Skip to content

Latest commit

 

History

History
63 lines (43 loc) · 2.99 KB

README.md

File metadata and controls

63 lines (43 loc) · 2.99 KB

AbstractGPs

Dev CI Codecov Code Style: Blue ColPrac: Contributor's Guide on Collaborative Practices for Community Packages

AbstractGPs.jl is a package that defines a low-level API for working with Gaussian processes (GPs), and basic functionality for working with them in the simplest cases. As such it is aimed more at developers and researchers who are interested in using it as a building block than end-users of GPs.

GP

Installation

AbstractGPs is an officially registered Julia package, so the following will install AbstractGPs using the Julia's package manager:

] add AbstractGPs

Example

# Import packages.
using AbstractGPs, Plots

# Generate toy synthetic data.
X = rand(10)
Y = sin.(rand(10))

# Define GP prior with Matern32 kernel
f = GP(Matern32Kernel())

# Finite projection at the inputs `X`
fx = f(X, 0.001)

# Data's log-likelihood w.r.t prior GP `f`. 
logpdf(fx, Y)

# Exact posterior given `Y`.
p_fx = posterior(fx, Y)

# Data's log-likelihood w.r.t posterior GP `p_fx`. 
logpdf(p_fx(X), Y)

# Plot posterior.
scatter(X, Y; label="Data")
plot!(-0.5:0.001:1.5, p_fx; label="Posterior")

Related Julia packages

Issues/Contributing

If you notice a problem or would like to contribute by adding more kernel functions or features please submit an issue.