forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrike_zone.js
76 lines (67 loc) · 2.53 KB
/
strike_zone.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs');
const normalize = require('./utils').normalize;
const TRAIN_DATA_PATH =
'https://storage.googleapis.com/mlb-pitch-data/strike_zone_training_data.csv';
const TEST_DATA_PATH =
'https://storage.googleapis.com/mlb-pitch-data/strike_zone_test_data.csv';
// Constants from training data:
const PX_MIN = -2.65170604056843;
const PX_MAX = 2.842899614;
const PZ_MIN = -2.01705841594049;
const PZ_MAX = 6.06644249133382;
const SZ_TOP_MIN = 2.85;
const SZ_TOP_MAX = 4.241794863019148;
const SZ_BOT_MIN = 1.248894636863092;
const SZ_BOT_MAX = 2.2130980270561516;
const TRAINING_DATA_LENGTH = 10000;
const TEST_DATA_LENGTH = 200;
// Converts a row from the CSV into features and labels.
// Each feature field is normalized within training data constants:
const csvTransform = ({xs, ys}) => {
const values = [
normalize(xs.px, PX_MIN, PX_MAX), normalize(xs.pz, PZ_MIN, PZ_MAX),
normalize(xs.sz_top, SZ_TOP_MIN, SZ_TOP_MAX),
normalize(xs.sz_bot, SZ_BOT_MIN, SZ_BOT_MAX), xs.left_handed_batter
];
return {xs: values, ys: ys.is_strike};
};
const trainingData =
tf.data.csv(TRAIN_DATA_PATH, {columnConfigs: {is_strike: {isLabel: true}}})
.map(csvTransform)
.shuffle(TRAINING_DATA_LENGTH)
.batch(50);
const testValidationData =
tf.data.csv(TEST_DATA_PATH, {columnConfigs: {is_strike: {isLabel: true}}})
.map(csvTransform)
.batch(TEST_DATA_LENGTH);
const model = tf.sequential();
model.add(tf.layers.dense({units: 20, activation: 'relu', inputShape: [5]}));
model.add(tf.layers.dense({units: 10, activation: 'relu'}));
model.add(tf.layers.dense({units: 2, activation: 'softmax'}));
model.compile({
optimizer: tf.train.adam(),
loss: 'sparseCategoricalCrossentropy',
metrics: ['accuracy']
});
module.exports = {
model,
testValidationData,
trainingData,
TEST_DATA_LENGTH
};