forked from GT-Vision-Lab/VQA_LSTM_CNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.lua
executable file
·268 lines (219 loc) · 9.16 KB
/
eval.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
require 'nn'
require 'cutorch'
require 'cunn'
require 'nngraph'
require 'optim'
require 'misc.netdef'
require 'hdf5'
LSTM=require 'misc.LSTM'
cjson=require('cjson');
require 'xlua'
-------------------------------------------------------------------------------
-- Input arguments and options
-------------------------------------------------------------------------------
cmd = torch.CmdLine()
cmd:text()
cmd:text('Test the Visual Question Answering model')
cmd:text()
cmd:text('Options')
-- Data input settings
cmd:option('-input_img_h5','data_img.h5','path to the h5file containing the image feature')
cmd:option('-input_ques_h5','data_prepro.h5','path to the h5file containing the preprocessed dataset')
cmd:option('-input_json','data_prepro.json','path to the json file containing additional info and vocab')
cmd:option('-model_path', 'model/lstm.t7', 'path to a model checkpoint to initialize model weights from. Empty = don\'t')
cmd:option('-out_path', 'result/', 'path to save output json file')
-- Model parameter settings (shoud be the same with the training)
cmd:option('-batch_size',500,'batch_size for each iterations')
cmd:option('-input_encoding_size', 200, 'the encoding size of each token in the vocabulary')
cmd:option('-rnn_size',512,'size of the rnn in number of hidden nodes in each layer')
cmd:option('-rnn_layer',2,'number of the rnn layer')
cmd:option('-common_embedding_size', 1024, 'size of the common embedding vector')
cmd:option('-num_output', 1000, 'number of output answers')
cmd:option('-img_norm', 1, 'normalize the image feature. 1 = normalize, 0 = not normalize')
cmd:option('-backend', 'cudnn', 'nn|cudnn')
cmd:option('-gpuid', 0, 'which gpu to use. -1 = use CPU')
opt = cmd:parse(arg)
print(opt)
torch.setdefaulttensortype('torch.FloatTensor') -- for CPU
require 'misc.RNNUtils'
if opt.gpuid >= 0 then
require 'cutorch'
require 'cunn'
if opt.backend == 'cudnn' then require 'cudnn' end
cutorch.setDevice(opt.gpuid + 1)
end
------------------------------------------------------------------------
-- Setting the parameters
------------------------------------------------------------------------
local model_path = opt.model_path
local batch_size=opt.batch_size
local embedding_size_q=opt.input_encoding_size
local lstm_size_q=opt.rnn_size
local nlstm_layers_q=opt.rnn_layer
local nhimage=4096
local common_embedding_size=opt.common_embedding_size
local noutput=opt.num_output
local dummy_output_size=1
------------------------------------------------------------------------
-- Loading Dataset
------------------------------------------------------------------------
print('DataLoader loading h5 file: ', opt.input_json)
local dataset = {}
local file = io.open(opt.input_json, 'r')
local text = file:read()
file:close()
json_file = cjson.decode(text)
print('DataLoader loading h5 file: ', opt.input_ques_h5)
local dataset = {}
local h5_file = hdf5.open(opt.input_ques_h5, 'r')
dataset['question'] = h5_file:read('/ques_test'):all()
dataset['lengths_q'] = h5_file:read('/ques_length_test'):all()
dataset['img_list'] = h5_file:read('/img_pos_test'):all()
dataset['ques_id'] = h5_file:read('/question_id_test'):all()
dataset['MC_ans_test'] = h5_file:read('/MC_ans_test'):all()
h5_file:close()
print('DataLoader loading h5 file: ', opt.input_img_h5)
local h5_file = hdf5.open(opt.input_img_h5, 'r')
dataset['fv_im'] = h5_file:read('/images_test'):all()
h5_file:close()
dataset['question'] = right_align(dataset['question'],dataset['lengths_q'])
-- Normalize the image feature
if opt.img_norm == 1 then
local nm=torch.sqrt(torch.sum(torch.cmul(dataset['fv_im'],dataset['fv_im']),2))
dataset['fv_im']=torch.cdiv(dataset['fv_im'],torch.repeatTensor(nm,1,4096)):float()
end
local count = 0
for i, w in pairs(json_file['ix_to_word']) do count = count + 1 end
local vocabulary_size_q=count
collectgarbage();
------------------------------------------------------------------------
--Design Parameters and Network Definitions
------------------------------------------------------------------------
buffer_size_q=dataset['question']:size()[2]
--embedding: word-embedding
embedding_net_q=nn.Sequential()
:add(nn.Linear(vocabulary_size_q,embedding_size_q))
:add(nn.Dropout(0.5))
:add(nn.Tanh())
--encoder: RNN body
encoder_net_q=LSTM.lstm_conventional(embedding_size_q,lstm_size_q,dummy_output_size,nlstm_layers_q,0.5)
--MULTIMODAL
--multimodal way of combining different spaces
multimodal_net=nn.Sequential()
:add(netdef.AxB(2*lstm_size_q*nlstm_layers_q,nhimage,common_embedding_size,0.5))
:add(nn.Dropout(0.5))
:add(nn.Linear(common_embedding_size,noutput))
--criterion
criterion=nn.CrossEntropyCriterion()
--Optimization parameters
dummy_state_q=torch.Tensor(lstm_size_q*nlstm_layers_q*2):fill(0)
dummy_output_q=torch.Tensor(dummy_output_size):fill(0)
if opt.gpuid >= 0 then
print('shipped data function to cuda...')
embedding_net_q = embedding_net_q:cuda()
encoder_net_q = encoder_net_q:cuda()
multimodal_net = multimodal_net:cuda()
criterion = criterion:cuda()
dummy_state_q = dummy_state_q:cuda()
dummy_output_q = dummy_output_q:cuda()
end
-- setting to evaluation
embedding_net_q:evaluate();
encoder_net_q:evaluate();
multimodal_net:evaluate();
embedding_w_q,embedding_dw_q=embedding_net_q:getParameters();
encoder_w_q,encoder_dw_q=encoder_net_q:getParameters();
multimodal_w,multimodal_dw=multimodal_net:getParameters();
-- loading the model
model_param=torch.load(model_path);
embedding_w_q:copy(model_param['embedding_w_q']);
encoder_w_q:copy(model_param['encoder_w_q']);
multimodal_w:copy(model_param['multimodal_w']);
sizes={encoder_w_q:size(1),embedding_w_q:size(1),multimodal_w:size(1)};
------------------------------------------------------------------------
--Grab Next Batch--
------------------------------------------------------------------------
function dataset:next_batch_test(s,e)
local batch_size=e-s+1;
local qinds=torch.LongTensor(batch_size):fill(0);
local iminds=torch.LongTensor(batch_size):fill(0);
for i=1,batch_size do
qinds[i]=s+i-1;
iminds[i]=dataset['img_list'][qinds[i]];
end
local fv_sorted_q=sort_encoding_onehot_right_align(dataset['question']:index(1,qinds),dataset['lengths_q']:index(1,qinds),vocabulary_size_q);
local fv_im=dataset['fv_im']:index(1,iminds);
local qids=dataset['ques_id']:index(1,qinds);
-- ship to gpu
if opt.gpuid >= 0 then
fv_sorted_q[1]=fv_sorted_q[1]:cuda()
fv_sorted_q[3]=fv_sorted_q[3]:cuda()
fv_sorted_q[4]=fv_sorted_q[4]:cuda()
fv_im = fv_im:cuda()
end
--print(string.format('batch_sort:%f',timer:time().real));
return fv_sorted_q,fv_im:cuda(),qids,batch_size;
end
------------------------------------------------------------------------
-- Objective Function and Optimization
------------------------------------------------------------------------
-- duplicate the RNN
local encoder_net_buffer_q=dupe_rnn(encoder_net_q,buffer_size_q);
function forward(s,e)
local timer = torch.Timer();
--grab a batch--
local fv_sorted_q,fv_im,qids,batch_size=dataset:next_batch_test(s,e);
local question_max_length=fv_sorted_q[2]:size(1);
--embedding forward--
local word_embedding_q=split_vector(embedding_net_q:forward(fv_sorted_q[1]),fv_sorted_q[2]);
--encoder forward--
local states_q,junk2=rnn_forward(encoder_net_buffer_q,torch.repeatTensor(dummy_state_q:fill(0),batch_size,1),word_embedding_q,fv_sorted_q[2]);
--multimodal/criterion forward--
local tv_q=states_q[question_max_length+1]:index(1,fv_sorted_q[4]);
local scores=multimodal_net:forward({tv_q,fv_im});
return scores:double(),qids;
end
-----------------------------------------------------------------------
-- Do Prediction
-----------------------------------------------------------------------
nqs=dataset['question']:size(1);
scores=torch.Tensor(nqs,noutput);
qids=torch.LongTensor(nqs);
for i=1,nqs,batch_size do
xlua.progress(i, nqs)
r=math.min(i+batch_size-1,nqs);
scores[{{i,r},{}}],qids[{{i,r}}]=forward(i,r);
end
tmp,pred=torch.max(scores,2);
------------------------------------------------------------------------
-- Write to Json file
------------------------------------------------------------------------
function writeAll(file,data)
local f = io.open(file, "w")
f:write(data)
f:close()
end
function saveJson(fname,t)
return writeAll(fname,cjson.encode(t))
end
response={};
for i=1,nqs do
table.insert(response,{question_id=qids[i],answer=json_file['ix_to_ans'][tostring(pred[{i,1}])]})
end
paths.mkdir(opt.out_path)
saveJson(opt.out_path .. 'OpenEnded_mscoco_lstm_results.json',response);
mc_response={};
for i=1,nqs do
local mc_prob = {}
local mc_idx = dataset['MC_ans_test'][i]
local tmp_idx = {}
for j=1, mc_idx:size()[1] do
if mc_idx[j] ~= 0 then
table.insert(mc_prob, scores[{i, mc_idx[j]}])
table.insert(tmp_idx, mc_idx[j])
end
end
local tmp,tmp2=torch.max(torch.Tensor(mc_prob), 1);
table.insert(mc_response, {question_id=qids[i],answer=json_file['ix_to_ans'][tostring(tmp_idx[tmp2[1]])]})
end
saveJson(opt.out_path .. 'MultipleChoice_mscoco_lstm_results.json',mc_response);