-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLagrangePolynomial.m
69 lines (63 loc) · 1.93 KB
/
LagrangePolynomial.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
classdef LagrangePolynomial
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%LAGRANGEPOLYNOMIAL class
% Build Lagrange interpolation polynomials
%
% by Manuel Diaz, NTU, 2013.10.12
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
properties
x0
Pdeg
nPoints
end
properties(Dependent = true, SetAccess = private)
lagrangePolynomial
dlagrangePolynomial
end
methods
function obj = LagrangePolynomial(x0)
obj.x0 = x0;
obj.Pdeg = length(x0)-1;
obj.nPoints = length(x0);
end
function l = get.lagrangePolynomial(obj)
% Build Lagrange base functions
syms x;
for i=1:obj.nPoints
l(i)=x/x;
for j=1:obj.nPoints
if(i ~= j)
l(i)=l(i)*(x-obj.x0(j))/(obj.x0(i)-obj.x0(j));
end
end
end
end
function D = get.dlagrangePolynomial(obj)
% Build derivate of Lagrange base functions
syms x;
for i=1:obj.nPoints
l(i)=x/x;
for j=1:obj.nPoints
if(i ~= j)
l(i)=l(i)*(x-obj.x0(j))/(obj.x0(i)-obj.x0(j));
end
end
D(i)=diff(l(i),x);
end
end
function Dn = dnlagrangePolynomial(obj,n)
% Build n-derivate of Lagrange base functions
syms x;
for i=1:obj.nPoints
l(i)=x/x;
for j=1:obj.nPoints
if(i ~= j)
l(i)=l(i)*(x-obj.x0(j))/(obj.x0(i)-obj.x0(j));
end
end
Dn(i)=diff(l(i),x,n);
end
end
end % Method
end % Class