-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathisobaric-prot-workflow-R3.6.R
575 lines (542 loc) · 17.7 KB
/
isobaric-prot-workflow-R3.6.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
#library(readxl)
library(dplyr)
library(ggplot2)
library(tidyr)
library(DEqMS)
library(fgsea)
#Yeast Triple-Knockout TMT Standard
#Set the working directory for the project
setwd("/home/trainee/Documents/TKO_R/")
#If the table has been exported as a tab-separated text file
all_proteins <- read.table("MS3_FAIMS_Proteins_PD24.txt", sep = '\t', header = TRUE)
#If the table is in Excel format
#all_proteins <- read_excel("MS3_FAIMS_Proteins_PD24.xlsx")
colnames(all_proteins)
dim(all_proteins)
#Filter in the Master proteins and filter out contaminants
#Remove the unused columns
all_proteins <- all_proteins %>%
filter(!grepl("cont_",Accession)) %>%
filter(Master == "IsMasterProtein") %>%
select(3:38)
#Add gene names from the description
all_proteins$Gene <- apply(
all_proteins, 1, function(x) {
descr <- x["Description"]
#OBS: format-dependent operations
gn <- strsplit(descr, "GN=")[[1]][[2]]
strsplit(gn, " ")[[1]][[1]]
}
)
dim(all_proteins)
#Construct a function to rename the ratios
#and simultaneously put the ratio columns in a list
#OBS: pay attention to the particular format of the column names
#OBS: the code below is adapted for Proteome Discoverer
rename_ratios <- function(df) {
#Initialize the vector of ratio columns
ratio_columns <- character()
for ( c in colnames(df) ) {
#check the columns one by one
if ( grepl("Abundance.Ratio", c) ) {
new_colname <- strsplit(c, "\\.")[[1]][[3]]
names(df)[names(df) == c] <- new_colname
#all_proteins <- rename(all_proteins, new_colname = c)
ratio_columns <- c(ratio_columns, new_colname)
}
}
list(df, ratio_columns)
}
res <- rename_ratios(all_proteins)
all_proteins <- res[[1]]
quan_columns <- res[[2]]
quan_columns
#If you only want to find the quantitative columns, but not to rename them
find_ratios <- function(df) {
#Initialize the vector of ratio columns
ratio_columns <- character()
for ( cname in colnames(df) ) {
#check the columns one by one
if ( grepl("Abundance.Ratio", cname) ) {
ratio_columns <- c(ratio_columns, cname)
}
}
ratio_columns
}
quan_columns <- find_ratios(all_proteins)
quan_columns
dfWide <- all_proteins %>%
filter(!grepl("cont_",Accession)) %>%
subset (select=c("Accession", quan_columns) ) %>%
na.omit()
rownames(dfWide) <- dfWide$Accession
dfWide$Accession <- NULL
dfWide <- log2(dfWide)
#Look at the distribution of quan values
summary(dfWide)
#Box Plot
boxplot(
Log2_Abund~Sample, data = gather(dfWide, Sample, Log2_Abund),
main = "Original Log2 Ratios"
)
#Check how the distributions change after normalization on median
#For each column, subtract the median of the column from each of it's values
dfNorm <- mapply('-', dfWide, apply(dfWide,2,median))
#Transform into a dataframe
dfNorm <- as.data.frame(dfNorm, row.names = row.names(dfWide))
boxplot(
Log2_Abund~Sample, data = gather(dfNorm, Sample, Log2_Abund),
main = "Normalized Log2 Ratios"
)
#If desired, use the normalized data for the downstream operations
dfWide <- dfNorm
dfWide$Accession <- row.names(dfWide)
dfLong <- gather(dfWide, Sample, Log2_Abund, -Accession)
dfWide$Accession <- NULL
head(dfWide)
#Add group names based on the samples
dfLong$Group <- apply(
dfLong, 1, function(x) {
sampleName <- x["Sample"]
#OBS: format-dependent operations
strsplit(sampleName, "_")[[1]][[1]]
}
)
head(dfLong)
#PLOTS
#Histograms of abundance by sample
ggplot( dfLong, aes(x = Log2_Abund) ) +
coord_cartesian(xlim = c(-2, 2)) +
labs(title="Histograms on Proteins", x="Log2 TMT Ratio") +
facet_wrap( ~Sample, scales = "fixed") +
geom_histogram(bins=100) +
theme_bw()
#Calculate and plot principal components (on samples)
# Calculate principal components (for PCA)
dfWide.t <- t(dfWide)
dfWide.pca <- prcomp(dfWide.t, center = TRUE, scale. = FALSE)
summary(dfWide.pca)
dfWide.pca <- as.data.frame(dfWide.pca$x)
dfWide.pca$Group <- sapply(
as.character( row.names(dfWide.pca) ),
function(x) {
strsplit(x, "_")[[1]][[1]]
}
)
#Principal components 1 and 2
ggplot(
dfWide.pca,
aes(x = PC1, y = PC2, colour = Group )
) +
geom_point(shape=19, size=4, alpha = 0.7)+
geom_hline(yintercept = 0, colour = "gray65") +
geom_vline(xintercept = 0, colour = "gray65") +
ggtitle("PCA On Proteins") +
theme_classic()
#Principal components 3 and 4
ggplot(
dfWide.pca,
aes(x = PC3, y = PC4, colour = Group )
) +
geom_point(shape=19, size=4, alpha = 0.7)+
geom_hline(yintercept = 0, colour = "gray65") +
geom_vline(xintercept = 0, colour = "gray65") +
ggtitle("PCA On Proteins") +
theme_classic()
#Pairwise scatter plots
#Consider this for the tables of the moderate size
#This is probably not suitable for datasets with many dozens of samples
#For those, use the correlation heatmap
panel.cor <- function(x, y){
usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- round(cor(x, y), digits=2)
txt <- paste0("R = ", r)
cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt)
}
upper.panel<-function(x, y){
points(x,y, pch = 19, cex = 0.4, col = alpha("blue", 0.2))
}
pairs(dfWide, lower.panel = panel.cor, upper.panel = upper.panel,
main = "Correlations on Proteins")
#Correlation heatmap
correlation_mat <- as.data.frame(round(cor(dfWide),2))
correlation_mat$S1 <- row.names(correlation_mat)
correlation_mat <- gather(correlation_mat, S2, Pearson_Corr, -S1)
ggplot(
data = correlation_mat,
aes(x = S1, y = S2, fill = Pearson_Corr)
) +
geom_tile() +
#Add customized coor gradient from -1 to 1
scale_fill_gradient2(
low = "blue", high = "red", mid = "grey",
midpoint = 0, limit = c(-1,1),
) +
labs(title="Pearson Correlations on Proteins") +
theme(
axis.title.x=element_blank(), axis.ticks.x=element_blank(),
axis.title.y=element_blank(), axis.ticks.y=element_blank()
)
#Calculate one-way ANOVA P-values
dfANOVA <- dfWide
cols_anova <- c("his4_1", "his4_2", "his4_3", "met6_1", "met6_2", "met6_3", "ura2_1", "ura2_2", "ura2_3")
#Create the named list with our groups
groups <- list()
for (i in cols_anova) {
local_name <- strsplit(i, "_")[[1]][[1]]
if ( local_name %in% names(groups) ) {
groups[[local_name]] <- c(groups[[local_name]], i)
} else {
groups[[local_name]] <- c(i)
}
}
groups
dfANOVA$anovaPval <- apply(dfANOVA, 1, function(x) {
df <- as.data.frame(x)
#Select the samples for ANOVA
#Important if you need to exclude some of the samples from the calculation
df$Sample <- rownames(df)
df <- df[ df$Sample %in% cols_anova, ]
#Define groups in sync with the selected columns
#OBS: format-dependent
df$Group <- as.vector(
sapply(
cols_anova,
function(x) { strsplit(x, "_")[[1]][[1]] }
)
)
anovaResults <- aov(x ~ Group, data = df)
#This Very exciting expression is how to extract the p-value from the aov summary
return(summary(anovaResults)[[1]]["Pr(>F)"][[1]][[1]])
})
#Benjamini-Hochberg correction for multiple testing
dfANOVA$adjPval <- p.adjust(dfANOVA$anovaPval, method = "BH")
#Add group averages
for ( i in names(groups) ) {
dfANOVA[i] <- apply(
dfANOVA, 1, function(x) {
#print(x)
#print(typeof(x))
mean( x[ groups[[i]] ] )
}
)
}
#Add max LogFC
dfANOVA$MaxLog2FC <- apply(
dfANOVA, 1, function(x) {
log_means <- x[ names(groups) ]
max(log_means) - min(log_means)
}
)
#Filter on adjusted p-value and minimal fold-change
print("Proteins with adjusted ANOVA P <= 0.05 and FC > log2(1.3) [30%]")
dfANOVA.Sign <- dfANOVA %>%
filter(adjPval <= 0.05 & MaxLog2FC >= log2(1.3) ) %>%
select(cols_anova)
dim(dfANOVA.Sign)
heatmap(
as.matrix( dfANOVA.Sign ), scale = "none",
col = colorRampPalette(c("red", "grey", "blue"))(256)
)
#Export the significant proteins according to ANOVA
#Add the info from the original protein table before exporting
dfANOVA %>%
filter(adjPval <= 0.05 & MaxLog2FC >= log2(1.3) ) %>%
merge(all_proteins, by.x="row.names", by.y="Accession", suffixes=c("", "_"), sort=FALSE) %>%
write.table("TKO_ANOVA_Significant_fromR.txt", sep="\t", na="", row.names = FALSE)
#Look at pairwise comparisons and create volcano plots
calc_ttest <- function(df, groupping, gr1, gr2, maxAdjP, minFC) {
df <- df[ c( groupping[[gr1]], groupping[[gr2]] ) ]
#Log2 fold change group2 - group1
df$Log2FC <- apply(
df, 1, function(x) {
mean( x[ groupping[[gr2]] ] ) - mean( x[ groupping[[gr1]] ] )
}
)
#T-test with equal variance
df$T_Pval <- apply(
df, 1, function(x) {
res <- t.test(
x[ groupping[[gr2]] ], x[ groupping[[gr1]] ],
alternative = "two.sided", var.equal = TRUE
)
mean( x[ groupping[[gr2]] ] ) - mean( x[ groupping[[gr1]] ] )
res$p.value
}
)
#Benjamini-Hochberg correction for multiple testing
df$adjPval <- p.adjust(df$T_Pval, method = "BH")
df$Log10adjPval <- -1*log10(df$adjPval)
#Add the categorical column
df$Diff_Abund <- apply(
df, 1, function(x) {
if (x[["adjPval"]] <= maxAdjP & x[["Log2FC"]] >= minFC) {
return( paste("Up in", gr2) )
} else if (x[["adjPval"]] <= maxAdjP & x[["Log2FC"]] <= -1*minFC) {
return( paste("Up in", gr1) )
} else {
return('Non-significant')
}
}
)
df
}
maxAdjP <- 0.05
minLog2FC <- round(log2(1.3), 3)
gr1 <- "met6"
gr2 <- "his4"
dfTtest <- calc_ttest(dfWide, groups, gr1, gr2, maxAdjP, minLog2FC )
#How many proteins have adj. P <= 0.05?
dim( filter(dfTtest, adjPval <= maxAdjP) )
#How many proteins are differentially abundant according to our criteria?
dim(dfTtest %>%
filter(adjPval <= maxAdjP) %>%
filter( Log2FC >= minLog2FC | Log2FC <= -1*minLog2FC ))
head(dfTtest)
#Add columns with the gene names and other info
dfTtest <- merge(
dfTtest, all_proteins,
by.x="row.names", by.y="Accession",
suffixes=c("", "_"), sort=FALSE
)
#Save the differentially abundant proteins
dfTtest %>%
filter(adjPval <= maxAdjP) %>%
filter( Log2FC >= minLog2FC | Log2FC <= -1*minLog2FC ) %>%
write.table(
paste("TKO_Ttest_", gr1, "_vs_", gr2, "_Significant_fromR.txt", sep=""),
sep="\t", na="", row.names = FALSE
)
#Volcano plot
ggplot(
dfTtest,
aes(x = Log2FC, y = Log10adjPval, colour = Diff_Abund )
) +
geom_point(shape=19, size=2, alpha = 0.6)+
geom_hline(yintercept = -1*log10(maxAdjP), colour = "gray65") +
geom_vline(xintercept = 0, colour = "gray65") +
geom_vline(xintercept = -1*minLog2FC, colour = "gray65") +
geom_vline(xintercept = minLog2FC, colour = "gray65") +
ggtitle(
paste(
"T-test ", gr1, " vs ", gr2,
" Adjusted P-value<=", maxAdjP, " Log2 FC>=", minLog2FC,
sep=""
)
) +
theme_classic() +
theme(
legend.title = element_blank(), legend.text = element_text(size=12),
plot.title = element_text(size=16)
) +
labs(x = paste("Log2 FC", gr2, "-", gr1), y = "-Log10 Adj. P-value" ) +
geom_text(
data = subset(dfTtest, Log2FC >=0.9 | Log2FC <= -0.8),
aes( Log2FC, Log10adjPval, label = Gene),
alpha = 0.6, hjust = 0.5, vjust = -0.6
)
#Use DEqMS instead of the T test or ANOVA
dfD <- dfWide[cols_anova]
#Define the design vector
cond = as.factor(
c("his4", "his4", "his4", "met6", "met6", "met6", "ura2", "ura2", "ura2")
)
design = model.matrix(~0+cond)
colnames(design) = gsub("cond","",colnames(design))
#Make contrasts
x <- c(
"his4-met6", "his4-ura2", "ura2-met6"
)
contrast = makeContrasts(contrasts=x,levels=design)
fit1 <- lmFit(dfD, design)
fit2 <- contrasts.fit(fit1,contrasts = contrast)
fit3 <- eBayes(fit2)
#Extract PSM count information
psm_count_table <- dfD %>%
merge(
all_proteins[c("Accession", "Number.of.PSMs")],
by.x="row.names", by.y="Accession", suffixes=c("", "_"), sort=FALSE
)
row.names(psm_count_table) <- psm_count_table$Row.names
psm_count_table <- psm_count_table[c("Number.of.PSMs")]
fit3$count = psm_count_table[rownames(fit3$coefficients),"Number.of.PSMs"]
fit4 = spectraCounteBayes(fit3)
#Visualize the DEqMS calculations
VarianceBoxplot(
fit4, n=30, main="TKO Variance according to DEqMS", xlab="PSM count"
)
#Extract the results
head(fit4$coefficients)
#Let's look at the contrast ura2-met6, column 3
current_contrast <- colnames(fit4$coefficients)[[1]]
res_DEqMS = outputResult(fit4, coef_col = 1)
head(res_DEqMS)
#adj.P.Val in the results comes from LIMMA, and sca.P.Value is from DEqMS
res_DEqMS$log.adj.P.Val = -log10(res_DEqMS$adj.P.Val )
res_DEqMS$log.sca.adj.pval = -log10(res_DEqMS$sca.adj.pval)
maxAdjP <- 0.05
minLog2FC <- round(log2(1.3), 3)
#How many proteins have adj. P <= 0.05 according to LIMMA?
dim(
filter(res_DEqMS, adj.P.Val <= maxAdjP)
)
#How many proteins have adj. P <= 0.05 and Log2 FC >= log2(1.3) [30%]
#according to LIMMA?
dim(res_DEqMS %>%
filter(adj.P.Val <= maxAdjP) %>%
filter( logFC >= minLog2FC | logFC <= -1*minLog2FC ))
#How many proteins have adj. P <= 0.05 according to DEqMS?
dim(
filter(res_DEqMS, sca.adj.pval <= maxAdjP)
)
#How many proteins have adj. P <= 0.05 and Log2 FC >= log2(1.3) [30%]?
dim(res_DEqMS %>%
filter(sca.adj.pval <= maxAdjP) %>%
filter( logFC >= minLog2FC | logFC <= -1*minLog2FC ))
#Export the filtered DEqMS results
res_DEqMS %>%
filter(sca.adj.pval <= maxAdjP) %>%
filter( logFC >= minLog2FC | logFC <= -1*minLog2FC ) %>%
write.table(
paste("TKO_DEqMS_", current_contrast, "_Significant_fromR.txt", sep=""),
sep="\t", na="", row.names = FALSE
)
#current_contrast == paste(gr2, "-", gr1, sep="")
gr1 <- strsplit(current_contrast, "-")[[1]][[2]]
gr2 <- strsplit(current_contrast, "-")[[1]][[1]]
#Add categorical annotation columns for LIMMA and DEqMS
res_DEqMS$Diff_LIMMA <- apply(
res_DEqMS, 1, function(x) {
local_p <- as.numeric(x[["adj.P.Val"]])
local_fc <- as.numeric(x[["logFC"]])
if (local_p <= maxAdjP & local_fc >= minLog2FC) {
return( paste("Up in", gr2) )
} else if (local_p <= maxAdjP & local_fc <= -1*minLog2FC) {
return( paste("Up in", gr1) )
} else {
return('Non-significant')
}
}
)
res_DEqMS$Diff_DEqMS <- apply(
res_DEqMS, 1, function(x) {
local_p <- as.numeric(x[["sca.adj.pval"]])
local_fc <- as.numeric(x[["logFC"]])
if (local_p <= maxAdjP & local_fc >= minLog2FC) {
return( paste("Up in", gr2) )
} else if (local_p <= maxAdjP & local_fc <= -1*minLog2FC) {
return( paste("Up in", gr1) )
} else {
return('Non-significant')
}
}
)
head(res_DEqMS)
res_DEqMS <- merge(
res_DEqMS, all_proteins,
by.x="row.names", by.y="Accession",
suffixes=c("", "_"), sort=FALSE
)
dim(res_DEqMS)
#Export the Whole DEqMS table
write.table(
res_DEqMS,
paste("TKO_DEqMS_", current_contrast, "_AllProteins.txt", sep=""),
sep="\t", na="", row.names = FALSE
)
#Volcano plot for LIMMA
ggplot(
res_DEqMS,
aes(x = logFC, y = log.adj.P.Val, colour = Diff_LIMMA )
) +
geom_point(shape=19, size=2, alpha = 0.6)+
geom_hline(yintercept = -1*log10(maxAdjP), colour = "gray65") +
geom_vline(xintercept = 0, colour = "gray65") +
geom_vline(xintercept = -1*minLog2FC, colour = "gray65") +
geom_vline(xintercept = minLog2FC, colour = "gray65") +
ggtitle(
paste(
"LIMMA ", current_contrast,
" Adjusted P-value<=", maxAdjP, " Log2 FC>=", minLog2FC,
sep=""
)
) +
theme_classic() +
theme(
legend.title = element_blank(), legend.text = element_text(size=12),
plot.title = element_text(size=16)
) +
labs(x = paste("Log2 FC",current_contrast), y = "-Log10 Adj. P-value" ) +
geom_text(
data = subset(res_DEqMS, logFC >=1.0 | logFC <= -0.8),
aes( logFC, log.adj.P.Val, label = Gene),
alpha = 0.6, hjust = 0.5, vjust = -0.6
)
#Volcano plot for DEqMS
ggplot(
res_DEqMS,
aes(x = logFC, y = log.sca.adj.pval, colour = Diff_DEqMS )
) +
geom_point(shape=19, size=2, alpha = 0.6)+
geom_hline(yintercept = -1*log10(maxAdjP), colour = "gray65") +
geom_vline(xintercept = 0, colour = "gray65") +
geom_vline(xintercept = -1*minLog2FC, colour = "gray65") +
geom_vline(xintercept = minLog2FC, colour = "gray65") +
ggtitle(
paste(
"DEqMS ", current_contrast,
" Adjusted P-value<=", maxAdjP, " Log2 FC>=", minLog2FC,
sep=""
)
) +
theme_classic() +
theme(
legend.title = element_blank(), legend.text = element_text(size=12),
plot.title = element_text(size=16)
) +
labs(x = paste("Log2 FC",current_contrast), y = "-Log10 Adj. P-value" ) +
geom_text(
data = subset(res_DEqMS, logFC >=0.9 | logFC <= -0.8),
aes( logFC, log.sca.adj.pval, label = Gene),
alpha = 0.6, hjust = 0.5, vjust = -0.6
)
#Functional annotation with fgsea
#Download the GO Molecular Function, GO Biological Process from Uniprot
#Available under Creative Commons license
#Converted to .gmt files that are common for GSEA
annotations <- gmtPathways("go-bp_gene-symbols_uniprot.gmt")
#Prepare the rank file for the his4-met6 contrast
#Replace the UNIPROT accession with the Gene name
dfGSEA <- res_DEqMS[c("Gene", "logFC", "log.sca.adj.pval")]
#row.names(dfGSEA) <- res_DEqMS$Gene
#Calculate the rank as a product Log2FC * -Log10(adj.P.val.SCA)
dfGSEA$rank <- apply(
dfGSEA, 1, function(x) {
as.numeric(x[[2]]) * as.numeric(x[[3]])
}
)
head(dfGSEA)
#Created the named vector of ranks for GSEA
ranks <- as.numeric(dfGSEA$rank)
names(ranks) <- dfGSEA$Gene
ranks <- sort(ranks)
ranks[1:10]
#Enrichment analysis
res_gsea <- fgseaMultilevel(annotations, ranks, minSize=15, maxSize=500)
#res_gsea <- fgsea(pathways, ranks, nperm=1000, minSize=15, maxSize=500)
head(res_gsea)
#head(res_gsea[order(pval), ])
res_gsea[ES > 0][head(order(pval), n=10),]
res_gsea[ES < 0][head(order(pval), n=10),]
plotEnrichment(
annotations[["ribosomal large subunit biogenesis [GO:0042273]"]],
ranks
) + labs(title="ribosomal large subunit biogenesis [GO:0042273]")
annotations[["ribosomal large subunit biogenesis [GO:0042273]"]]
plotEnrichment(
annotations[["purine nucleotide biosynthetic process [GO:0006164]"]],
ranks
) + labs(title="purine nucleotide biosynthetic process [GO:0006164]")
annotations[["purine nucleotide biosynthetic process [GO:0006164]"]]