-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
81 lines (66 loc) · 2.66 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import argparse
import torch
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
def main(config):
logger = config.get_logger('test')
# setup data_loader instances
data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size=512,
shuffle=False,
validation_split=0.0,
training=False,
num_workers=2
)
# build model architecture
model = config.init_obj('arch', module_arch)
logger.info(model)
# get function handles of loss and metrics
loss_fn = getattr(module_loss, config['loss'])
metric_fns = [getattr(module_metric, met) for met in config['metrics']]
logger.info('Loading checkpoint: {} ...'.format(config.resume))
checkpoint = torch.load(config.resume)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
total_loss = 0.0
total_metrics = torch.zeros(len(metric_fns))
with torch.no_grad():
for i, (data, target) in enumerate(tqdm(data_loader)):
data, target = data.to(device), target.to(device)
output = model(data)
#
# save sample images, or do something with output here
#
# computing loss, metrics on test set
loss = loss_fn(output, target)
batch_size = data.shape[0]
total_loss += loss.item() * batch_size
for i, metric in enumerate(metric_fns):
total_metrics[i] += metric(output, target) * batch_size
n_samples = len(data_loader.sampler)
log = {'loss': total_loss / n_samples}
log.update({
met.__name__: total_metrics[i].item() / n_samples for i, met in enumerate(metric_fns)
})
logger.info(log)
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
config = ConfigParser.from_args(args)
main(config)