-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
444 lines (376 loc) · 18.2 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import os
import sys
import copy
import time
import re
import json
import string
import glob
import csv
from operator import itemgetter
from collections import defaultdict
from itertools import product
from pathlib import Path
import argparse
import dill
import numpy as np
import stanza
from stanza.utils.conll import CoNLL
from tqdm import tqdm
from quinductor.rules import *
from quinductor.core import *
from quinductor.common import *
from quinductor.guards import load_guards
from quinductor.loaders import *
from quinductor.repro import *
import udon2
np.seterr('raise')
logger = get_logger()
SURVEY_TEMPLATES = {
'sv': "Meningen: {0}<br>Frågan: {1}<br>Det föreslagna svaret: {2}",
'en': "Sentence: {0}<br>Question: {1}<br>Suggested answer: {2}",
'ru': "Предложение: {0}<br>Вопрос: {1}<br>Предложенный ответ: {2}",
'fi': "Lause: {0}<br>Kysymys: {1}<br>Ehdotettu vastaus: {2}"
}
PREFIXES = {
'en': 'Disagree',
'sv': 'Håller inte med',
'ru': "Не согласен",
'fi': 'Olen eri mieltä'
}
SUFFIXES = {
'fi': 'Olen samaa mieltä',
'ru': "Согласен",
'sv': "Håller med",
'en': "Agree"
}
SURVEY_ITEMS = {
'en': json.load(open(os.path.join('eval', 'en_items.json'))),
'sv': json.load(open(os.path.join('eval', 'sv_items.json'))),
'ru': json.load(open(os.path.join('eval', 'ru_items.json'))),
'fi': json.load(open(os.path.join('eval', 'fi_items.json')))
}
TT_ANSWER_SET_FORMAT = {
"type": "radio",
"name": "",
"choices": list(range(1, 5)),
"prefix": "",
"suffix": ""
}
TT_SURVEY_ITEM_FORMAT = {
"question": "",
"required": True,
"order": -1,
"extra": {},
"answer_sets": []
}
TT_SURVEY_FORMAT = {
"name": "Evaluation of reading comprehension questions",
"items": [],
"gold": []
}
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def get_correct_answer(choices):
return list(filter(lambda x: x['type'] == 'Correct answer', choices))[0]
def translate(qw):
return {
'what': 'vad',
'which': 'vilken',
'when': 'när',
'why': 'varför',
'how': 'hur',
"where": 'var',
"who": 'vem',
'whose': 'vems'
}[qw.lower()]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-l', '--lang', type=str, help='A language for template generation (en, sv are currently supported)')
parser.add_argument('-f', '--files', type=str, help='Comma-separated list of files to generate questions from')
parser.add_argument('-t', '--templates-folder', type=str, help="A folder with guards, templates and example files")
parser.add_argument('-r', '--ranking-folder', type=str, help='A folder with qwstats.dill and atmpl.dill for the language')
parser.add_argument('-ft', '--format', type=str, help='Data format (tt for Textinator or squad for Squad)')
parser.add_argument('-pg', '--pos-ngrams', type=str, help='Folder with POS-ngrams for the language only')
parser.add_argument('-cf', '--case-folding', action='store_true')
parser.add_argument('-rp', '--remove_punctuation', action='store_true')
parser.add_argument('-rd', '--remove_diacritics', action='store_true')
parser.add_argument('-st', '--strict', action='store_true')
parser.add_argument('-k', '--max-examples', type=int, default=-1, help='Max number of example sentences to be evaluated')
parser.add_argument('-rtl', '--right-to-left', action='store_true')
parser.add_argument('-mdb', '--modeldb-url', type=str, default='')
parser.add_argument('-j', '--join-symbol', type=str, default=' ')
parser.add_argument('--include-gold', action='store_true', help="Whether to include gold items in the survey")
parser.add_argument('-ke', '--keep-empty', action='store_true', help="Keep the cases with no generated questions")
args = parser.parse_args()
if args.modeldb_url:
client = repro.get_client(args.modeldb_url)
client.set_project("TyDiQA QG")
client.set_experiment(args.lang)
if args.templates_folder[-1] == os.sep:
timestamp = args.templates_folder[:-1].split(os.sep)[-1]
else:
timestamp = args.templates_folder.split(os.sep)[-1]
run = client.set_experiment_run("{}_{}".format(args.lang, timestamp))
run.log_hyperparameters({
'eval_template_folder': args.templates_folder,
'eval_files': args.files,
'eval_case_folding': args.case_folding,
'eval_remove_punct': args.remove_punctuation,
'eval_right_to_left': args.right_to_left,
'eval_join_char': args.join_symbol,
'eval_remove_diacritics': args.remove_diacritics
}, overwrite=True)
if args.templates_folder:
eval_folder = os.path.join(args.templates_folder, 'eval_{}'.format(str(time.time()).replace('.', '')))
else:
args.templates_folder = get_default_model_path(args.lang)
if not os.path.exists(args.templates_folder):
logger.error(
"""No valid model found. Try downloading by running `quinductor.download({})`
or providing your own by using script arguments""".format(args.lang)
)
eval_folder = 'evaluation'
if not args.ranking_folder:
args.ranking_folder = Path(args.templates_folder).parent
if not os.path.exists(eval_folder):
os.makedirs(eval_folder)
with open(os.path.join(eval_folder, 'args.txt'), 'w') as f:
f.write(str(args))
# lm = arpa.loadf(args.language_model)[0]
# arabic, finnish - include mwt
# russian - exclude mwt
dep_proc = 'tokenize,lemma,mwt,pos,depparse' if args.lang in ['fi', 'ar'] else 'tokenize,lemma,pos,depparse'
proc = 'tokenize,mwt,pos' if args.lang in ['fi', 'ar'] else 'tokenize,pos'
stanza_dep_pipe = stanza.Pipeline(lang=args.lang, processors=dep_proc)
stanza_pipe = stanza.Pipeline(lang=args.lang, processors=proc)
if not args.pos_ngrams:
args.pos_ngrams = os.path.join(args.ranking_folder, 'pos_ngrams')
log_prob = load_pos_ngrams(args.pos_ngrams)
qw_stat = dill.load(open(os.path.join(args.ranking_folder, 'qwstats.dill'), 'rb'))
a_tmpl = dill.load(open(os.path.join(args.ranking_folder, 'atmpl.dill'), 'rb'))
if args.format == 'tt':
data_loader = TextinatorLoader
elif args.format == 'squad':
data_loader = SquadLoader
elif args.format == 'tydiqa':
data_loader = TyDiQaLoader
else:
# generic case
data_loader = JsonLinesLoader
data_file = os.path.join(eval_folder, 'data.dill')
if os.path.exists(data_file):
data = dill.load(open(data_file, 'rb'))
elif data_loader == JsonLinesLoader:
data = defaultdict(lambda: defaultdict(list))
for q, a, s in data_loader.from_files(args.files.split(','), args.lang):
if args.case_folding:
s = s.lower()
q = q.lower()
a = a.lower()
if args.remove_punctuation:
s = remove_unicode_punctuation(s).strip()
q = remove_unicode_punctuation(q).strip()
data[s][q].append(a)
else:
data = defaultdict(lambda: defaultdict(list))
for q, a, c in data_loader.from_files(args.files.split(','), args.lang):
s = get_sentence_by_answer(a, c, stanza_pipe)
if s:
# sometimes segmenter can be wrong
if args.case_folding:
s = s.lower()
q = q.lower()
a['text'] = a['text'].lower()
if args.remove_punctuation:
s = remove_unicode_punctuation(s).strip()
q = remove_unicode_punctuation(q).strip()
a['text'] = remove_unicode_punctuation(a['text']).strip()
data[s][q].append(a['text'])
dill.dump(data, open(data_file, 'wb'))
fname = "test.conll"
guards_root = load_guards(glob.glob(os.path.join(args.templates_folder, 'guards.txt')))
templates = load_templates(glob.glob(os.path.join(args.templates_folder, 'templates.txt')))
template_examples = load_template_examples(glob.glob(os.path.join(args.templates_folder, 'sentences.txt')))
eval_file = open(os.path.join(eval_folder, "eval_{}.csv".format(args.lang)), 'w')
writer = csv.writer(eval_file, delimiter='|')
writer.writerow(['Template', 'Original sentence', 'Generated question', 'Generated answer', 'Score', 'Qw frequency'])
total_gen, correct_q, correct_t = 0, 0, 0
total_non_pronoun, total, possible = 0, 0, 0
ground_truth, hypotheses, hyp_scores, all_scores, survey = [], [], [], [], dict(TT_SURVEY_FORMAT)
for sent in tqdm(data):
q_dict = data[sent]
if not q_dict:
continue
if args.max_examples > 0:
# sample one gold question and answer
q_dict_keys = list(q_dict.keys())
ind = np.random.choice(range(len(q_dict_keys)))
gold_q = q_dict_keys[ind]
ind_a = np.random.choice(range(len(q_dict[gold_q])))
gold_a = q_dict[gold_q][ind_a]
total += len(q_dict)
sent = re.sub(r' {2,}', '', sent)
stanza_sent = stanza_dep_pipe(sent)
with open(fname, 'w') as f:
conll_list = CoNLL.convert_dict(stanza_sent.to_dict())
f.write(CoNLL.conll_as_string(conll_list))
trees = udon2.ConllReader.read_file(fname)
res = overgenerate_questions(trees, guards_root, templates, template_examples, return_first=False)
if res:
idx_sorted_by_scores, qwf, atf, scores = rank(
res, stanza_pipe, stanza_dep_pipe, qw_stat, a_tmpl, log_prob,
rtl=args.right_to_left, join_char=args.join_symbol)
generated, num_recorded_questions = defaultdict(list), 0
for i in idx_sorted_by_scores:
if len(res[i]['answer']) == 1 and atf[i] < 1:
# if the answer is one word and its sequence of pos-morph tags not appeared in the corpus
continue
if qwf[i] == 0:
# if the combination of the question word and the root token of the answer never appeared in the corpus
continue
q = args.join_symbol.join(res[i]['question'])
a = args.join_symbol.join(res[i]['answer'])
if args.remove_diacritics:
q, a = remove_unicode_diacritics(q), remove_unicode_diacritics(a)
if num_recorded_questions == 0:
# hypotheses and ground truth are to be concatenated by space no matter what,
# since nlg-eval splits by space and other packages expect tokenized hypotheses and references
gt = []
for gt_q in q_dict:
q_tokens = [t.text for s in stanza_pipe(gt_q).sentences for t in s.words]
if args.remove_diacritics:
gt_qq = remove_unicode_diacritics(" ".join(q_tokens))
else:
gt_qq = " ".join(q_tokens)
gt_qq = remove_unicode_punctuation(gt_qq) # since templates are without punctuation
gt.append(gt_qq)
ground_truth.append(gt)
hypotheses.append(q)
hyp_scores.append(scores[i])
q += '?' # formatting for survey
stmpl = SURVEY_TEMPLATES.get(args.lang, SURVEY_TEMPLATES['en'])
sitem = copy.deepcopy(TT_SURVEY_ITEM_FORMAT)
sitem['extra']['model'] = 'gen'
sitem['question'] = stmpl.format(sent.replace('"', '""'), q.replace('"', '""'), a.replace('"', '""'))
items = SURVEY_ITEMS.get(args.lang, SURVEY_ITEMS['en'])
for item in items:
to_add = copy.deepcopy(TT_ANSWER_SET_FORMAT)
to_add['name'] = item
to_add['prefix'] = PREFIXES.get(args.lang, PREFIXES['en'])
to_add['suffix'] = SUFFIXES.get(args.lang, SUFFIXES['en'])
sitem['answer_sets'].append(to_add)
survey["items"].append(sitem)
if args.include_gold:
sitem = copy.deepcopy(TT_SURVEY_ITEM_FORMAT)
sitem['extra']['model'] = 'gold'
sitem['question'] = stmpl.format(sent.replace('"', '""'), gold_q.replace('"', '""'), gold_a.replace('"', '""'))
items = SURVEY_ITEMS.get(args.lang, SURVEY_ITEMS['en'])
for item in items:
to_add = copy.deepcopy(TT_ANSWER_SET_FORMAT)
to_add['name'] = item
to_add['prefix'] = PREFIXES.get(args.lang, PREFIXES['en'])
to_add['suffix'] = SUFFIXES.get(args.lang, SUFFIXES['en'])
sitem['answer_sets'].append(to_add)
survey["gold"].append(sitem)
if a.strip() and q.strip():
writer.writerow([res[i]['temp_id'], sent, q, a, scores[i], qwf[i]])
generated[q].append(a)
all_scores.append(scores[i])
elif q.strip():
writer.writerow([res[i]['temp_id'], sent, q, '', scores[i], qwf[i]])
all_scores.append(scores[i])
num_recorded_questions += 1
if idx_sorted_by_scores:
writer.writerow([])
# print(correct)
for q, a_list in generated.items():
total_gen += len(a_list)
# print(q, a_list)
if q in q_dict:
correct_q += 1
if set(a_list) & set(q_dict[q]):
correct_t += 1
if num_recorded_questions == 0 and args.keep_empty:
# hypotheses and ground truth are to be concatenated by space no matter what,
# since nlg-eval splits by space and other packages expect tokenized hypotheses and references
gt = []
for gt_q in q_dict:
q_tokens = [t.text for s in stanza_pipe(gt_q).sentences for t in s.words]
if args.remove_diacritics:
gt_qq = remove_unicode_diacritics(" ".join(q_tokens))
else:
gt_qq = " ".join(q_tokens)
gt_qq = remove_unicode_punctuation(gt_qq) # since templates are without punctuation
gt.append(gt_qq)
ground_truth.append(gt)
hypotheses.append("")
hyp_scores.append(float('inf'))
all_scores.append(0)
elif args.keep_empty:
# hypotheses and ground truth are to be concatenated by space no matter what,
# since nlg-eval splits by space and other packages expect tokenized hypotheses and references
gt = []
for gt_q in q_dict:
q_tokens = [t.text for s in stanza_pipe(gt_q).sentences for t in s.words]
if args.remove_diacritics:
gt_qq = remove_unicode_diacritics(" ".join(q_tokens))
else:
gt_qq = " ".join(q_tokens)
gt_qq = remove_unicode_punctuation(gt_qq) # since templates are without punctuation
gt.append(gt_qq)
ground_truth.append(gt)
hypotheses.append("")
hyp_scores.append(float('inf'))
all_scores.append(0)
if ground_truth and hypotheses:
hyp_scores, score_mean = np.array(hyp_scores), np.ma.masked_invalid(all_scores).mean()
ind = np.asarray(hyp_scores >= score_mean).nonzero()[0]
if args.max_examples > 0:
survey_fname = 'survey_{}_k{}.json'.format(args.lang, args.max_examples)
hyp_fname = 'hypothesis_{}_k{}.txt'.format(args.lang, args.max_examples)
if len(ind) > args.max_examples:
sample = np.random.choice(ind, size=(args.max_examples,), replace=False)#p=p, replace=False)
else:
sample = ind
else:
survey_fname = 'survey_{}.json'.format(args.lang)
hyp_fname = 'hypothesis_{}.txt'.format(args.lang)
sample = ind
with open(os.path.join(eval_folder, hyp_fname), 'w') as hp_file,\
open(os.path.join(eval_folder, survey_fname), 'w') as sm_file:
items = []
for j in range(len(hyp_scores)):
if j in sample:
hp_file.write(remove_unicode_punctuation(hypotheses[j]) + '\n')
try:
items.append(survey["items"][j])
if survey["gold"]:
items.append(survey["gold"][j])
except IndexError:
print("Error while writing a survey file -- Skipping the item")
elif args.keep_empty:
hp_file.write('\n')
survey["items"] = items
del survey["gold"]
print("Written {} items to the survey".format(len(items)))
json.dump(survey, sm_file)
N_ref = max([len(x) for x in ground_truth])
for i in range(N_ref):
if args.max_examples > 0:
gt_fname = 'ground_truth_{}_k{}_{}.txt'.format(args.lang, args.max_examples, i)
else:
gt_fname = 'ground_truth_{}_{}.txt'.format(args.lang, i)
with open(os.path.join(eval_folder, gt_fname), 'w') as gt_file:
for j in sample:
if i < len(ground_truth[j]):
gt_file.write(ground_truth[j][i] + '\n')
else:
gt_file.write('\n')
eval_file.close()
if args.modeldb_url:
run.log_metric("correct_questions", correct_q, overwrite=True)
run.log_metric("correct_qa_pairs", correct_t, overwrite=True),
run.log_metric("generated_qa_total", total_gen, overwrite=True),
run.log_metric("questions_in_corpus", total, overwrite=True),
run.log_artifact("eval", eval_folder, overwrite=True)