffer} \label{deb:mrprogbuf}
\noindent Write a word to memory using program buffer:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rprogbufzero & {\tt sw 0(s0), s1} & \\
\hline
Write & {\tt progbuf1} & {\tt ebreak} & \\
\hline
Write & \Rdatazero & value & \\
\hline
Write & \Rcommand & \Fwrite, 0x1008 & Write \Szero \\
\hline
Write & \Rdatazero & address & \\
\hline
Write & \Rcommand & \Fwrite, \Fpostexec, 0x1009 & Write \Sone, then execute program buffer \\
\hline
\end{tabulary}
\medskip
\noindent Write block of memory using program buffer:
\begin{tabulary}{\textwidth}{|r|r|r|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rprogbufzero & {\tt sw s1, 0(s0)} & \\
\hline
Write & {\tt progbuf1} & {\tt addi s0, s0, 4} & \\
\hline
Write & {\tt progbuf2} & {\tt ebreak} & \\
\hline
Write & \Rdatazero & address & \\
\hline
Write & \Rcommand & \Fwrite, 0x1008 & Write \Szero \\
\hline
Write & \Rdatazero & value0 & \\
\hline
Write & \Rcommand & \Fwrite, \Fpostexec, 0x1009 & Write \Sone, then execute program buffer \\
\hline
Write & \Rabstractauto & \Fautoexecdata[0] & Set \Fautoexecdata[0] \\
\hline
Write & \Rdatazero & value1 & \\
\hline
... & ... & ... & ... \\
\hline
Write & \Rdatazero & valueN & \\
\hline
Write & \Rabstractauto & 0 & Clear \Fautoexecdata[0] \\
\hline
\end{tabulary}
\medskip
\section{Running}
First, the debugger should restore any registers that it has clobbered. Once
that's done, it can let the core run by setting \Fresumereq.
\section{Single Step}
A debugger can single step the core by setting a breakpoint on the next
instruction and letting the core run, or by asking the hardware to perform a
single step. The former requires the debugger to have much more knowledge of
the hardware than the latter, so the latter is preferred.
Using the hardware single step feature is almost the same as regular running.
The debugger just sets \Fstep in \Rdcsr before letting the core run. The core
behaves exactly as in the running case, except that interrupts are left off and
it only fetches and executes a single instruction before re-entering Debug
Mode.
\section{Handling Exceptions}
Generally the debugger can avoid exceptions by being careful with the programs
it writes. Sometimes they are unavoidable though, eg. if the user asks to
access memory or a CSR that is not implemented. A typical debugger will not
know enough about the platform to know what's going to happen, and must attempt
the access to determine the outcome.
When an exception occurs while executing the Program Buffer, \Fcmderr becomes
set. The debugger can check this field to see whether a program encountered an
exception. If there was an exception, it's left to the debugger to know what
must have caused it.
\section{Quick Access} \label{quickaccess}
Halt the hart for a minimum amount of time to perform a single memory write.
There are a variety of instructions to transfer data between GPRs and the {\tt
data} registers. They are either loads/stores or CSR reads/writes. The specific
addresses also vary. This is all specified in \Rhartinfo. The example here uses
the pseudo-op {\tt transfer dest, src} to represent all these options.
\begin{tabulary}{\textwidth}{|r|r|l|L|}
\hline
Op & Address & Value & Comment \\
\hline
Write & \Rprogbufzero & {\tt transfer arg2, s0} & \\
\hline
Write & {\tt progbuf1} & {\tt transfer s0, arg0} & \\
\hline
Write & {\tt progbuf2} & {\tt transfer arg0, s1} & \\
\hline
Write & {\tt progbuf3} & {\tt transfer s1, arg1} & \\
\hline
Write & {\tt progbuf4} & {\tt sw 0(s0), s1} & \\
\hline
Write & {\tt progbuf5} & {\tt transfer arg1, s1} & \\
\hline
Write & {\tt progbuf6} & {\tt transfer arg2, s0} & \\
\hline
Write & {\tt progbuf7} & {\tt ebreak} & \\
\hline
Write & \Rdatazero & address & \\
\hline
Write & {\tt data1} & data & \\
\hline
Write & \Rcommand & 0x10000000 & Perform quick access \\
\hline
\end{tabulary}
\medskip