generated from dlibml/dlib-template-project
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvggnet.h
57 lines (46 loc) · 2.76 KB
/
vggnet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#ifndef VGGNet_H
#define VGGNet_H
#include <dlib/dnn.h>
namespace vggnet
{
// clang-format off
using namespace dlib;
template <template <typename> class ACT, template <typename> class BN, template <typename> class DO>
struct def
{
template <long num_filters, long ks, int s, int p, typename SUBNET>
using conp = add_layer<con_<num_filters, ks, ks, s, s, p, p>, SUBNET>;
// the main vgg building block
template <long num_filters, typename SUBNET>
using block = ACT<BN<conp<num_filters, 3, 1, 1, SUBNET>>>;
// some definitions to allow the use of the repeat layer
template <typename SUBNET> using block_512 = block<512, SUBNET>;
template <typename SUBNET> using block_256 = block<256, SUBNET>;
template <typename SUBNET> using block_128 = block<128, SUBNET>;
template <typename SUBNET> using block_64 = block<64, SUBNET>;
// the vgg backbones
template <long nb_512, long nb_256, long nb_128, long nb_64, typename INPUT>
using backbone = max_pool<2, 2, 2, 2, repeat<nb_512, block_512,
max_pool<2, 2, 2, 2, repeat<nb_512, block_512,
max_pool<2, 2, 2, 2, repeat<nb_256, block_256,
max_pool<2, 2, 2, 2, repeat<nb_128, block_128,
max_pool<2, 2, 2, 2, repeat<nb_64, block_64, tag1<INPUT>>>>>>>>>>>;
// the final fully connected layers
template <typename SUBNET>
using final_fc = fc<1000, DO<ACT<fc<4096, DO<ACT<fc<4096, SUBNET>>>>>>>;
template<typename INPUT> using backbone_11 = final_fc<backbone<2, 2, 1, 1, INPUT>>;
template<typename INPUT> using backbone_13 = final_fc<backbone<2, 2, 2, 2, INPUT>>;
template<typename INPUT> using backbone_16 = final_fc<backbone<3, 3, 2, 2, INPUT>>;
template<typename INPUT> using backbone_19 = final_fc<backbone<4, 4, 2, 2, INPUT>>;
};
using train_11 = loss_multiclass_log<def<relu, bn_con, dropout>::backbone_11<input_rgb_image>>;
using infer_11 = loss_multiclass_log<def<relu, affine, multiply>::backbone_11<input_rgb_image>>;
using train_13 = loss_multiclass_log<def<relu, bn_con, dropout>::backbone_13<input_rgb_image>>;
using infer_13 = loss_multiclass_log<def<relu, affine, multiply>::backbone_13<input_rgb_image>>;
using train_16 = loss_multiclass_log<def<relu, bn_con, dropout>::backbone_16<input_rgb_image>>;
using infer_16 = loss_multiclass_log<def<relu, affine, multiply>::backbone_16<input_rgb_image>>;
using train_19 = loss_multiclass_log<def<relu, bn_con, dropout>::backbone_19<input_rgb_image>>;
using infer_19 = loss_multiclass_log<def<relu, affine, multiply>::backbone_19<input_rgb_image>>;
// clang-format on
} // namespace vggnet
#endif // VGGNet_H