-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNoiseEstimator.cpp
84 lines (73 loc) · 2.96 KB
/
NoiseEstimator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include "ToolBox.h"
#include "CustomException.h"
#include <iostream>
#include "NoiseEstimator.h"
#include "OpticalSetup.h"
#include "Zernike.h"
#include "FITS.h"
NoiseEstimator::NoiseEstimator()
{
sigma_ = 0;
sigma2_ = 0;
meanPower_ = 0;
}
NoiseEstimator::~NoiseEstimator()
{
// TODO Auto-generated destructor stub
}
//The method could be enhanced with multiresolution support
void NoiseEstimator::kSigmaClipping(const cv::Mat& img)
{
cv::Mat imgBlurred(img.size(), img.type());
cv::Mat mask(img.size(), CV_8U); //mask has to be this type CV_8U
mask = cv::Scalar::all(255);
int blurKernelSize(3), k(3);
cv::medianBlur(img, imgBlurred, blurKernelSize);
cv::Mat imgNoise(img.size(), CV_32F);
imgNoise = img - imgBlurred;
cv::Scalar m, s;
for(unsigned int l(0);l<3;++l)
{
cv::meanStdDev(imgNoise, m, s, mask);
sigma_ = s.val[0];
//Discard pixels greater or lower than 3*sigma and start all over again
//cv::threshold(imgNoise, imgNoise, 0.0, 255.0, 0);
//CAUTION: check sigma definition for meanStdDev! might not be the expected
inRange(imgNoise, cv::Scalar(-k*sigma_), cv::Scalar(k*sigma_), mask);
}
}
void NoiseEstimator::meanPowerSpectrum(const cv::Mat& img)
{
if (img.channels() == 1)
{
cv::Mat IMG;
//CAUTION: The result of the dft is explicitly scaled, so the sigma value might change
cv::dft(img, IMG, cv::DFT_COMPLEX_OUTPUT + cv::DFT_SCALE);
fftShift(IMG);
bool conjB(true);
cv::Mat powerSpectrum;
cv::mulSpectrums(IMG, IMG, powerSpectrum, cv::DFT_COMPLEX_OUTPUT + cv::DFT_SCALE, conjB);
//A mask has to be applied to before calculating the sigma
OpticalSetup tsettings(img.cols);
std::cout << "cutoffPixel: " << tsettings.cutoffPixel() << std::endl;
cv::Mat mask = cv::Mat::ones(powerSpectrum.size(), powerSpectrum.depth());
//Mask to only consider pixel values after cutoff, which are due to noise only
Zernike zrnk;
mask.setTo(0, zrnk.phaseMapZernike(1, mask.cols, tsettings.cutoffPixel()) != 0);
//mask.setTo(0, zrnk.phaseMapZernike(1, mask.cols, mask.cols/2) != 0);
mask.colRange(int((mask.cols/2)-(mask.cols/6)),int((mask.cols/2)+(mask.cols/6))) = cv::Scalar(0);
mask.rowRange(int((mask.rows/2)-(mask.rows/6)),int((mask.rows/2)+(mask.rows/6))) = cv::Scalar(0);
//CAUTION: Remember to shift quadrants before applying circle mask to fourier domain!!
cv::Mat croppedSpectrums = (splitComplex(powerSpectrum).first).mul(mask);
meanPower_ = cv::sum(croppedSpectrums).val[0]/cv::sum(mask).val[0];
sigma2_ = meanPower_ * img.total() ;
sigma_ = std::sqrt(sigma2_);
//sigma_ = img.cols * std::sqrt(meanPower_); //cd m ;(Append.K)
std::cout << "cv::mean(img): " << cv::mean(img) << std::endl;
std::cout << "sigma = " << sigma_ << " represents " << sigma_/(cv::mean(img)/100.0) << "% of the average intensity." << std::endl;
}
else
{
throw CustomException("meanPowerSpectrum: Only one channel image allowed.");
}
}