-
Notifications
You must be signed in to change notification settings - Fork 649
/
Copy pathtest_blackjack_env.py
68 lines (56 loc) · 2.2 KB
/
test_blackjack_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import unittest
import numpy as np
import rlcard
from rlcard.agents.random_agent import RandomAgent
from .determism_util import is_deterministic
class TestBlackjackEnv(unittest.TestCase):
def test_init_and_extract_state(self):
env = rlcard.make('blackjack')
state, _ = env.reset()
for score in state['obs']:
self.assertLessEqual(score, 30)
def test_is_deterministic(self):
self.assertTrue(is_deterministic('blackjack'))
def test_decode_action(self):
env = rlcard.make('blackjack')
self.assertEqual(env._decode_action(0), 'hit')
self.assertEqual(env._decode_action(1), 'stand')
def test_get_legal_actions(self):
env = rlcard.make('blackjack')
actions = env._get_legal_actions()
self.assertEqual(len(actions), 2)
self.assertEqual(actions[0], 0)
self.assertEqual(actions[1], 1)
def test_get_payoffs(self):
env = rlcard.make('blackjack')
for _ in range(100):
env.reset()
while not env.is_over():
action = np.random.choice([0, 1])
env.step(action)
payoffs = env.get_payoffs()
for payoff in payoffs:
self.assertIn(payoff, [-1, 1, 0])
def test_step_back(self):
env = rlcard.make('blackjack', config={'allow_step_back':True})
_, player_id = env.reset()
env.step(1)
_, back_player_id = env.step_back()
self.assertEqual(player_id, back_player_id)
self.assertEqual(env.step_back(), False)
env = rlcard.make('blackjack')
with self.assertRaises(Exception):
env.step_back()
def test_multiplayers(self):
env = rlcard.make('blackjack', config={'game_num_players':5})
num_players = env.game.get_num_players()
self.assertEqual(num_players, 5)
def test_run(self):
env = rlcard.make('blackjack')
env.set_agents([RandomAgent(env.num_actions)])
trajectories, _ = env.run(is_training=False)
self.assertEqual(len(trajectories), 1)
trajectories, _ = env.run(is_training=True)
self.assertEqual(len(trajectories), 1)
if __name__ == '__main__':
unittest.main()