-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathconvert.py
50 lines (46 loc) · 2.11 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch.onnx
import torch
import numpy as np
def torch_to_onnx(net, input_shape, out_name="out/model.onnx", input_names=["input0"], output_names=["output0"], device="cpu"):
batch_size = 1
if len(input_shape) == 3:
x = torch.randn(batch_size, input_shape[0], input_shape[1], input_shape[2], dtype=torch.float32).to(device)
elif len(input_shape) == 1:
x = torch.randn(batch_size, input_shape[0], dtype=torch.float32).to(device)
else:
raise Exception("not support input shape")
print("input shape:", x.shape)
# torch.onnx._export(net, x, "out/conv0.onnx", export_params=True)
torch.onnx.export(net, x, out_name, export_params=True, input_names = input_names, output_names=output_names)
print("export onnx ok")
def onnx_to_ncnn(input_shape, onnx="out/model.onnx", ncnn_param="out/conv0.param", ncnn_bin = "out/conv0.bin"):
import os
# onnx2ncnn tool compiled from ncnn/tools/onnx, and in the buld dir
cmd = f"onnx2ncnn {onnx} {ncnn_param} {ncnn_bin}" #更换自己的路径
os.system(cmd)
with open(ncnn_param) as f:
content = f.read().split("\n")
if len(input_shape) == 1:
content[2] += " 0={}".format(input_shape[0])
else:
content[2] += " 0={} 1={} 2={}".format(input_shape[2], input_shape[1], input_shape[0])
content = "\n".join(content)
with open(ncnn_param, "w") as f:
f.write(content)
def gen_input(input_shape, input_img=None, out_img_name="out/img.jpg", out_bin_name="out/input_data.bin", norm_int8=False):
from PIL import Image
if not input_img:
input_img = (255, 0, 0)
if type(input_img) == tuple:
img = Image.new("RGB", (input_shape[2], input_shape[1]), input_img)
else:
img = Image.open(input_img)
img = img.resize((input_shape[2], input_shape[1]))
img.save(out_img_name)
with open(out_bin_name, "wb") as f:
print("norm_int8:", norm_int8)
if not norm_int8:
f.write(img.tobytes())
else:
data = (np.array(list(img.tobytes()), dtype=np.float)-128).astype(np.int8)
f.write(bytes(data))