forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
233 lines (215 loc) · 7.19 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* TensorFlow.js Example: LSTM Text Generation.
*
* Inspiration comes from:
*
* -
* https://github.com/keras-team/keras/blob/master/examples/lstm_text_generation.py
* - Andrej Karpathy. "The Unreasonable Effectiveness of Recurrent Neural
* Networks" http://karpathy.github.io/2015/05/21/rnn-effectiveness/
*/
import * as tf from '@tensorflow/tfjs';
import {TextData} from './data';
import * as model from './model';
import {onTextGenerationBegin, onTextGenerationChar, onTrainBatchEnd, onTrainBegin, onTrainEpochEnd, setUpUI} from './ui';
/**
* Class that manages LSTM-based text generation.
*
* This class manages the following:
*
* - Creating and training a LSTM model, written with the tf.layers API, to
* predict the next character given a sequence of input characters.
* - Generating random text using the LSTM model.
*/
export class LSTMTextGenerator {
/**
* Constructor of NeuralNetworkTextGenerator.
*
* @param {TextData} textData An instance of `TextData`.
*/
constructor(textData) {
this.textData_ = textData;
this.charSetSize_ = textData.charSetSize();
this.sampleLen_ = textData.sampleLen();
this.textLen_ = textData.textLen();
}
/**
* Create LSTM model from scratch.
*
* @param {number | number[]} lstmLayerSizes Sizes of the LSTM layers, as a
* number or an non-empty array of numbers.
*/
createModel(lstmLayerSizes) {
this.model = model.createModel(
this.sampleLen_, this.charSetSize_, lstmLayerSizes);
}
/**
* Compile model for training.
*
* @param {number} learningRate The learning rate to use during training.
*/
compileModel(learningRate) {
model.compileModel(this.model, learningRate);
}
/**
* Train the LSTM model.
*
* @param {number} numEpochs Number of epochs to train the model for.
* @param {number} examplesPerEpoch Number of epochs to use in each training
* epochs.
* @param {number} batchSize Batch size to use during training.
* @param {number} validationSplit Validation split to be used during the
* training epochs.
*/
async fitModel(numEpochs, examplesPerEpoch, batchSize, validationSplit) {
let batchCount = 0;
const batchesPerEpoch = examplesPerEpoch / batchSize;
const totalBatches = numEpochs * batchesPerEpoch;
let t = new Date().getTime();
onTrainBegin();
const callbacks = {
onBatchEnd: async (batch, logs) => {
// Calculate the training speed in the current batch, in # of
// examples per second.
const t1 = new Date().getTime();
const examplesPerSec = batchSize / ((t1 - t) / 1e3);
t = t1;
onTrainBatchEnd(logs, ++batchCount / totalBatches, examplesPerSec);
},
onEpochEnd: async (epoch, logs) => {
onTrainEpochEnd(logs);
}
};
await model.fitModel(
this.model, this.textData_, numEpochs, examplesPerEpoch, batchSize,
validationSplit, callbacks);
}
/**
* Generate text using the LSTM model.
*
* @param {number[]} sentenceIndices Seed sentence, represented as the
* indices of the constituent characters.
* @param {number} length Length of the text to generate, in number of
* characters.
* @param {number} temperature Temperature parameter. Must be a number > 0.
* @returns {string} The generated text.
*/
async generateText(sentenceIndices, length, temperature) {
onTextGenerationBegin();
return await model.generateText(
this.model, this.textData_, sentenceIndices, length, temperature,
onTextGenerationChar);
}
};
/**
* A subclass of LSTMTextGenerator that supports model saving and loading.
*
* The model is saved to and loaded from browser's IndexedDB.
*/
export class SaveableLSTMTextGenerator extends LSTMTextGenerator {
/**
* Constructor of NeuralNetworkTextGenerator.
*
* @param {TextData} textData An instance of `TextData`.
*/
constructor(textData) {
super(textData);
this.modelIdentifier_ = textData.dataIdentifier();
this.MODEL_SAVE_PATH_PREFIX_ = 'indexeddb://lstm-text-generation';
this.modelSavePath_ =
`${this.MODEL_SAVE_PATH_PREFIX_}/${this.modelIdentifier_}`;
}
/**
* Get model identifier.
*
* @returns {string} The model identifier.
*/
modelIdentifier() {
return this.modelIdentifier_;
}
/**
* Create LSTM model if it is not saved locally; load it if it is.
*
* @param {number | number[]} lstmLayerSizes Sizes of the LSTM layers, as a
* number or an non-empty array of numbers.
*/
async loadModel(lstmLayerSizes) {
const modelsInfo = await tf.io.listModels();
if (this.modelSavePath_ in modelsInfo) {
console.log(`Loading existing model...`);
this.model = await tf.loadLayersModel(this.modelSavePath_);
console.log(`Loaded model from ${this.modelSavePath_}`);
} else {
throw new Error(
`Cannot find model at ${this.modelSavePath_}. ` +
`Creating model from scratch.`);
}
}
/**
* Save the model in IndexedDB.
*
* @returns ModelInfo from the saving, if the saving succeeds.
*/
async saveModel() {
if (this.model == null) {
throw new Error('Cannot save model before creating model.');
} else {
return await this.model.save(this.modelSavePath_);
}
}
/**
* Remove the locally saved model from IndexedDB.
*/
async removeModel() {
if (await this.checkStoredModelStatus() == null) {
throw new Error(
'Cannot remove locally saved model because it does not exist.');
}
return await tf.io.removeModel(this.modelSavePath_);
}
/**
* Check the status of locally saved model.
*
* @returns If the locally saved model exists, the model info as a JSON
* object. Else, `undefined`.
*/
async checkStoredModelStatus() {
const modelsInfo = await tf.io.listModels();
return modelsInfo[this.modelSavePath_];
}
/**
* Get a representation of the sizes of the LSTM layers in the model.
*
* @returns {number | number[]} The sizes (i.e., number of units) of the
* LSTM layers that the model contains. If there is only one LSTM layer, a
* single number is returned; else, an Array of numbers is returned.
*/
lstmLayerSizes() {
if (this.model == null) {
throw new Error('Create model first.');
}
const numLSTMLayers = this.model.layers.length - 1;
const layerSizes = [];
for (let i = 0; i < numLSTMLayers; ++i) {
layerSizes.push(this.model.layers[i].units);
}
return layerSizes.length === 1 ? layerSizes[0] : layerSizes;
}
}
setUpUI();