generated from dlibml/dlib-template-project
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdarknet.h
101 lines (85 loc) · 4.5 KB
/
darknet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#ifndef DarkNet_H
#define DarkNet_H
#include <dlib/dnn.h>
namespace darknet
{
// clang-format off
using namespace dlib;
template <template <typename> class ACT, template <typename> class BN>
struct def
{
template <long nf, long ks, int s, typename SUBNET>
using conblock = ACT<BN<add_layer<con_<nf, ks, ks, s, s, ks/2, ks/2>, SUBNET>>>;
template <long nf1, long nf2, typename SUBNET>
using residual = add_prev1<
conblock<nf1, 3, 1,
conblock<nf2, 1, 1,
tag1<SUBNET>>>>;
template <long nf, typename SUBNET> using resv3 = residual<nf, nf / 2, SUBNET>;
template <long nf, typename SUBNET> using resv4 = residual<nf, nf, SUBNET>;
template <long num_filters, typename SUBNET>
using block3 = conblock<num_filters, 3, 1,
conblock<num_filters / 2, 1, 1,
conblock<num_filters, 3, 1,
SUBNET>>>;
template <long num_filters, typename SUBNET>
using block5 = conblock<num_filters, 3, 1,
conblock<num_filters / 2, 1, 1,
conblock<num_filters, 3, 1,
conblock<num_filters / 2, 1, 1,
conblock<num_filters, 3, 1,
SUBNET>>>>>;
template <long nf, long factor, size_t N, template <typename> class RES, typename SUBNET>
using cspblock = conblock<nf * factor, 1, 1,
concat2<tag1, tag2,
tag1<conblock<nf, 1, 1,
repeat<N, RES,
conblock<nf, 1, 1,
skip1<
tag2<conblock<nf, 1, 1,
tag1<conblock<nf * factor, 3, 2,
SUBNET>>>>>>>>>>>;
template <typename SUBNET> using resv3_64= resv3<64, SUBNET>;
template <typename SUBNET> using resv3_128 = resv3<128, SUBNET>;
template <typename SUBNET> using resv3_256 = resv3<256, SUBNET>;
template <typename SUBNET> using resv3_512 = resv3<512, SUBNET>;
template <typename SUBNET> using resv3_1024 = resv3<1024, SUBNET>;
template <typename SUBNET> using resv4_64= resv4<64, SUBNET>;
template <typename SUBNET> using resv4_128 = resv4<128, SUBNET>;
template <typename SUBNET> using resv4_256 = resv4<256, SUBNET>;
template <typename SUBNET> using resv4_512 = resv4<512, SUBNET>;
template <typename INPUT>
using backbone19 = block5<1024,
max_pool<2, 2, 2, 2, block5<512,
max_pool<2, 2, 2, 2, block3<256,
max_pool<2, 2, 2, 2, block3<128,
max_pool<2, 2, 2, 2, conblock<64, 3, 1,
max_pool<2, 2, 2, 2, conblock<32, 3, 1,
INPUT>>>>>>>>>>>;
template <typename INPUT>
using backbone53 = repeat<4, resv3_1024, conblock<1024, 3, 2,
repeat<8, resv3_512, conblock<512, 3, 2,
repeat<8, resv3_256, conblock<256, 3, 2,
repeat<2, resv3_128, conblock<128, 3, 2,
resv3<64, conblock<64, 3, 2, conblock<32, 3, 1,
INPUT>>>>>>>>>>>;
template <typename INPUT>
using backbone53csp = cspblock<512, 2, 4, resv4_512,
cspblock<256, 2, 8, resv4_256,
cspblock<128, 2, 8, resv4_128,
cspblock<64, 2, 2, resv4_64,
cspblock<64, 1, 1, resv3_64,
conblock<32, 3, 1,
INPUT>>>>>>;
};
template <typename SUBNET>
using classification_head = loss_multiclass_log<fc<1000, avg_pool_everything<SUBNET>>>;
using train_19 = classification_head<def<leaky_relu, bn_con>::backbone19<input_rgb_image>>;
using infer_19 = classification_head<def<leaky_relu, affine>::backbone19<input_rgb_image>>;
using train_53 = classification_head<def<leaky_relu, bn_con>::backbone53<input_rgb_image>>;
using infer_53 = classification_head<def<leaky_relu, affine>::backbone53<input_rgb_image>>;
using train_53csp = classification_head<def<mish, bn_con>::backbone53csp<input_rgb_image>>;
using infer_53csp = classification_head<def<mish, affine>::backbone53csp<input_rgb_image>>;
// clang-format on
} // namespace darknet
#endif // DarkNet_H