-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCACMEvaluation.py
192 lines (150 loc) · 6.35 KB
/
CACMEvaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from BSBIndex import BSBIndex
from CACMIndex import CACMIndex
import config
import numpy as np
import warnings
import time
import os
from hurry.filesize import size
import matplotlib.pyplot as plt
from boolean.booleanEvaluation import BooleanEvaluation
from boolean.booleanRequest import *
from helpers.CACMParser import CACMParser
from vectorial.qrelsParser import QrelsParser
from vectorial.vectorialEvaluation import VectorialEvaluation, NormalizedTfIdfWeighting, TfIdfWeighting, \
NaturalWeighting
warnings.filterwarnings("ignore", category=RuntimeWarning)
# Performance
def index_creation_time():
start = time.time()
cacm = CACMIndex()
cacm.build()
index = BSBIndex('CACM', cacm.get_term_dict(), cacm.get_document_dict())
index.build()
end = time.time()
return end-start
def get_file_size(filename):
return size(os.path.getsize(config.index_path + "/" + filename))
def get_boolean_response_time():
request_and = BooleanRequest(Operation.AND, "arithmetic", "hardware") # 1258, 1409, 2175, 3131
model = BooleanEvaluation(request_and, "CACM")
start = time.time()
res = model.search()
end = time.time()
return end - start
def get_vectorial_response_time():
request = "arithmetic hardware"
model = VectorialEvaluation(request, "CACM")
start = time.time()
results, total = model.search(NormalizedTfIdfWeighting(), "jaccard", rank=10)
end = time.time()
return end - start
# Pertinence : precision, rappel, F mesure, E mesure, R mesure, Mean average precision
def calculate_measures(weighting=NaturalWeighting()):
expected, actual = test_CACM_against_qrels(weighting)
plot_recall_precision(expected, actual, weighting)
calculate_r_measure(expected, actual)
def test_CACM_against_qrels(weighting):
"""
:param weighting:
:return: expected : the expected results for all 64 queries
actual : the actual results given by the chosen weighting
"""
cacm_parser = CACMParser()
with open("./CACM/query.text") as f:
cacm_data = f.read()
dic = cacm_parser.parse_documents(cacm_data)
requests = cacm_parser.parse_summary(dic)
qrels_parser = QrelsParser()
with open("./CACM/qrels.text") as f:
qrels_data = f.read()
expected = qrels_parser.parse_all(qrels_data)
actual = {key: [] for key in range(1, len(requests)+1)}
for request_id, request in requests.items():
model = VectorialEvaluation(request, "CACM")
results = model.search(weighting)
actual[int(request_id)] = results[0]
return expected, actual
def plot_recall_precision(expected, actual, weighting):
'''Plots the precision, e-measure and f-mesure relative to the recall. It is averaged over all test queries.
Also calculates the mean average precision
'''
nb_points = 11 # As in the lecture, we decide to divide [0,1] into 11 points to plot the curves
print("Plotting recall-precision curve...")
x = [0.1*n for n in range(nb_points)] # recall
y = [0.0 for _ in range(nb_points)] # precision
e = [0.0 for _ in range(nb_points)] # e-measure
f = [0.0 for _ in range(nb_points)] # f-measure
avg_precision = [] # average precision
# We want to populate y, which will be averaged over all documents
for request_id in expected.keys():
# for each document, calculate recall and precision lists
rappel_list, precision_list = calculate_recall_precision(expected[request_id], actual[request_id])
avg_precision.append(np.average(precision_list))
for j in range(nb_points): # approximate the precision for the given recall to get curve interpolation
rj = x[j]
for i, r in enumerate(rappel_list):
# we consider only values where the recall is greater than interpolation recall
if r > rj:
# and get the max precision from there
y[j] += max(precision_list[i:])
break
# dont forget to average over all documents
for j in range(nb_points):
y[j] = y[j]/len(actual.keys())
# calculate e and f measure
for j in range(nb_points):
e[j] += e_measure(x[j], y[j])
f[j] += 1 - e[j]
plt.plot(x, y, marker="x", label='precision')
plt.plot(x, e, marker='x', label="e-measure")
plt.plot(x, f, marker='x', label="f-measure")
plt.axis('equal')
plt.xlabel('Recall')
plt.legend()
plt.title("Recall-precision curve for the {}".format(type(weighting).__name__))
plt.show()
print("Recall-precision curve plotted")
print()
print("The Mean Average Precision is {}".format(np.nanmean(avg_precision)))
print()
def calculate_recall_precision(expected, actual):
"""
Gives the list of recall and precision at each rank
"""
recall = []
precision = []
relevant_results = []
for rank in range(len(actual)):
if actual[rank] in expected:
relevant_results.append(actual[rank])
recall.append(len(relevant_results)/len(expected))
precision.append(len(relevant_results)/(rank+1))
return recall, precision
def calculate_r_measure(expected, actual):
print("Calculate r-precision for all requests...")
for request_id in expected.keys():
r_prec = r_measure(expected[request_id], actual[request_id])
print("For the request {0} the r-precision is {1}.". format(request_id, r_prec))
def r_measure(expected, actual):
r_prec = 0
for rank in range(len(expected)):
if rank < len(actual) and actual[rank] in expected:
r_prec += 1
return r_prec/len(expected)
def e_measure(rappel, precision):
if rappel > 0:
beta = float(precision) / float(rappel)
e = 1 - (((beta * beta + 1) * rappel * precision) / (beta * beta * precision + rappel))
return e
else:
return 1
if __name__ == "__main__":
# Performance calculation
print("The index is created in {}".format(index_creation_time()))
print("The index has a size {}".format(get_file_size("index_CACM.json")))
print("A boolean request gives a response in {}s".format(get_boolean_response_time()))
print("A vectorial request gives a response in {}s".format(get_vectorial_response_time()))
# Pertinence calculation
# Here you can change the weighting and use NaturalWeighting or NormalizedTfIdfWeighting
calculate_measures(NaturalWeighting())