-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathanalize.py
203 lines (177 loc) · 10.9 KB
/
analize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import os
import torch
import sys
import numpy as np
import pandas as pd
import random
pd.options.display.float_format = '{:,.6f}'.format
pd.set_option('display.width', 160)
pd.set_option('display.max_rows', None)
parser = argparse.ArgumentParser(description='analizer')
parser.add_argument('-p', '--path', default="", type=str, help='Path for the experiments to be analized')
parser.set_defaults(argument=True)
random.seed(1234)
np.random.seed(1234)
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
DATASETS = ['cifar10', 'cifar100', 'tinyimagenet','imagenet1k']
MODELS = ['densenetbc100', 'resnet34', 'wideresnet2810','resnet18']
LOSSES = ['softmax_none', 'isomax_none', 'isomaxplus_none','dismax_none', 'dismax_fpr']
print(DATASETS)
print(MODELS)
print(LOSSES)
args = parser.parse_args()
path = os.path.join("experiments", args.path)
if not os.path.exists(path):
sys.exit('You should pass a valid path to analyze!!!')
#print("\n#####################################")
#print("########## FINDING FILES ############")
#print("#####################################\n")
list_of_files = []
file_names_dict_of_lists = {}
for (dir_path, dir_names, file_names) in os.walk(path):
for filename in file_names:
if filename.endswith('.csv') or filename.endswith('.npy') or filename.endswith('.pth'):
if filename not in file_names_dict_of_lists:
file_names_dict_of_lists[filename] = [os.path.join(dir_path, filename)]
else:
file_names_dict_of_lists[filename] += [os.path.join(dir_path, filename)]
list_of_files += [os.path.join(dir_path, filename)]
#for key in file_names_dict_of_lists:
# print(key)
#print("\n#####################################")
#print("######## TABLE: RAW RESULTS #########")
#print("#####################################\n")
#data_frame_list = []
#for file in file_names_dict_of_lists['results_raw.csv']:
# data_frame_list.append(pd.read_csv(file))
#raw_results_data_frame = pd.concat(data_frame_list)
#print(raw_results_data_frame[:30])
print("\n###################################################")
print("###################################################")
print("###################################################")
print("###### TABLE: BEST ACCURACIES ON CLEAN DATA #######")
print("###################################################")
print("###################################################")
print("###################################################\n")
data_frame_list = []
for file in file_names_dict_of_lists['results_acc.csv']:
data_frame_list.append(pd.read_csv(file))
best_results_data_frame = pd.concat(data_frame_list)
best_results_data_frame.to_csv(os.path.join(path, 'all_results_acc.csv'), index=False)
for data in DATASETS:
for model in MODELS:
print("\n##########################")
print(data)
print(model)
df = best_results_data_frame.loc[best_results_data_frame['DATA'].isin([data]) & best_results_data_frame['MODEL'].isin([model])]
if not df.empty:
df = df.rename(columns={'VALID MAX_PROBS MEAN': 'MAX_PROBS', 'VALID ENTROPIES MEAN': 'ENTROPIES',
'VALID INTRA_LOGITS MEAN': 'INTRA_LOGITS', 'VALID INTER_LOGITS MEAN': 'INTER_LOGITS'})
df = df.groupby(['LOSS'], as_index=False)[['TRAIN LOSS', 'TRAIN ACC1', 'VALID LOSS', 'VALID ACC1','ENTROPIES']].agg(['mean','std','count'])
df = df.sort_values([('VALID ACC1','mean')], ascending=False)#.drop_duplicates(["LOSS"])
print(df)
print("##########################\n")
print("\n################################################")
print("################################################")
print("################################################")
print("###### TABLE: EXPECTED CALIBRATION ERROR #######")
print("################################################")
print("################################################")
print("################################################\n")
data_frame_list = []
for file in file_names_dict_of_lists['results_calib.csv']:
data_frame_list.append(pd.read_csv(file))
best_results_data_frame = pd.concat(data_frame_list)
best_results_data_frame.to_csv(os.path.join(path, 'all_results_calib.csv'), index=False)
for data in DATASETS:
for model in MODELS:
print("\n########")
print(data)
print(model)
df = best_results_data_frame.loc[best_results_data_frame['DATA'].isin([data]) & best_results_data_frame['MODEL'].isin([model])]
if not df.empty:
dft = df.groupby(['LOSS','OPTIMIZED_METRIC','INFERENCE','CALCULATED_METRIC'], as_index=False)[['VALUE']].agg(['mean','std','count'])
dft = dft.sort_values(['LOSS','OPTIMIZED_METRIC','INFERENCE','CALCULATED_METRIC'], ascending=True)#.drop_duplicates(["LOSS"])
print(dft)
print("########\n")
print("\n#####################################")
print("#####################################")
print("#####################################")
print("######## TABLE: ODD METRICS #########")
print("#####################################")
print("#####################################")
print("#####################################\n")
data_frame_list = []
for file in file_names_dict_of_lists['results_ood.csv']:
data_frame_list.append(pd.read_csv(file))
best_results_data_frame = pd.concat(data_frame_list)
best_results_data_frame.to_csv(os.path.join(path, 'all_results_ood.csv'), index=False)
for data in DATASETS:
for model in MODELS:
print("\n#####################################################################################")
print(data)
print(model)
df = best_results_data_frame.loc[
best_results_data_frame['IN-DATA'].isin([data]) &
best_results_data_frame['MODEL'].isin([model]) &
best_results_data_frame['SCORE'].isin(["MPS","ES","MDS","MMLS","MMLES","MLES","MMLEPS"]) &
best_results_data_frame['OUT-DATA'].isin(
['svhn','lsun_resize','imagenet_resize','cifar10', 'cifar100',
'svhn_64', 'cifar10_64', 'cifar100_64', 'lsun_resize_64', 'imagenet-o-64', 'imagenet-o',
'imdb','multi30k','yelprf'])]
if not df.empty:
#############################################################################################################################
#############################################################################################################################
#df = df[['MODEL','IN-DATA','LOSS','SCORE','EXECUTION','OUT-DATA','TPR','AUROC','DTACC','AUPRIN','AUPROUT']]
df = df[['MODEL','IN-DATA','LOSS','SCORE','EXECUTION','OUT-DATA','TPR','AUROC','AUPRIN','AUPROUT']]
#ndf = df.groupby(['LOSS','SCORE','OUT-DATA'], as_index=False)[['TPR','AUROC']].agg(['mean','std','count'])
ndf = df.groupby(['LOSS','SCORE','OUT-DATA'], as_index=False)[['TPR','AUROC']].agg(['mean','std','count'])
#############################################################################################################################
#############################################################################################################################
print("RESULTS FOR EACH OOD SEPARATELY!!!")
#############################################################################################################################
#############################################################################################################################
if data == 'cifar10':
dfx = df.loc[df['OUT-DATA'].isin(['cifar100','imagenet_resize','lsun_resize','svhn'])]
elif data == 'cifar100':
dfx = df.loc[df['OUT-DATA'].isin(['cifar10','imagenet_resize','lsun_resize','svhn'])]
elif data == 'tinyimagenet':
dfx = df.loc[df['OUT-DATA'].isin(['imagenet-o-64','cifar10_64','cifar100_64','svhn_64'])]
elif data == 'imagenet1k':
dfx = df.loc[df['OUT-DATA'].isin(['imagenet-o'])]
#############################################################################################################################
#############################################################################################################################
ndf = dfx.groupby(['LOSS','SCORE','OUT-DATA']).agg(
mean_AUROC=('AUROC', 'mean'), std_AUROC=('AUROC', 'std'), count_AUROC=('AUROC', 'count'),
#mean_AUPRIN=('AUPRIN', 'mean'), std_AUPRIN=('AUPRIN', 'std'), count_AUPRIN=('AUPRIN', 'count'),
mean_AUPROUT=('AUPROUT', 'mean'), std_AUPROUT=('AUPROUT', 'std'), count_AUPROUT=('AUPROUT', 'count'),
mean_TPR=('TPR', 'mean'), std_TPR=('TPR', 'std'), count_TPR=('TPR', 'count'))
nndf = ndf.sort_values(['LOSS','SCORE','OUT-DATA'], ascending=True)
print(nndf)
print()
print("RESULTS FOR ALL OOD COMBINED!!!")
#############################################################################################################################
#############################################################################################################################
if data == 'cifar10':
dfx = df.loc[df['OUT-DATA'].isin(['cifar100','imagenet_resize','lsun_resize','svhn'])]
elif data == 'cifar100':
dfx = df.loc[df['OUT-DATA'].isin(['cifar10','imagenet_resize','lsun_resize','svhn'])]
elif data == 'tinyimagenet':
dfx = df.loc[df['OUT-DATA'].isin(['imagenet-o-64','cifar10_64', 'cifar100_64','svhn_64'])]
elif data == 'imagenet1k':
dfx = df.loc[df['OUT-DATA'].isin(['imagenet-o'])]
#############################################################################################################################
#############################################################################################################################
ndf = dfx.groupby(['LOSS','SCORE','OUT-DATA']).agg(
mean_AUROC=('AUROC', 'mean'), std_AUROC=('AUROC', 'std'), count_AUROC=('AUROC', 'count'),
mean_AUPROUT=('AUPROUT', 'mean'), std_AUPROUT=('AUPROUT', 'std'), count_AUPROUT=('AUPROUT', 'count'),
mean_TPR=('TPR', 'mean'), std_TPR=('TPR', 'std'), count_TPR=('TPR', 'count'),)
nndf = ndf.groupby(['LOSS','SCORE']).agg(
mean_mean_AUROC=('mean_AUROC', 'mean'), mean_std_AUROC=('std_AUROC', 'mean'), count_mean_AUROC=('mean_AUROC', 'count'),
mean_mean_AUPROUT=('mean_AUPROUT', 'mean'), mean_std_AUPROUT=('std_AUPROUT', 'mean'), count_mean_AUPROUT=('mean_AUPROUT', 'count'),
mean_mean_TPR=('mean_TPR', 'mean'), mean_std_TPR=('std_TPR', 'mean'), count_mean_TPR=('mean_TPR', 'count'), )
nndf = nndf.sort_values(['mean_mean_AUROC'], ascending=False)
print(nndf)
print()