forked from cubicle-model-checker/cubicle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcubetrie.ml
334 lines (301 loc) · 12.2 KB
/
cubetrie.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
(**************************************************************************)
(* *)
(* Cubicle *)
(* *)
(* Copyright (C) 2011-2014 *)
(* *)
(* Sylvain Conchon and Alain Mebsout *)
(* Universite Paris-Sud 11 *)
(* *)
(* *)
(* This file is distributed under the terms of the Apache Software *)
(* License version 2.0 *)
(* *)
(**************************************************************************)
open Options
open Util
open Types
open Ast
module H = Hstring
(* Trie, mapping cubes to value of type 'a *)
type 'a t =
| Empty
| Full of 'a
| Node of (Atom.t * 'a t) list
let empty = Empty
(* Test emptiness of a trie *)
let is_empty = function
| Empty -> true
| _ -> false
(* Add a mapping cube->v to trie *)
let rec add cube v trie = match trie with
| Empty -> List.fold_right (fun a t -> Node [a,t]) cube (Full v)
| Full _ -> trie
| Node l -> match cube with
| [] -> Full v
| atom::cube -> Node (add_to_list atom cube v l)
and add_to_list atom cube v l = match l with
| [] -> [atom, add cube v Empty]
| (atom',t')::n ->
let cmp = Atom.compare atom atom' in
if cmp = 0 then (atom, add cube v t')::n
else if cmp > 0 then (atom',t')::(add_to_list atom cube v n)
else (atom, add cube v Empty)::l
(* Add a mapping cube->v to trie without checking for subsomption *)
let rec add_force cube v trie = match trie with
| Empty -> List.fold_right (fun a t -> Node [a,t]) cube (Full v)
| Full _ -> trie
| Node l -> match cube with
| [] -> Full v
| atom::cube -> Node (add_force_to_list atom cube v l)
and add_force_to_list atom cube v l = match l with
| [] -> [atom, add_force cube v Empty]
| (atom',t')::n ->
let cmp = Atom.compare atom atom' in
if cmp > 0 then (atom',t')::(add_force_to_list atom cube v n)
else (atom, add_force cube v Empty)::l
(* (\* Add a mapping cube->v to trie *\) *)
(* let rec add_array cube v trie = match trie with *)
(* | Empty -> Array.fold_right (fun a t -> Node [a,t]) cube (Full v) *)
(* | Full _ -> trie *)
(* | Node l -> *)
(* if Array.length cube = 0 then Full v *)
(* else Node (add_array_to_list *)
(* cube.(0) (Array.sub cube 1 (Array.length cube - 1)) *)
(* v l) *)
(* and add_array_to_list atom cube v l = match l with *)
(* | [] -> [atom, add_array cube v Empty] *)
(* | (atom',t')::n -> *)
(* let cmp = Atom.compare atom atom' in *)
(* if cmp = 0 then (atom, add_array cube v t')::n *)
(* else if cmp > 0 then (atom',t')::(add_array_to_list atom cube v n) *)
(* else (atom, add_array cube v Empty)::l *)
(* (\* Add a mapping cube->v to trie without checking for subsomption *\) *)
(* let rec add_array_force cube v trie = match trie with *)
(* | Empty -> Array.fold_right (fun a t -> Node [a,t]) cube (Full v) *)
(* | Full _ -> trie *)
(* | Node l -> *)
(* if Array.length cube = 0 then Full v *)
(* else Node (add_array_force_to_list *)
(* cube.(0) (Array.sub cube 1 (Array.length cube - 1)) *)
(* v l) *)
(* and add_array_force_to_list atom cube v l = match l with *)
(* | [] -> [atom, add_array_force cube v Empty] *)
(* | (atom',t')::n -> *)
(* let cmp = Atom.compare atom atom' in *)
(* if cmp > 0 then (atom',t')::(add_array_force_to_list atom cube v n) *)
(* else (atom, add_array_force cube v Empty)::l *)
let add_array cube v trie = add (Array.to_list cube) v trie
let add_array_force cube v trie = add_force (Array.to_list cube) v trie
(* Is cube subsumed by some cube in the trie? *)
let rec mem cube trie = match trie with
| Empty -> None
| Full { tag = id } -> Some [id]
| Node l -> match cube with
| [] -> None
| atom::cube ->
mem_list atom cube l
and mem_list atom cube l = match l with
| [] -> None
| (atom',t')::n ->
(* let cmp = Atom.compare atom atom' in *)
let cmp = - (Atom.trivial_is_implied atom' atom) in
if cmp = 0 then match mem cube t' with
| Some _ as r -> r
| None -> match cube with
| [] -> None
| atom::cube -> mem_list atom cube l
else if cmp > 0 then mem_list atom cube n
else match cube with
| [] -> None
| atom::cube -> mem_list atom cube l
let rec mem_poly cube trie = match trie with
| Empty -> false
| Full _ -> true
| Node l -> match cube with
| [] -> false
| atom::cube ->
mem_poly_list atom cube l
and mem_poly_list atom cube l = match l with
| [] -> false
| (atom',t')::n ->
(* let cmp = Atom.compare atom atom' in *)
let cmp = - (Atom.trivial_is_implied atom' atom) in
if cmp = 0 then match mem_poly cube t' with
| true -> true
| false -> match cube with
| [] -> false
| atom::cube -> mem_poly_list atom cube l
else if cmp > 0 then mem_poly_list atom cube n
else match cube with
| [] -> false
| atom::cube -> mem_poly_list atom cube l
(* (\* Is cube subsumed by some cube in the trie? *\) *)
(* let rec mem_array cube trie = *)
(* match trie with *)
(* | Empty -> None *)
(* | Full { tag = id } -> Some [id] *)
(* | Node l -> *)
(* if Array.length cube = 0 then None *)
(* else mem_array_list *)
(* cube.(0) (Array.sub cube 1 (Array.length cube - 1)) l *)
(* and mem_array_list atom cube l = match l with *)
(* | [] -> None *)
(* | (atom',t')::n -> *)
(* (\* let cmp = Atom.compare atom atom' in *\) *)
(* let cmp = - (Atom.trivial_is_implied atom' atom) in *)
(* if cmp = 0 then *)
(* match mem_array cube t' with *)
(* | None -> *)
(* if Array.length cube = 0 then None *)
(* else mem_array_list *)
(* cube.(0) (Array.sub cube 1 (Array.length cube - 1)) l *)
(* | Some _ as r -> r *)
(* else if cmp > 0 then mem_array_list atom cube n *)
(* else if Array.length cube = 0 then None *)
(* else mem_array_list *)
(* cube.(0) (Array.sub cube 1 (Array.length cube - 1)) l *)
let mem_array a trie = mem (Array.to_list a) trie
(* (\* Is cube subsumed by some cube in the trie? *\) *)
(* let rec mem_array_poly cube trie = *)
(* match trie with *)
(* | Empty -> false *)
(* | Full _ -> true *)
(* | Node l -> *)
(* if Array.length cube = 0 then false *)
(* else mem_array_poly_list *)
(* cube.(0) (Array.sub cube 1 (Array.length cube - 1)) l *)
(* and mem_array_poly_list atom cube l = match l with *)
(* | [] -> false *)
(* | (atom',t')::n -> *)
(* (\* let cmp = Atom.compare atom atom' in *\) *)
(* let cmp = - (Atom.trivial_is_implied atom' atom) in *)
(* if cmp = 0 then *)
(* mem_array_poly cube t' || *)
(* (Array.length cube <> 0 && *)
(* mem_array_poly_list *)
(* cube.(0) (Array.sub cube 1 (Array.length cube - 1)) l *)
(* ) *)
(* else if cmp > 0 then mem_array_poly_list atom cube n *)
(* else (Array.length cube <> 0 && *)
(* mem_array_poly_list *)
(* cube.(0) (Array.sub cube 1 (Array.length cube - 1)) l) *)
let mem_array_poly a trie = mem_poly (Array.to_list a) trie
let mem c t =
TimerSubset.start ();
let res = mem c t in
TimerSubset.pause ();
res
(* Apply f to all values mapped to in the trie. *)
let rec iter f trie = match trie with
| Empty -> ()
| Full v -> f v
| Node l -> List.iter (fun (_,t) -> iter f t) l
let mem_array c t =
(* Format.eprintf "memarray %a in@." Pretty.print_array c; *)
(* iter (fun s -> Format.eprintf ">>> %a\n@." Pretty.print_array s.t_arru) t; *)
TimerSubset.start ();
let res = mem_array c t in
TimerSubset.pause ();
res
(* Fold f to all values mapped to in the trie. *)
let rec fold f acc trie = match trie with
| Empty -> acc
| Full v -> f acc v
| Node l -> List.fold_left (fun acc (_,t) -> fold f acc t) acc l
(* Apply f to all values whose keys (cubes) are subsumed by the given cube. *)
let rec iter_subsumed f cube trie = match cube, trie with
| [], _ -> iter f trie
| _, Empty
| _, Full _ -> ()
| _, Node l -> iter_subsumed_list f cube l
and iter_subsumed_list f cube l = match l with
| [] -> ()
| (atom',t')::n ->
let atom = List.hd cube in
let cmp = Atom.compare atom atom' in
if cmp=0 then
iter_subsumed f (List.tl cube) t'
else if cmp>0 then begin
iter_subsumed f cube t';
iter_subsumed_list f cube n
end
(* Delete all values which satisfy the predicate p *)
let rec delete p trie = match trie with
| Empty -> Empty
| Full v -> if p v then Empty else trie
| Node l ->
let l' = delete_list p l in
if l == l' then trie else Node l'
and delete_list p l = match l with
| [] -> []
| (atom, t):: n ->
let t' = delete p t in
let n' = delete_list p n in
if t'==t && n'==n then l else (atom,t')::n'
(* List of all values mapped by the trie *)
let rec all_vals = function
| Empty -> []
| Full v -> [v]
| Node l ->
List.flatten (List.fold_left (fun acc (_,t) -> (all_vals t)::acc) [] l)
(* All values whose keys (cubes) are not inconsistent with the given cube. *)
let rec consistent cube trie = match cube, trie with
| [], _ -> all_vals trie
| _, Empty -> []
| _, Full v -> [v]
| (atom::cube), Node l -> List.flatten (List.map (consistent_list atom cube) l)
and consistent_list atom cube ((atom', t') as n) = match (atom, atom') with
| Atom.Comp (Elem (v1, Glob), Eq, Elem (x1, Constr)),
Atom.Comp (Elem (v2, Glob), Eq, Elem (x2, Constr))
| Atom.Comp (Elem (v1, Glob), Eq, Elem (x1, Var)),
Atom.Comp (Elem (v2, Glob), Eq, Elem (x2, Var))
when H.equal v1 v2 && not (H.equal x1 x2) ->
[]
| Atom.Comp (Elem (v1, Glob), Eq, Elem (x1, Constr)),
Atom.Comp (Elem (v2, Glob), (Neq|Lt), Elem (x2, Constr))
when H.equal v1 v2 && H.equal x1 x2 ->
[]
| Atom.Comp (Access (a1,li1), Eq, (Elem (_,(Constr|Glob)) | Arith _ as x1)),
Atom.Comp (Access (a2,li2), Eq, (Elem (_,(Constr|Glob)) | Arith _ as x2))
when H.equal a1 a2 && H.list_equal li1 li2 && Term.compare x1 x2 <> 0 ->
[]
| Atom.Comp (Access (a1,li1), Eq,
(Elem (_, (Constr|Glob)) | Arith _ as x1)),
Atom.Comp (Access (a2,li2), (Neq | Lt),
(Elem (_, (Constr|Glob)) | Arith _ as x2))
when H.equal a1 a2 && H.list_equal li1 li2 && Term.compare x1 x2 = 0 ->
[]
| _, _ ->
let cmp = Atom.compare atom atom' in
if cmp = 0 then consistent cube t'
else if cmp < 0 then match cube with
| [] -> all_vals t'
| atom::cube -> consistent_list atom cube n
else consistent (atom::cube) t'
let rec add_and_resolve n visited =
let visited =
fold (fun visited nv ->
match Cube.resolve_two n.cube nv.cube with
| None -> visited
| Some cube_res -> add_and_resolve (Node.create cube_res) visited
) visited visited in
add_array (Node.array n) n visited
let delete_subsumed ?(cpt=ref 0) p nodes =
let vars, ap = Node.variables p, Node.array p in
let substs = Variable.all_permutations vars vars in
List.iter (fun ss ->
let u = ArrayAtom.apply_subst ss ap in
iter_subsumed (fun n ->
if Node.has_deleted_ancestor n || not (Node.ancestor_of n p) then begin
n.deleted <- true;
if dot then Dot.delete_node_by n p;
incr cpt;
end
) (Array.to_list u) nodes;
) substs;
(* iter (fun n -> if Node.has_deleted_ancestor n then *)
(* n.deleted <- true; *)
(* ) nodes; *)
delete (fun n -> n.deleted || Node.has_deleted_ancestor n) nodes
let add_node p trie = add_array (Node.array p) p trie