-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathtrain.py
134 lines (114 loc) · 5.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import math
import torch
import argparse
from tqdm import tqdm
from torch import optim
from torchsummary import summary
from utils.tool import *
from utils.datasets import *
from utils.evaluation import CocoDetectionEvaluator
from module.loss import DetectorLoss
from module.detector import Detector
# 指定后端设备CUDA&CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class FastestDet:
def __init__(self):
# 指定训练配置文件
parser = argparse.ArgumentParser()
parser.add_argument('--yaml', type=str, default="", help='.yaml config')
parser.add_argument('--weight', type=str, default=None, help='.weight config')
opt = parser.parse_args()
assert os.path.exists(opt.yaml), "请指定正确的配置文件路径"
# 解析yaml配置文件
self.cfg = LoadYaml(opt.yaml)
print(self.cfg)
# 初始化模型结构
if opt.weight is not None:
print("load weight from:%s"%opt.weight)
self.model = Detector(self.cfg.category_num, True).to(device)
self.model.load_state_dict(torch.load(opt.weight))
else:
self.model = Detector(self.cfg.category_num, False).to(device)
# # 打印网络各层的张量维度
summary(self.model, input_size=(3, self.cfg.input_height, self.cfg.input_width))
#构建优化器
print("use SGD optimizer")
self.optimizer = optim.SGD(params=self.model.parameters(),
lr=self.cfg.learn_rate,
momentum=0.949,
weight_decay=0.0005,
)
# 学习率衰减策略
self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer,
milestones=self.cfg.milestones,
gamma=0.1)
# 定义损失函数
self.loss_function = DetectorLoss(device)
# 定义验证函数
self.evaluation = CocoDetectionEvaluator(self.cfg.names, device)
# 数据集加载
val_dataset = TensorDataset(self.cfg.val_txt, self.cfg.input_width, self.cfg.input_height, False)
train_dataset = TensorDataset(self.cfg.train_txt, self.cfg.input_width, self.cfg.input_height, True)
#验证集
self.val_dataloader = torch.utils.data.DataLoader(val_dataset,
batch_size=self.cfg.batch_size,
shuffle=False,
collate_fn=collate_fn,
num_workers=4,
drop_last=False,
persistent_workers=True
)
# 训练集
self.train_dataloader = torch.utils.data.DataLoader(train_dataset,
batch_size=self.cfg.batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=4,
drop_last=True,
persistent_workers=True
)
def train(self):
# 迭代训练
batch_num = 0
print('Starting training for %g epochs...' % self.cfg.end_epoch)
for epoch in range(self.cfg.end_epoch + 1):
self.model.train()
pbar = tqdm(self.train_dataloader)
for imgs, targets in pbar:
# 数据预处理
imgs = imgs.to(device).float() / 255.0
targets = targets.to(device)
# 模型推理
preds = self.model(imgs)
# loss计算
iou, obj, cls, total = self.loss_function(preds, targets)
# 反向传播求解梯度
total.backward()
# 更新模型参数
self.optimizer.step()
self.optimizer.zero_grad()
# 学习率预热
for g in self.optimizer.param_groups:
warmup_num = 5 * len(self.train_dataloader)
if batch_num <= warmup_num:
scale = math.pow(batch_num/warmup_num, 4)
g['lr'] = self.cfg.learn_rate * scale
lr = g["lr"]
# 打印相关训练信息
info = "Epoch:%d LR:%f IOU:%f Obj:%f Cls:%f Total:%f" % (
epoch, lr, iou, obj, cls, total)
pbar.set_description(info)
batch_num += 1
# 模型验证及保存
if epoch % 10 == 0 and epoch > 0:
# 模型评估
self.model.eval()
print("computer mAP...")
mAP05 = self.evaluation.compute_map(self.val_dataloader, self.model)
torch.save(self.model.state_dict(), "checkpoint/weight_AP05:%f_%d-epoch.pth"%(mAP05, epoch))
# 学习率调整
self.scheduler.step()
if __name__ == "__main__":
model = FastestDet()
model.train()