-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpp_sort.c
1964 lines (1754 loc) · 65.3 KB
/
pp_sort.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* pp_sort.c
*
* Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
* 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/*
* ...they shuffled back towards the rear of the line. 'No, not at the
* rear!' the slave-driver shouted. 'Three files up. And stay there...
*
* [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
*/
/* This file contains pp ("push/pop") functions that
* execute the opcodes that make up a perl program. A typical pp function
* expects to find its arguments on the stack, and usually pushes its
* results onto the stack, hence the 'pp' terminology. Each OP structure
* contains a pointer to the relevant pp_foo() function.
*
* This particular file just contains pp_sort(), which is complex
* enough to merit its own file! See the other pp*.c files for the rest of
* the pp_ functions.
*/
#include "EXTERN.h"
#define PERL_IN_PP_SORT_C
#include "perl.h"
#if defined(UNDER_CE)
/* looks like 'small' is reserved word for WINCE (or somesuch)*/
#define small xsmall
#endif
#define sv_cmp_static Perl_sv_cmp
#define sv_cmp_locale_static Perl_sv_cmp_locale
#ifndef SMALLSORT
#define SMALLSORT (200)
#endif
/* Flags for qsortsv and mergesortsv */
#define SORTf_DESC 1
#define SORTf_STABLE 2
#define SORTf_QSORT 4
/*
* The mergesort implementation is by Peter M. Mcilroy <[email protected]>.
*
* The original code was written in conjunction with BSD Computer Software
* Research Group at University of California, Berkeley.
*
* See also: "Optimistic Merge Sort" (SODA '92)
*
* The integration to Perl is by John P. Linderman <[email protected]>.
*
* The code can be distributed under the same terms as Perl itself.
*
*/
typedef char * aptr; /* pointer for arithmetic on sizes */
typedef SV * gptr; /* pointers in our lists */
/* Binary merge internal sort, with a few special mods
** for the special perl environment it now finds itself in.
**
** Things that were once options have been hotwired
** to values suitable for this use. In particular, we'll always
** initialize looking for natural runs, we'll always produce stable
** output, and we'll always do Peter McIlroy's binary merge.
*/
/* Pointer types for arithmetic and storage and convenience casts */
#define APTR(P) ((aptr)(P))
#define GPTP(P) ((gptr *)(P))
#define GPPP(P) ((gptr **)(P))
/* byte offset from pointer P to (larger) pointer Q */
#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
#define PSIZE sizeof(gptr)
/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
#ifdef PSHIFT
#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
#define PNBYTE(N) ((N) << (PSHIFT))
#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
#else
/* Leave optimization to compiler */
#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
#define PNBYTE(N) ((N) * (PSIZE))
#define PINDEX(P, N) (GPTP(P) + (N))
#endif
/* Pointer into other corresponding to pointer into this */
#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
/* Runs are identified by a pointer in the auxilliary list.
** The pointer is at the start of the list,
** and it points to the start of the next list.
** NEXT is used as an lvalue, too.
*/
#define NEXT(P) (*GPPP(P))
/* PTHRESH is the minimum number of pairs with the same sense to justify
** checking for a run and extending it. Note that PTHRESH counts PAIRS,
** not just elements, so PTHRESH == 8 means a run of 16.
*/
#define PTHRESH (8)
/* RTHRESH is the number of elements in a run that must compare low
** to the low element from the opposing run before we justify
** doing a binary rampup instead of single stepping.
** In random input, N in a row low should only happen with
** probability 2^(1-N), so we can risk that we are dealing
** with orderly input without paying much when we aren't.
*/
#define RTHRESH (6)
/*
** Overview of algorithm and variables.
** The array of elements at list1 will be organized into runs of length 2,
** or runs of length >= 2 * PTHRESH. We only try to form long runs when
** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
**
** Unless otherwise specified, pair pointers address the first of two elements.
**
** b and b+1 are a pair that compare with sense "sense".
** b is the "bottom" of adjacent pairs that might form a longer run.
**
** p2 parallels b in the list2 array, where runs are defined by
** a pointer chain.
**
** t represents the "top" of the adjacent pairs that might extend
** the run beginning at b. Usually, t addresses a pair
** that compares with opposite sense from (b,b+1).
** However, it may also address a singleton element at the end of list1,
** or it may be equal to "last", the first element beyond list1.
**
** r addresses the Nth pair following b. If this would be beyond t,
** we back it off to t. Only when r is less than t do we consider the
** run long enough to consider checking.
**
** q addresses a pair such that the pairs at b through q already form a run.
** Often, q will equal b, indicating we only are sure of the pair itself.
** However, a search on the previous cycle may have revealed a longer run,
** so q may be greater than b.
**
** p is used to work back from a candidate r, trying to reach q,
** which would mean b through r would be a run. If we discover such a run,
** we start q at r and try to push it further towards t.
** If b through r is NOT a run, we detect the wrong order at (p-1,p).
** In any event, after the check (if any), we have two main cases.
**
** 1) Short run. b <= q < p <= r <= t.
** b through q is a run (perhaps trivial)
** q through p are uninteresting pairs
** p through r is a run
**
** 2) Long run. b < r <= q < t.
** b through q is a run (of length >= 2 * PTHRESH)
**
** Note that degenerate cases are not only possible, but likely.
** For example, if the pair following b compares with opposite sense,
** then b == q < p == r == t.
*/
static IV
dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
{
I32 sense;
register gptr *b, *p, *q, *t, *p2;
register gptr *last, *r;
IV runs = 0;
b = list1;
last = PINDEX(b, nmemb);
sense = (cmp(aTHX_ *b, *(b+1)) > 0);
for (p2 = list2; b < last; ) {
/* We just started, or just reversed sense.
** Set t at end of pairs with the prevailing sense.
*/
for (p = b+2, t = p; ++p < last; t = ++p) {
if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
}
q = b;
/* Having laid out the playing field, look for long runs */
do {
p = r = b + (2 * PTHRESH);
if (r >= t) p = r = t; /* too short to care about */
else {
while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
((p -= 2) > q)) {}
if (p <= q) {
/* b through r is a (long) run.
** Extend it as far as possible.
*/
p = q = r;
while (((p += 2) < t) &&
((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
r = p = q + 2; /* no simple pairs, no after-run */
}
}
if (q > b) { /* run of greater than 2 at b */
gptr *savep = p;
p = q += 2;
/* pick up singleton, if possible */
if ((p == t) &&
((t + 1) == last) &&
((cmp(aTHX_ *(p-1), *p) > 0) == sense))
savep = r = p = q = last;
p2 = NEXT(p2) = p2 + (p - b); ++runs;
if (sense)
while (b < --p) {
const gptr c = *b;
*b++ = *p;
*p = c;
}
p = savep;
}
while (q < p) { /* simple pairs */
p2 = NEXT(p2) = p2 + 2; ++runs;
if (sense) {
const gptr c = *q++;
*(q-1) = *q;
*q++ = c;
} else q += 2;
}
if (((b = p) == t) && ((t+1) == last)) {
NEXT(p2) = p2 + 1; ++runs;
b++;
}
q = r;
} while (b < t);
sense = !sense;
}
return runs;
}
/* The original merge sort, in use since 5.7, was as fast as, or faster than,
* qsort on many platforms, but slower than qsort, conspicuously so,
* on others. The most likely explanation was platform-specific
* differences in cache sizes and relative speeds.
*
* The quicksort divide-and-conquer algorithm guarantees that, as the
* problem is subdivided into smaller and smaller parts, the parts
* fit into smaller (and faster) caches. So it doesn't matter how
* many levels of cache exist, quicksort will "find" them, and,
* as long as smaller is faster, take advantage of them.
*
* By contrast, consider how the original mergesort algorithm worked.
* Suppose we have five runs (each typically of length 2 after dynprep).
*
* pass base aux
* 0 1 2 3 4 5
* 1 12 34 5
* 2 1234 5
* 3 12345
* 4 12345
*
* Adjacent pairs are merged in "grand sweeps" through the input.
* This means, on pass 1, the records in runs 1 and 2 aren't revisited until
* runs 3 and 4 are merged and the runs from run 5 have been copied.
* The only cache that matters is one large enough to hold *all* the input.
* On some platforms, this may be many times slower than smaller caches.
*
* The following pseudo-code uses the same basic merge algorithm,
* but in a divide-and-conquer way.
*
* # merge $runs runs at offset $offset of list $list1 into $list2.
* # all unmerged runs ($runs == 1) originate in list $base.
* sub mgsort2 {
* my ($offset, $runs, $base, $list1, $list2) = @_;
*
* if ($runs == 1) {
* if ($list1 is $base) copy run to $list2
* return offset of end of list (or copy)
* } else {
* $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
* mgsort2($off2, $runs/2, $base, $list2, $list1)
* merge the adjacent runs at $offset of $list1 into $list2
* return the offset of the end of the merged runs
* }
* }
* mgsort2(0, $runs, $base, $aux, $base);
*
* For our 5 runs, the tree of calls looks like
*
* 5
* 3 2
* 2 1 1 1
* 1 1
*
* 1 2 3 4 5
*
* and the corresponding activity looks like
*
* copy runs 1 and 2 from base to aux
* merge runs 1 and 2 from aux to base
* (run 3 is where it belongs, no copy needed)
* merge runs 12 and 3 from base to aux
* (runs 4 and 5 are where they belong, no copy needed)
* merge runs 4 and 5 from base to aux
* merge runs 123 and 45 from aux to base
*
* Note that we merge runs 1 and 2 immediately after copying them,
* while they are still likely to be in fast cache. Similarly,
* run 3 is merged with run 12 while it still may be lingering in cache.
* This implementation should therefore enjoy much of the cache-friendly
* behavior that quicksort does. In addition, it does less copying
* than the original mergesort implementation (only runs 1 and 2 are copied)
* and the "balancing" of merges is better (merged runs comprise more nearly
* equal numbers of original runs).
*
* The actual cache-friendly implementation will use a pseudo-stack
* to avoid recursion, and will unroll processing of runs of length 2,
* but it is otherwise similar to the recursive implementation.
*/
typedef struct {
IV offset; /* offset of 1st of 2 runs at this level */
IV runs; /* how many runs must be combined into 1 */
} off_runs; /* pseudo-stack element */
static I32
cmp_desc(pTHX_ gptr a, gptr b)
{
dVAR;
return -PL_sort_RealCmp(aTHX_ a, b);
}
STATIC void
S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
{
dVAR;
IV i, run, offset;
I32 sense, level;
register gptr *f1, *f2, *t, *b, *p;
int iwhich;
gptr *aux;
gptr *p1;
gptr small[SMALLSORT];
gptr *which[3];
off_runs stack[60], *stackp;
SVCOMPARE_t savecmp = NULL;
if (nmemb <= 1) return; /* sorted trivially */
if ((flags & SORTf_DESC) != 0) {
savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
cmp = cmp_desc;
}
if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
else { Newx(aux,nmemb,gptr); } /* allocate auxilliary array */
level = 0;
stackp = stack;
stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
stackp->offset = offset = 0;
which[0] = which[2] = base;
which[1] = aux;
for (;;) {
/* On levels where both runs have be constructed (stackp->runs == 0),
* merge them, and note the offset of their end, in case the offset
* is needed at the next level up. Hop up a level, and,
* as long as stackp->runs is 0, keep merging.
*/
IV runs = stackp->runs;
if (runs == 0) {
gptr *list1, *list2;
iwhich = level & 1;
list1 = which[iwhich]; /* area where runs are now */
list2 = which[++iwhich]; /* area for merged runs */
do {
register gptr *l1, *l2, *tp2;
offset = stackp->offset;
f1 = p1 = list1 + offset; /* start of first run */
p = tp2 = list2 + offset; /* where merged run will go */
t = NEXT(p); /* where first run ends */
f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
t = NEXT(t); /* where second runs ends */
l2 = POTHER(t, list2, list1); /* ... on the other side */
offset = PNELEM(list2, t);
while (f1 < l1 && f2 < l2) {
/* If head 1 is larger than head 2, find ALL the elements
** in list 2 strictly less than head1, write them all,
** then head 1. Then compare the new heads, and repeat,
** until one or both lists are exhausted.
**
** In all comparisons (after establishing
** which head to merge) the item to merge
** (at pointer q) is the first operand of
** the comparison. When we want to know
** if "q is strictly less than the other",
** we can't just do
** cmp(q, other) < 0
** because stability demands that we treat equality
** as high when q comes from l2, and as low when
** q was from l1. So we ask the question by doing
** cmp(q, other) <= sense
** and make sense == 0 when equality should look low,
** and -1 when equality should look high.
*/
register gptr *q;
if (cmp(aTHX_ *f1, *f2) <= 0) {
q = f2; b = f1; t = l1;
sense = -1;
} else {
q = f1; b = f2; t = l2;
sense = 0;
}
/* ramp up
**
** Leave t at something strictly
** greater than q (or at the end of the list),
** and b at something strictly less than q.
*/
for (i = 1, run = 0 ;;) {
if ((p = PINDEX(b, i)) >= t) {
/* off the end */
if (((p = PINDEX(t, -1)) > b) &&
(cmp(aTHX_ *q, *p) <= sense))
t = p;
else b = p;
break;
} else if (cmp(aTHX_ *q, *p) <= sense) {
t = p;
break;
} else b = p;
if (++run >= RTHRESH) i += i;
}
/* q is known to follow b and must be inserted before t.
** Increment b, so the range of possibilities is [b,t).
** Round binary split down, to favor early appearance.
** Adjust b and t until q belongs just before t.
*/
b++;
while (b < t) {
p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
if (cmp(aTHX_ *q, *p) <= sense) {
t = p;
} else b = p + 1;
}
/* Copy all the strictly low elements */
if (q == f1) {
FROMTOUPTO(f2, tp2, t);
*tp2++ = *f1++;
} else {
FROMTOUPTO(f1, tp2, t);
*tp2++ = *f2++;
}
}
/* Run out remaining list */
if (f1 == l1) {
if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
} else FROMTOUPTO(f1, tp2, l1);
p1 = NEXT(p1) = POTHER(tp2, list2, list1);
if (--level == 0) goto done;
--stackp;
t = list1; list1 = list2; list2 = t; /* swap lists */
} while ((runs = stackp->runs) == 0);
}
stackp->runs = 0; /* current run will finish level */
/* While there are more than 2 runs remaining,
* turn them into exactly 2 runs (at the "other" level),
* each made up of approximately half the runs.
* Stack the second half for later processing,
* and set about producing the first half now.
*/
while (runs > 2) {
++level;
++stackp;
stackp->offset = offset;
runs -= stackp->runs = runs / 2;
}
/* We must construct a single run from 1 or 2 runs.
* All the original runs are in which[0] == base.
* The run we construct must end up in which[level&1].
*/
iwhich = level & 1;
if (runs == 1) {
/* Constructing a single run from a single run.
* If it's where it belongs already, there's nothing to do.
* Otherwise, copy it to where it belongs.
* A run of 1 is either a singleton at level 0,
* or the second half of a split 3. In neither event
* is it necessary to set offset. It will be set by the merge
* that immediately follows.
*/
if (iwhich) { /* Belongs in aux, currently in base */
f1 = b = PINDEX(base, offset); /* where list starts */
f2 = PINDEX(aux, offset); /* where list goes */
t = NEXT(f2); /* where list will end */
offset = PNELEM(aux, t); /* offset thereof */
t = PINDEX(base, offset); /* where it currently ends */
FROMTOUPTO(f1, f2, t); /* copy */
NEXT(b) = t; /* set up parallel pointer */
} else if (level == 0) goto done; /* single run at level 0 */
} else {
/* Constructing a single run from two runs.
* The merge code at the top will do that.
* We need only make sure the two runs are in the "other" array,
* so they'll end up in the correct array after the merge.
*/
++level;
++stackp;
stackp->offset = offset;
stackp->runs = 0; /* take care of both runs, trigger merge */
if (!iwhich) { /* Merged runs belong in aux, copy 1st */
f1 = b = PINDEX(base, offset); /* where first run starts */
f2 = PINDEX(aux, offset); /* where it will be copied */
t = NEXT(f2); /* where first run will end */
offset = PNELEM(aux, t); /* offset thereof */
p = PINDEX(base, offset); /* end of first run */
t = NEXT(t); /* where second run will end */
t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
FROMTOUPTO(f1, f2, t); /* copy both runs */
NEXT(b) = p; /* paralled pointer for 1st */
NEXT(p) = t; /* ... and for second */
}
}
}
done:
if (aux != small) Safefree(aux); /* free iff allocated */
if (flags) {
PL_sort_RealCmp = savecmp; /* Restore current comparison routine, if any */
}
return;
}
/*
* The quicksort implementation was derived from source code contributed
* by Tom Horsley.
*
* NOTE: this code was derived from Tom Horsley's qsort replacement
* and should not be confused with the original code.
*/
/* Copyright (C) Tom Horsley, 1997. All rights reserved.
Permission granted to distribute under the same terms as perl which are
(briefly):
This program is free software; you can redistribute it and/or modify
it under the terms of either:
a) the GNU General Public License as published by the Free
Software Foundation; either version 1, or (at your option) any
later version, or
b) the "Artistic License" which comes with this Kit.
Details on the perl license can be found in the perl source code which
may be located via the www.perl.com web page.
This is the most wonderfulest possible qsort I can come up with (and
still be mostly portable) My (limited) tests indicate it consistently
does about 20% fewer calls to compare than does the qsort in the Visual
C++ library, other vendors may vary.
Some of the ideas in here can be found in "Algorithms" by Sedgewick,
others I invented myself (or more likely re-invented since they seemed
pretty obvious once I watched the algorithm operate for a while).
Most of this code was written while watching the Marlins sweep the Giants
in the 1997 National League Playoffs - no Braves fans allowed to use this
code (just kidding :-).
I realize that if I wanted to be true to the perl tradition, the only
comment in this file would be something like:
...they shuffled back towards the rear of the line. 'No, not at the
rear!' the slave-driver shouted. 'Three files up. And stay there...
However, I really needed to violate that tradition just so I could keep
track of what happens myself, not to mention some poor fool trying to
understand this years from now :-).
*/
/* ********************************************************** Configuration */
#ifndef QSORT_ORDER_GUESS
#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
#endif
/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
future processing - a good max upper bound is log base 2 of memory size
(32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
safely be smaller than that since the program is taking up some space and
most operating systems only let you grab some subset of contiguous
memory (not to mention that you are normally sorting data larger than
1 byte element size :-).
*/
#ifndef QSORT_MAX_STACK
#define QSORT_MAX_STACK 32
#endif
/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
Anything bigger and we use qsort. If you make this too small, the qsort
will probably break (or become less efficient), because it doesn't expect
the middle element of a partition to be the same as the right or left -
you have been warned).
*/
#ifndef QSORT_BREAK_EVEN
#define QSORT_BREAK_EVEN 6
#endif
/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
to go quadratic on. We innoculate larger partitions against
quadratic behavior by shuffling them before sorting. This is not
an absolute guarantee of non-quadratic behavior, but it would take
staggeringly bad luck to pick extreme elements as the pivot
from randomized data.
*/
#ifndef QSORT_PLAY_SAFE
#define QSORT_PLAY_SAFE 255
#endif
/* ************************************************************* Data Types */
/* hold left and right index values of a partition waiting to be sorted (the
partition includes both left and right - right is NOT one past the end or
anything like that).
*/
struct partition_stack_entry {
int left;
int right;
#ifdef QSORT_ORDER_GUESS
int qsort_break_even;
#endif
};
/* ******************************************************* Shorthand Macros */
/* Note that these macros will be used from inside the qsort function where
we happen to know that the variable 'elt_size' contains the size of an
array element and the variable 'temp' points to enough space to hold a
temp element and the variable 'array' points to the array being sorted
and 'compare' is the pointer to the compare routine.
Also note that there are very many highly architecture specific ways
these might be sped up, but this is simply the most generally portable
code I could think of.
*/
/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
*/
#define qsort_cmp(elt1, elt2) \
((*compare)(aTHX_ array[elt1], array[elt2]))
#ifdef QSORT_ORDER_GUESS
#define QSORT_NOTICE_SWAP swapped++;
#else
#define QSORT_NOTICE_SWAP
#endif
/* swaps contents of array elements elt1, elt2.
*/
#define qsort_swap(elt1, elt2) \
STMT_START { \
QSORT_NOTICE_SWAP \
temp = array[elt1]; \
array[elt1] = array[elt2]; \
array[elt2] = temp; \
} STMT_END
/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
elt3 and elt3 gets elt1.
*/
#define qsort_rotate(elt1, elt2, elt3) \
STMT_START { \
QSORT_NOTICE_SWAP \
temp = array[elt1]; \
array[elt1] = array[elt2]; \
array[elt2] = array[elt3]; \
array[elt3] = temp; \
} STMT_END
/* ************************************************************ Debug stuff */
#ifdef QSORT_DEBUG
static void
break_here()
{
return; /* good place to set a breakpoint */
}
#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
static void
doqsort_all_asserts(
void * array,
size_t num_elts,
size_t elt_size,
int (*compare)(const void * elt1, const void * elt2),
int pc_left, int pc_right, int u_left, int u_right)
{
int i;
qsort_assert(pc_left <= pc_right);
qsort_assert(u_right < pc_left);
qsort_assert(pc_right < u_left);
for (i = u_right + 1; i < pc_left; ++i) {
qsort_assert(qsort_cmp(i, pc_left) < 0);
}
for (i = pc_left; i < pc_right; ++i) {
qsort_assert(qsort_cmp(i, pc_right) == 0);
}
for (i = pc_right + 1; i < u_left; ++i) {
qsort_assert(qsort_cmp(pc_right, i) < 0);
}
}
#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
doqsort_all_asserts(array, num_elts, elt_size, compare, \
PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
#else
#define qsort_assert(t) ((void)0)
#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
#endif
/* ****************************************************************** qsort */
STATIC void /* the standard unstable (u) quicksort (qsort) */
S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
{
register SV * temp;
struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
int next_stack_entry = 0;
int part_left;
int part_right;
#ifdef QSORT_ORDER_GUESS
int qsort_break_even;
int swapped;
#endif
PERL_ARGS_ASSERT_QSORTSVU;
/* Make sure we actually have work to do.
*/
if (num_elts <= 1) {
return;
}
/* Innoculate large partitions against quadratic behavior */
if (num_elts > QSORT_PLAY_SAFE) {
register size_t n;
register SV ** const q = array;
for (n = num_elts; n > 1; ) {
register const size_t j = (size_t)(n-- * Drand01());
temp = q[j];
q[j] = q[n];
q[n] = temp;
}
}
/* Setup the initial partition definition and fall into the sorting loop
*/
part_left = 0;
part_right = (int)(num_elts - 1);
#ifdef QSORT_ORDER_GUESS
qsort_break_even = QSORT_BREAK_EVEN;
#else
#define qsort_break_even QSORT_BREAK_EVEN
#endif
for ( ; ; ) {
if ((part_right - part_left) >= qsort_break_even) {
/* OK, this is gonna get hairy, so lets try to document all the
concepts and abbreviations and variables and what they keep
track of:
pc: pivot chunk - the set of array elements we accumulate in the
middle of the partition, all equal in value to the original
pivot element selected. The pc is defined by:
pc_left - the leftmost array index of the pc
pc_right - the rightmost array index of the pc
we start with pc_left == pc_right and only one element
in the pivot chunk (but it can grow during the scan).
u: uncompared elements - the set of elements in the partition
we have not yet compared to the pivot value. There are two
uncompared sets during the scan - one to the left of the pc
and one to the right.
u_right - the rightmost index of the left side's uncompared set
u_left - the leftmost index of the right side's uncompared set
The leftmost index of the left sides's uncompared set
doesn't need its own variable because it is always defined
by the leftmost edge of the whole partition (part_left). The
same goes for the rightmost edge of the right partition
(part_right).
We know there are no uncompared elements on the left once we
get u_right < part_left and no uncompared elements on the
right once u_left > part_right. When both these conditions
are met, we have completed the scan of the partition.
Any elements which are between the pivot chunk and the
uncompared elements should be less than the pivot value on
the left side and greater than the pivot value on the right
side (in fact, the goal of the whole algorithm is to arrange
for that to be true and make the groups of less-than and
greater-then elements into new partitions to sort again).
As you marvel at the complexity of the code and wonder why it
has to be so confusing. Consider some of the things this level
of confusion brings:
Once I do a compare, I squeeze every ounce of juice out of it. I
never do compare calls I don't have to do, and I certainly never
do redundant calls.
I also never swap any elements unless I can prove there is a
good reason. Many sort algorithms will swap a known value with
an uncompared value just to get things in the right place (or
avoid complexity :-), but that uncompared value, once it gets
compared, may then have to be swapped again. A lot of the
complexity of this code is due to the fact that it never swaps
anything except compared values, and it only swaps them when the
compare shows they are out of position.
*/
int pc_left, pc_right;
int u_right, u_left;
int s;
pc_left = ((part_left + part_right) / 2);
pc_right = pc_left;
u_right = pc_left - 1;
u_left = pc_right + 1;
/* Qsort works best when the pivot value is also the median value
in the partition (unfortunately you can't find the median value
without first sorting :-), so to give the algorithm a helping
hand, we pick 3 elements and sort them and use the median value
of that tiny set as the pivot value.
Some versions of qsort like to use the left middle and right as
the 3 elements to sort so they can insure the ends of the
partition will contain values which will stop the scan in the
compare loop, but when you have to call an arbitrarily complex
routine to do a compare, its really better to just keep track of
array index values to know when you hit the edge of the
partition and avoid the extra compare. An even better reason to
avoid using a compare call is the fact that you can drop off the
edge of the array if someone foolishly provides you with an
unstable compare function that doesn't always provide consistent
results.
So, since it is simpler for us to compare the three adjacent
elements in the middle of the partition, those are the ones we
pick here (conveniently pointed at by u_right, pc_left, and
u_left). The values of the left, center, and right elements
are refered to as l c and r in the following comments.
*/
#ifdef QSORT_ORDER_GUESS
swapped = 0;
#endif
s = qsort_cmp(u_right, pc_left);
if (s < 0) {
/* l < c */
s = qsort_cmp(pc_left, u_left);
/* if l < c, c < r - already in order - nothing to do */
if (s == 0) {
/* l < c, c == r - already in order, pc grows */
++pc_right;
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
} else if (s > 0) {
/* l < c, c > r - need to know more */
s = qsort_cmp(u_right, u_left);
if (s < 0) {
/* l < c, c > r, l < r - swap c & r to get ordered */
qsort_swap(pc_left, u_left);
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
} else if (s == 0) {
/* l < c, c > r, l == r - swap c&r, grow pc */
qsort_swap(pc_left, u_left);
--pc_left;
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
} else {
/* l < c, c > r, l > r - make lcr into rlc to get ordered */
qsort_rotate(pc_left, u_right, u_left);
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
}
}
} else if (s == 0) {
/* l == c */
s = qsort_cmp(pc_left, u_left);
if (s < 0) {
/* l == c, c < r - already in order, grow pc */
--pc_left;
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
} else if (s == 0) {
/* l == c, c == r - already in order, grow pc both ways */
--pc_left;
++pc_right;
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
} else {
/* l == c, c > r - swap l & r, grow pc */
qsort_swap(u_right, u_left);
++pc_right;
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
}
} else {
/* l > c */
s = qsort_cmp(pc_left, u_left);
if (s < 0) {
/* l > c, c < r - need to know more */
s = qsort_cmp(u_right, u_left);
if (s < 0) {
/* l > c, c < r, l < r - swap l & c to get ordered */
qsort_swap(u_right, pc_left);
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
} else if (s == 0) {
/* l > c, c < r, l == r - swap l & c, grow pc */
qsort_swap(u_right, pc_left);
++pc_right;
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
} else {
/* l > c, c < r, l > r - rotate lcr into crl to order */
qsort_rotate(u_right, pc_left, u_left);
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
}
} else if (s == 0) {
/* l > c, c == r - swap ends, grow pc */
qsort_swap(u_right, u_left);
--pc_left;
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
} else {
/* l > c, c > r - swap ends to get in order */
qsort_swap(u_right, u_left);
qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
}
}
/* We now know the 3 middle elements have been compared and
arranged in the desired order, so we can shrink the uncompared
sets on both sides
*/
--u_right;
++u_left;
qsort_all_asserts(pc_left, pc_right, u_left, u_right);
/* The above massive nested if was the simple part :-). We now have
the middle 3 elements ordered and we need to scan through the
uncompared sets on either side, swapping elements that are on
the wrong side or simply shuffling equal elements around to get
all equal elements into the pivot chunk.
*/
for ( ; ; ) {
int still_work_on_left;
int still_work_on_right;
/* Scan the uncompared values on the left. If I find a value
equal to the pivot value, move it over so it is adjacent to
the pivot chunk and expand the pivot chunk. If I find a value
less than the pivot value, then just leave it - its already