-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
180 lines (139 loc) · 5.17 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include <png.h>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <random>
#include "eddl/apis/eddl.h"
png_infop info_ptr;
std::vector<std::vector<std::string> > parsedCsv;
png_bytepp read_png(const char *file_name)
{
png_bytepp row_pointers;
FILE *fp = fopen(file_name, "rb");
png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
info_ptr = png_create_info_struct(png_ptr);
png_init_io(png_ptr, fp);
png_read_png(png_ptr, info_ptr, PNG_TRANSFORM_IDENTITY, NULL);
row_pointers = png_get_rows(png_ptr, info_ptr);
png_destroy_read_struct(&png_ptr, NULL, NULL);
fclose(fp);
return row_pointers;
}
void png_rows_to_float_vector(png_bytepp row_pointers, std::vector<float> & vfloat)
{
vfloat.clear();
vfloat.reserve(256 * 256);
for (int i = 0; i < 256; i++) {
for (int j = 0; j < 256; j++) {
vfloat.push_back(row_pointers[i][j] / 1.0f);
}
free(row_pointers[i]);
}
free(row_pointers);
}
Tensor * load_png(const char * file_name)
{
png_bytepp row_pointers_read = read_png(file_name);
std::vector<float> vfloat;
png_rows_to_float_vector(row_pointers_read, vfloat);
return new Tensor(vfloat, {256, 256});
}
void parseCSV(){
std::ifstream data("../data/train.csv");
std::string line;
while(std::getline(data,line))
{
std::stringstream lineStream(line);
std::string cell;
std::vector<std::string> parsedRow;
while(std::getline(lineStream,cell,','))
{
parsedRow.push_back(cell);
}
parsedCsv.push_back(parsedRow);
}
};
// Write png to file function
//void write_png(char *file_name)
//{
// FILE *fp = fopen(file_name, "wb");
// png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
// png_init_io(png_ptr, fp);
// png_set_rows(png_ptr, info_ptr, row_pointers);
// png_write_png(png_ptr, info_ptr, PNG_TRANSFORM_IDENTITY, NULL);
// png_destroy_write_struct(&png_ptr, &info_ptr);
// fclose(fp);
//}
int main(int argc, char *argv[])
{
//Load dataset CSV
parseCSV();
std::vector<int> indexes(parsedCsv.size()-1);
for (int j = 1; j < parsedCsv.size(); j++)
{
indexes[j-1] = j;
}
auto rng = std::default_random_engine {};
// Settings
int epochs = 1;
int batch_size = 32;
// network
eddl::layer in=eddl::Input({1,256,256});
eddl::layer l=in;
// l=Select(l, {"1", "1:31", "1:31"});
l=eddl::MaxPool2D(eddl::ReLu(eddl::Conv2D(l,32,{3,3},{1,1})),{2,2});
l=eddl::MaxPool2D(eddl::ReLu(eddl::Conv2D(l,64,{3,3},{1,1})),{2,2});
l=eddl::MaxPool2D(eddl::ReLu(eddl::Conv2D(l,128,{3,3},{1,1})),{2,2});
l=eddl::MaxPool2D(eddl::ReLu(eddl::Conv2D(l,256,{3,3},{1,1})),{2,2});
l=eddl::Reshape(l,{-1});
l=eddl::Activation(eddl::Dense(l,128),"relu");
eddl::layer out=eddl::Activation(eddl::Dense(l,1),"sigmoid");
// net define input and output layers list
eddl::model net=eddl::Model({in},{out});
// Build model
eddl::build(net,
eddl::sgd(0.01, 0.9), // Optimizer
{"binary_cross_entropy"}, // Losses
{"binary_accuracy"}, // Metrics
//CS_GPU({1}) // one GPU
//CS_GPU({1,1},100) // two GPU with weight sync every 100 batches
eddl::CS_CPU()
);
for (int e = 1; e <= epochs; e++){
std::shuffle(std::begin(indexes), std::end(indexes), rng);
eddl::reset_loss(net);
for (int k = 0; k < indexes.size() / batch_size; k++){
//Load batches of Tensors
//Train tensor
std::vector<Tensor*> tensor_vector_x = {};
std::vector<float> tensor_vector_y = {};
for (int i = 0; i < batch_size; i++) {
int index = indexes[(batch_size*k) + i];
std::string filepath_1 = "../images/"+parsedCsv[index][2];
Tensor* t1 = load_png(filepath_1.c_str());
tensor_vector_x.push_back(t1);
//Test tensor
float label_1 = std::stof(parsedCsv[index][7]);
tensor_vector_y.push_back(label_1);
}
Tensor* x_train = Tensor::stack(tensor_vector_x, 0);
for (int i = 0; i < batch_size; i++) {
delete tensor_vector_x[i];
}
Tensor* y_train = new Tensor(tensor_vector_y, {batch_size,1});
//x_train->info();
//y_train->info();
//x_train->save("tensor.png");
// training, list of input and output tensors, batch, epochs
eddl::train_batch(net,{x_train},{y_train});
delete x_train;
delete y_train;
// Get the current losses and metrics
float curr_loss = eddl::get_losses(net)[0];
float curr_acc = eddl::get_metrics(net)[0];
std::cout << "\rEpochs: " << e << " Batch: " << k << " Metrics[ loss=" << curr_loss << ", acc=" << curr_acc << " ] " << std::flush;
}
}
//write_png(argv[2]);
return 0;
}