generated from dlibml/dlib-template-project
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathyolov5p6.h
126 lines (111 loc) · 5.5 KB
/
yolov5p6.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#ifndef yolov5_h_INCLUDED
#define yolov5_h_INCLUDED
#include <dlib/dnn.h>
namespace yolov5p6
{
using namespace dlib;
template <typename SUBNET> using ytag3 = add_tag_layer<4003, SUBNET>;
template <typename SUBNET> using ytag4 = add_tag_layer<4004, SUBNET>;
template <typename SUBNET> using ytag5 = add_tag_layer<4005, SUBNET>;
template <typename SUBNET> using ytag6 = add_tag_layer<4006, SUBNET>;
template <typename SUBNET> using ptag3 = add_tag_layer<7003, SUBNET>;
template <typename SUBNET> using ptag4 = add_tag_layer<7004, SUBNET>;
template <typename SUBNET> using ptag5 = add_tag_layer<7005, SUBNET>;
template <typename SUBNET> using ptag6 = add_tag_layer<7006, SUBNET>;
template <
template <typename> class ACT,
template <typename> class BN,
long depth_num = 1,
long depth_den = 1,
long width_num = 1,
long width_den = 1
>
struct def
{
static constexpr long nf = 64 * width_num / width_den;
template <long NF, int KS, int S, typename SUBNET>
using conv = ACT<BN<add_layer<con_<NF, KS, KS, S, S, (KS-1)/2, (KS-1)/2>, SUBNET>>>;
template <long NF, typename SUBNET>
using bottleneck = conv<NF, 3, 1, conv<NF, 1, 1, SUBNET>>;
template <long NF, typename SUBNET>
using resbottleneck = add_prev10<bottleneck<NF, tag10<SUBNET>>>;
template <long NF, typename SUBNET>
using sppf = conv<NF, 1, 1,
concat4<tag1, tag2, tag3, tag4,
tag4<max_pool<5, 5, 1, 1,
tag3<max_pool<5, 5, 1, 1,
tag2<max_pool<5, 5, 1, 1,
tag1<conv<NF/2, 1, 1, SUBNET>>>>>>>>>>;
template <typename SUBNET> using bottleneck_x2 = bottleneck<2 * nf, SUBNET>;
template <typename SUBNET> using bottleneck_x4 = bottleneck<4 * nf, SUBNET>;
template <typename SUBNET> using bottleneck_x6 = bottleneck<6 * nf, SUBNET>;
template <typename SUBNET> using bottleneck_x8 = bottleneck<8 * nf, SUBNET>;
template <typename SUBNET> using resbottleneck_x1 = resbottleneck<nf, SUBNET>;
template <typename SUBNET> using resbottleneck_x2 = resbottleneck<2 * nf, SUBNET>;
template <typename SUBNET> using resbottleneck_x4 = resbottleneck<4 * nf, SUBNET>;
template <typename SUBNET> using resbottleneck_x6 = resbottleneck<6 * nf, SUBNET>;
template <typename SUBNET> using resbottleneck_x8 = resbottleneck<8 * nf, SUBNET>;
// CSP Bottleneck with 3 convolutions
template <long NF, size_t N, template <typename> class BLOCK, typename SUBNET>
using c3 = conv<NF, 1, 1,
concat2<tag8, tag9,
tag9<conv<NF/2, 1, 1, skip7<
tag8<repeat<N * depth_num / depth_den, BLOCK, conv<NF/2, 1, 1,
tag7<SUBNET>>>>>>>>>;
template <typename INPUT>
using backbone = sppf<16 * nf,
ptag6<c3<16 * nf, 3, resbottleneck_x8,
conv<16 * nf, 3, 2,
ptag5<c3<12 * nf, 3, resbottleneck_x6,
conv<12 * nf, 3, 2,
ptag4<c3<8 * nf, 9, resbottleneck_x4,
conv<8 * nf, 3, 2,
ptag3<c3<4 * nf, 6, resbottleneck_x2,
conv<4 * nf, 3, 2,
c3<2 * nf, 3, resbottleneck_x1,
conv<2 * nf, 3, 2,
conv<nf, 3, 2,
INPUT>>>>>>>>>>>>>>>>;
template <template <typename> class YTAG, typename SUBNET>
using yolo = YTAG<sig<con<1, 1, 1, 1, 1, SUBNET>>>;
template <typename SUBNET>
using head = yolo<ytag6,
c3<16 * nf, 3, bottleneck_x8,
concat2<tag1, tag6,
tag1<conv<12 * nf, 3, 2, skip2<
yolo<ytag5,
tag2<c3<12 * nf, 3, bottleneck_x6,
concat2<tag1, tag5,
tag1<conv<8 * nf, 3, 2, skip2<
yolo<ytag4,
tag2<c3<8 * nf, 3, bottleneck_x4,
concat2<tag1, tag4,
tag1<conv<4 * nf, 3, 2, skip2<
yolo<ytag3,
tag2<c3<4 * nf, 3, bottleneck_x2,
concat2<tag1, ptag3,
tag1<upsample<2,
tag4<conv<4 * nf, 1, 1,
c3<8 * nf, 3, bottleneck_x4,
concat2<tag1, ptag4,
tag1<upsample<2,
tag5<conv<8 * nf, 1, 1,
c3<12 * nf, 3, bottleneck_x6,
concat2<tag1, ptag5,
tag1<upsample<2,
tag6<conv<12 * nf, 1, 1,
SUBNET>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
using net_type = add_loss_layer<loss_yolo_<ytag3, ytag4, ytag5, ytag6>, head<backbone<input_rgb_image>>>;
};
using train_type_n = def<silu, bn_con, 1, 3, 1, 4>::net_type;
using infer_type_n = def<silu, affine, 1, 3, 1, 4>::net_type;
using train_type_s = def<silu, bn_con, 1, 3, 1, 2>::net_type;
using infer_type_s = def<silu, affine, 1, 3, 1, 2>::net_type;
using train_type_m = def<silu, bn_con, 2, 3, 3, 4>::net_type;
using infer_type_m = def<silu, affine, 2, 3, 3, 4>::net_type;
using train_type_l = def<silu, bn_con, 1, 1, 1, 1>::net_type;
using infer_type_l = def<silu, affine, 1, 1, 1, 1>::net_type;
using train_type_x = def<silu, bn_con, 4, 3, 5, 4>::net_type;
using infer_type_x = def<silu, affine, 4, 3, 5, 4>::net_type;
}
#endif // yolov5_h_INCLUDED