-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSimaExample.py
85 lines (73 loc) · 3.61 KB
/
SimaExample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from pathlib import Path
import asyncio
import os
import shutil
import pandas as pd
from dnv.oneworkflow.utils.workunit_extension import *
from dnv.oneworkflow.utils import *
from dnv.onecompute.flowmodel import SchedulingOptions, FailureStrategy
from dnv.sesam.commands import SimaCommand
import re
def get_sima_execution_time(folder):
try:
pattern = r"Total\s+([\d.]+)\n"
file_path = os.path.join(folder, "prs-sima.lis")
with open(file_path, "r") as file:
content = file.read()
# Extract the total time using regular expressions
match = re.search(pattern, content)
if match:
return float(match.group(1))
except:
print(f"Error while trying to read {file_path}")
return None
oneWorkflowTMPFolder = r'C:\oneworkflowTmp' #due to possible issues with long file paths we prefer to have this folder at the root
if not os.path.exists(oneWorkflowTMPFolder):
try:
print("Trying to create tmp folder for one workflow local execution")
os.mkdir(oneWorkflowTMPFolder)
print(oneWorkflowTMPFolder + " created!\n")
except:
print("did not manage to create tmp folder for local execution. Check that you have privileges to create it or try to manually create it from the coomand line.")
# local workspace, all results will be put here after local or cloud runs
# location of common files for all analysis, has to be below workspacePath
root_folder = os.path.dirname(os.path.abspath(__file__))
print(root_folder)
workspacePath = str(Path(root_folder, 'Workspace'))
workspaceId = "SimaSimple"
loadcase_file = f"{workspacePath}\\test_cases_light.xlsx"
stask_file = "SimaTemplateLight.stask"
cloudRun = False
clean = True
notebook_root_folder = os.getcwd()
load_case_folder = os.path.join(workspacePath,"LoadCases")
workflow_client = one_workflow_client(workspace_id = workspaceId, cloud_run = cloudRun, workspace_path = workspacePath, local_workflow_runtime_temp_folder_path = oneWorkflowTMPFolder,
local_workflow_runtime_temp_folders_cleanup=False,platform=Platform.WINDOWS, max_cores=5,environment=Environment.Testing,pool_id="SesamWorkflow_Windows_Standard_A2_v2")
"""Tests SIMA and Python commands"""
commands_info = []
if clean:
shutil.rmtree(load_case_folder, ignore_errors=True)
df_cases = pd.read_excel(loadcase_file, index_col=0)
for loadcase_folder_name, case in df_cases.iterrows():
sima_cmd = SimaCommand().create_sima_command(task_name="WorkflowTask",workflow_name="ExampleWorkflow",sima_case_data=case.to_dict(),stask_filename=stask_file,stask_foldername=workflow_client.common_directory)
commands_info.append(CommandInfo(commands=[sima_cmd],load_case_foldername=loadcase_folder_name))
print("Running commands in parallel")
#enable_file_transfer_progress_reporting(workflow_client)
asyncio.run(run_managed_commands_in_parallel_async(
client=workflow_client,
scheduling_options=SchedulingOptions(failure_strategy=FailureStrategy.ContinueOnError),
commands_info=commands_info,
files_to_download_from_blob_to_client=FileTransferOptions(max_size="11124MB",patterns=["**/*.log","**/*.txt", "**/*.lis", "**/*.MLG", "**/*.MLG","**/*.CSV"]),
enable_common_files_copy_to_load_cases=True,
))
import time
time.sleep(5)
# Specify the file path
cases = []
timings= []
for folder in os.listdir(load_case_folder):
if os.path.isdir(load_case_folder):
time = get_sima_execution_time(os.path.join(load_case_folder, folder))
timings.append(time)
cases.append(folder)
print(f"Execution time for {folder}: {time} seconds")