-
Notifications
You must be signed in to change notification settings - Fork 241
/
Copy pathrun.py
109 lines (87 loc) · 3.88 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""
Runs a simple Neural Machine Translation model
Type `python run.py -h` for help with arguments.
"""
import os
import argparse
from keras.callbacks import ModelCheckpoint
from models.NMT import simpleNMT
from data.reader import Data, Vocabulary
from utils.metrics import all_acc
from utils.examples import run_examples
cp = ModelCheckpoint("./weights/NMT.{epoch:02d}-{val_loss:.2f}.hdf5",
monitor='val_loss',
verbose=0,
save_best_only=True,
save_weights_only=True,
mode='auto')
# create a directory if it doesn't already exist
if not os.path.exists('./weights'):
os.makedirs('./weights/')
def main(args):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# Dataset functions
input_vocab = Vocabulary('./data/human_vocab.json', padding=args.padding)
output_vocab = Vocabulary('./data/machine_vocab.json',
padding=args.padding)
print('Loading datasets.')
training = Data(args.training_data, input_vocab, output_vocab)
validation = Data(args.validation_data, input_vocab, output_vocab)
training.load()
validation.load()
training.transform()
validation.transform()
print('Datasets Loaded.')
print('Compiling Model.')
model = simpleNMT(pad_length=args.padding,
n_chars=input_vocab.size(),
n_labels=output_vocab.size(),
embedding_learnable=False,
encoder_units=256,
decoder_units=256,
trainable=True,
return_probabilities=False)
model.summary()
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy', all_acc])
print('Model Compiled.')
print('Training. Ctrl+C to end early.')
try:
model.fit_generator(generator=training.generator(args.batch_size),
steps_per_epoch=100,
validation_data=validation.generator(args.batch_size),
validation_steps=100,
callbacks=[cp],
workers=1,
verbose=1,
epochs=args.epochs)
except KeyboardInterrupt as e:
print('Model training stopped early.')
print('Model training complete.')
run_examples(model, input_vocab, output_vocab)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
named_args = parser.add_argument_group('named arguments')
named_args.add_argument('-e', '--epochs', metavar='|',
help="""Number of Epochs to Run""",
required=False, default=50, type=int)
named_args.add_argument('-g', '--gpu', metavar='|',
help="""GPU to use""",
required=False, default='0', type=str)
named_args.add_argument('-p', '--padding', metavar='|',
help="""Amount of padding to use""",
required=False, default=50, type=int)
named_args.add_argument('-t', '--training-data', metavar='|',
help="""Location of training data""",
required=False, default='./data/training.csv')
named_args.add_argument('-v', '--validation-data', metavar='|',
help="""Location of validation data""",
required=False, default='./data/validation.csv')
named_args.add_argument('-b', '--batch-size', metavar='|',
help="""Location of validation data""",
required=False, default=32, type=int)
args = parser.parse_args()
print(args)
main(args)