-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgpy_linalg.py
522 lines (436 loc) · 14.5 KB
/
gpy_linalg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
## copied from GPy.util.linalg to avoid depending on all of GPy
# Copyright (c) 2012, GPy authors (see AUTHORS.txt).
# Licensed under the BSD 3-clause license (see LICENSE.txt)
# tdot function courtesy of Ian Murray:
# Iain Murray, April 2013. iain contactable via iainmurray.net
# http://homepages.inf.ed.ac.uk/imurray2/code/tdot/tdot.py
import numpy as np
from scipy import linalg, weave
import types
import ctypes
from ctypes import byref, c_char, c_int, c_double # TODO
import scipy
import warnings
import os
import logging
_scipyversion = np.float64((scipy.__version__).split('.')[:2])
_fix_dpotri_scipy_bug = True
if np.all(_scipyversion >= np.array([0, 14])):
from scipy.linalg import lapack
_fix_dpotri_scipy_bug = False
elif np.all(_scipyversion >= np.array([0, 12])):
#import scipy.linalg.lapack.clapack as lapack
from scipy.linalg import lapack
else:
from scipy.linalg.lapack import flapack as lapack
try:
_blaslib = ctypes.cdll.LoadLibrary(np.core._dotblas.__file__) # @UndefinedVariable
dsyrk = _blaslib.dsyrk_
dsyr = _blaslib.dsyr_
_blas_available = True
except AttributeError as e:
_blas_available = False
warnings.warn("warning: caught this exception:" + str(e))
def force_F_ordered_symmetric(A):
"""
return a F ordered version of A, assuming A is symmetric
"""
if A.flags['F_CONTIGUOUS']:
return A
if A.flags['C_CONTIGUOUS']:
return A.T
else:
return np.asfortranarray(A)
def force_F_ordered(A):
"""
return a F ordered version of A, assuming A is triangular
"""
if A.flags['F_CONTIGUOUS']:
return A
print "why are your arrays not F order?"
return np.asfortranarray(A)
# def jitchol(A, maxtries=5):
# A = force_F_ordered_symmetric(A)
# L, info = lapack.dpotrf(A, lower=1)
# if info == 0:
# return L
# else:
# if maxtries==0:
# raise linalg.LinAlgError, "not positive definite, even with jitter."
# diagA = np.diag(A)
# if np.any(diagA <= 0.):
# raise linalg.LinAlgError, "not pd: non-positive diagonal elements"
# jitter = diagA.mean() * 1e-6
# return jitchol(A+np.eye(A.shape[0])*jitter, maxtries-1)
def jitchol(A, maxtries=5):
A = np.ascontiguousarray(A)
L, info = lapack.dpotrf(A, lower=1)
if info == 0:
return L
else:
diagA = np.diag(A)
if np.any(diagA <= 0.):
raise linalg.LinAlgError, "not pd: non-positive diagonal elements"
jitter = diagA.mean() * 1e-6
num_tries = 0
while num_tries < maxtries and np.isfinite(jitter):
try:
print jitter
L = linalg.cholesky(A + np.eye(A.shape[0]) * jitter, lower=True)
return L
except:
jitter *= 10
finally:
num_tries += 1
raise linalg.LinAlgError, "not positive definite, even with jitter."
import traceback
try: raise
except:
logging.warning('\n'.join(['Added jitter of {:.10e}'.format(jitter),
' in '+traceback.format_list(traceback.extract_stack(limit=2)[-2:-1])[0][2:]]))
import ipdb;ipdb.set_trace()
return L
# def dtrtri(L, lower=1):
# """
# Wrapper for lapack dtrtri function
# Inverse of L
#
# :param L: Triangular Matrix L
# :param lower: is matrix lower (true) or upper (false)
# :returns: Li, info
# """
# L = force_F_ordered(L)
# return lapack.dtrtri(L, lower=lower)
def dtrtrs(A, B, lower=1, trans=0, unitdiag=0):
"""
Wrapper for lapack dtrtrs function
DTRTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
:param A: Matrix A(triangular)
:param B: Matrix B
:param lower: is matrix lower (true) or upper (false)
:returns: Solution to A * X = B or A**T * X = B
"""
A = np.asfortranarray(A)
#Note: B does not seem to need to be F ordered!
return lapack.dtrtrs(A, B, lower=lower, trans=trans, unitdiag=unitdiag)
def dpotrs(A, B, lower=1):
"""
Wrapper for lapack dpotrs function
:param A: Matrix A
:param B: Matrix B
:param lower: is matrix lower (true) or upper (false)
:returns:
"""
A = force_F_ordered(A)
return lapack.dpotrs(A, B, lower=lower)
def dpotri(A, lower=1):
"""
Wrapper for lapack dpotri function
DPOTRI - compute the inverse of a real symmetric positive
definite matrix A using the Cholesky factorization A =
U**T*U or A = L*L**T computed by DPOTRF
:param A: Matrix A
:param lower: is matrix lower (true) or upper (false)
:returns: A inverse
"""
if _fix_dpotri_scipy_bug:
assert lower==1, "scipy linalg behaviour is very weird. please use lower, fortran ordered arrays"
lower = 0
A = force_F_ordered(A)
R, info = lapack.dpotri(A, lower=lower) #needs to be zero here, seems to be a scipy bug
symmetrify(R)
return R, info
def pddet(A):
"""
Determinant of a positive definite matrix, only symmetric matricies though
"""
L = jitchol(A)
logdetA = 2*sum(np.log(np.diag(L)))
return logdetA
def trace_dot(a, b):
"""
Efficiently compute the trace of the matrix product of a and b
"""
return np.einsum('ij,ji->', a, b)
def mdot(*args):
"""
Multiply all the arguments using matrix product rules.
The output is equivalent to multiplying the arguments one by one
from left to right using dot().
Precedence can be controlled by creating tuples of arguments,
for instance mdot(a,((b,c),d)) multiplies a (a*((b*c)*d)).
Note that this means the output of dot(a,b) and mdot(a,b) will differ if
a or b is a pure tuple of numbers.
"""
if len(args) == 1:
return args[0]
elif len(args) == 2:
return _mdot_r(args[0], args[1])
else:
return _mdot_r(args[:-1], args[-1])
def _mdot_r(a, b):
"""Recursive helper for mdot"""
if type(a) == types.TupleType:
if len(a) > 1:
a = mdot(*a)
else:
a = a[0]
if type(b) == types.TupleType:
if len(b) > 1:
b = mdot(*b)
else:
b = b[0]
return np.dot(a, b)
def pdinv(A, *args):
"""
:param A: A DxD pd numpy array
:rval Ai: the inverse of A
:rtype Ai: np.ndarray
:rval L: the Cholesky decomposition of A
:rtype L: np.ndarray
:rval Li: the Cholesky decomposition of Ai
:rtype Li: np.ndarray
:rval logdet: the log of the determinant of A
:rtype logdet: float64
"""
L = jitchol(A, *args)
logdet = 2.*np.sum(np.log(np.diag(L)))
Li = dtrtri(L)
Ai, _ = dpotri(L, lower=1)
# Ai = np.tril(Ai) + np.tril(Ai,-1).T
symmetrify(Ai)
return Ai, L, Li, logdet
def dtrtri(L):
"""
Inverts a Cholesky lower triangular matrix
:param L: lower triangular matrix
:rtype: inverse of L
"""
L = force_F_ordered(L)
return lapack.dtrtri(L, lower=1)[0]
def multiple_pdinv(A):
"""
:param A: A DxDxN numpy array (each A[:,:,i] is pd)
:rval invs: the inverses of A
:rtype invs: np.ndarray
:rval hld: 0.5* the log of the determinants of A
:rtype hld: np.array
"""
N = A.shape[-1]
chols = [jitchol(A[:, :, i]) for i in range(N)]
halflogdets = [np.sum(np.log(np.diag(L[0]))) for L in chols]
invs = [dpotri(L[0], True)[0] for L in chols]
invs = [np.triu(I) + np.triu(I, 1).T for I in invs]
return np.dstack(invs), np.array(halflogdets)
def pca(Y, input_dim):
"""
Principal component analysis: maximum likelihood solution by SVD
:param Y: NxD np.array of data
:param input_dim: int, dimension of projection
:rval X: - Nxinput_dim np.array of dimensionality reduced data
:rval W: - input_dimxD mapping from X to Y
"""
if not np.allclose(Y.mean(axis=0), 0.0):
print "Y is not zero mean, centering it locally (GPy.util.linalg.pca)"
# Y -= Y.mean(axis=0)
Z = linalg.svd(Y - Y.mean(axis=0), full_matrices=False)
[X, W] = [Z[0][:, 0:input_dim], np.dot(np.diag(Z[1]), Z[2]).T[:, 0:input_dim]]
v = X.std(axis=0)
X /= v;
W *= v;
return X, W.T
def ppca(Y, Q, iterations=100):
"""
EM implementation for probabilistic pca.
:param array-like Y: Observed Data
:param int Q: Dimensionality for reduced array
:param int iterations: number of iterations for EM
"""
from numpy.ma import dot as madot
N, D = Y.shape
# Initialise W randomly
W = np.random.randn(D, Q) * 1e-3
Y = np.ma.masked_invalid(Y, copy=0)
mu = Y.mean(0)
Ycentered = Y - mu
try:
for _ in range(iterations):
exp_x = np.asarray_chkfinite(np.linalg.solve(W.T.dot(W), madot(W.T, Ycentered.T))).T
W = np.asarray_chkfinite(np.linalg.solve(exp_x.T.dot(exp_x), madot(exp_x.T, Ycentered))).T
except np.linalg.linalg.LinAlgError:
#"converged"
pass
return np.asarray_chkfinite(exp_x), np.asarray_chkfinite(W)
def tdot_numpy(mat, out=None):
return np.dot(mat, mat.T, out)
def tdot_blas(mat, out=None):
"""returns np.dot(mat, mat.T), but faster for large 2D arrays of doubles."""
if (mat.dtype != 'float64') or (len(mat.shape) != 2):
return np.dot(mat, mat.T)
nn = mat.shape[0]
if out is None:
out = np.zeros((nn, nn))
else:
assert(out.dtype == 'float64')
assert(out.shape == (nn, nn))
# FIXME: should allow non-contiguous out, and copy output into it:
assert(8 in out.strides)
# zeroing needed because of dumb way I copy across triangular answer
out[:] = 0.0
# # Call to DSYRK from BLAS
# If already in Fortran order (rare), and has the right sorts of strides I
# could avoid the copy. I also thought swapping to cblas API would allow use
# of C order. However, I tried that and had errors with large matrices:
# http://homepages.inf.ed.ac.uk/imurray2/code/tdot/tdot_broken.py
mat = np.asfortranarray(mat)
TRANS = c_char('n')
N = c_int(mat.shape[0])
K = c_int(mat.shape[1])
LDA = c_int(mat.shape[0])
UPLO = c_char('l')
ALPHA = c_double(1.0)
A = mat.ctypes.data_as(ctypes.c_void_p)
BETA = c_double(0.0)
C = out.ctypes.data_as(ctypes.c_void_p)
LDC = c_int(np.max(out.strides) / 8)
dsyrk(byref(UPLO), byref(TRANS), byref(N), byref(K),
byref(ALPHA), A, byref(LDA), byref(BETA), C, byref(LDC))
symmetrify(out, upper=True)
return np.ascontiguousarray(out)
def tdot(*args, **kwargs):
if _blas_available:
return tdot_blas(*args, **kwargs)
else:
return tdot_numpy(*args, **kwargs)
def DSYR_blas(A, x, alpha=1.):
"""
Performs a symmetric rank-1 update operation:
A <- A + alpha * np.dot(x,x.T)
:param A: Symmetric NxN np.array
:param x: Nx1 np.array
:param alpha: scalar
"""
N = c_int(A.shape[0])
LDA = c_int(A.shape[0])
UPLO = c_char('l')
ALPHA = c_double(alpha)
A_ = A.ctypes.data_as(ctypes.c_void_p)
x_ = x.ctypes.data_as(ctypes.c_void_p)
INCX = c_int(1)
dsyr(byref(UPLO), byref(N), byref(ALPHA),
x_, byref(INCX), A_, byref(LDA))
symmetrify(A, upper=True)
def DSYR_numpy(A, x, alpha=1.):
"""
Performs a symmetric rank-1 update operation:
A <- A + alpha * np.dot(x,x.T)
:param A: Symmetric NxN np.array
:param x: Nx1 np.array
:param alpha: scalar
"""
A += alpha * np.dot(x[:, None], x[None, :])
def DSYR(*args, **kwargs):
if _blas_available:
return DSYR_blas(*args, **kwargs)
else:
return DSYR_numpy(*args, **kwargs)
def symmetrify(A, upper=False):
"""
Take the square matrix A and make it symmetrical by copting elements from the lower half to the upper
works IN PLACE.
note: tries to use weave, falls back to a slower numpy version
"""
try:
symmetrify_weave(A, upper)
except:
print "\n Weave compilation failed. Falling back to (slower) numpy implementation\n"
config.set('weave', 'working', 'False')
symmetrify_numpy(A, upper)
def symmetrify_weave(A, upper=False):
"""
Take the square matrix A and make it symmetrical by copting elements from the lower half to the upper
works IN PLACE.
"""
N, M = A.shape
assert N == M
c_contig_code = """
int iN;
for (int i=1; i<N; i++){
iN = i*N;
for (int j=0; j<i; j++){
A[i+j*N] = A[iN+j];
}
}
"""
f_contig_code = """
int iN;
for (int i=1; i<N; i++){
iN = i*N;
for (int j=0; j<i; j++){
A[iN+j] = A[i+j*N];
}
}
"""
N = int(N) # for safe type casting
if A.flags['C_CONTIGUOUS'] and upper:
weave.inline(f_contig_code, ['A', 'N'], extra_compile_args=['-O3'])
elif A.flags['C_CONTIGUOUS'] and not upper:
weave.inline(c_contig_code, ['A', 'N'], extra_compile_args=['-O3'])
elif A.flags['F_CONTIGUOUS'] and upper:
weave.inline(c_contig_code, ['A', 'N'], extra_compile_args=['-O3'])
elif A.flags['F_CONTIGUOUS'] and not upper:
weave.inline(f_contig_code, ['A', 'N'], extra_compile_args=['-O3'])
else:
if upper:
tmp = np.tril(A.T)
else:
tmp = np.tril(A)
A[:] = 0.0
A += tmp
A += np.tril(tmp, -1).T
def symmetrify_numpy(A, upper=False):
"""
Force a matrix to be symmetric
"""
triu = np.triu_indices_from(A,k=1)
if upper:
A.T[triu] = A[triu]
else:
A[triu] = A.T[triu]
def cholupdate(L, x):
"""
update the LOWER cholesky factor of a pd matrix IN PLACE
if L is the lower chol. of K, then this function computes L\_
where L\_ is the lower chol of K + x*x^T
"""
support_code = """
#include <math.h>
"""
code = """
double r,c,s;
int j,i;
for(j=0; j<N; j++){
r = sqrt(L(j,j)*L(j,j) + x(j)*x(j));
c = r / L(j,j);
s = x(j) / L(j,j);
L(j,j) = r;
for (i=j+1; i<N; i++){
L(i,j) = (L(i,j) + s*x(i))/c;
x(i) = c*x(i) - s*L(i,j);
}
}
"""
x = x.copy()
N = x.size
weave.inline(code, support_code=support_code, arg_names=['N', 'L', 'x'], type_converters=weave.converters.blitz)
def backsub_both_sides(L, X, transpose='left'):
""" Return L^-T * X * L^-1, assumuing X is symmetrical and L is lower cholesky"""
if transpose == 'left':
tmp, _ = dtrtrs(L, X, lower=1, trans=1)
return dtrtrs(L, tmp.T, lower=1, trans=1)[0].T
else:
tmp, _ = dtrtrs(L, X, lower=1, trans=0)
return dtrtrs(L, tmp.T, lower=1, trans=0)[0].T