From 1737657620978b28321d213fa63e519f88fb30aa Mon Sep 17 00:00:00 2001 From: github-actions Date: Thu, 14 Mar 2024 07:18:07 +0000 Subject: [PATCH] Generated by commit 0c82a194745924228d76d6b075677b2adc6e5094, pushed by GitHub run 8276852162. --- _images/hist.png | Bin 12307 -> 12724 bytes _images/hist_binned.png | Bin 12062 -> 11093 bytes _images/hist_overlay.png | Bin 12062 -> 11093 bytes _images/plot.png | Bin 47131 -> 46124 bytes _images/scatter.png | Bin 14317 -> 15296 bytes _images/scatter_line.png | Bin 17055 -> 16321 bytes index.html | 2 +- searchindex.js | 2 +- tutorial.html | 44 +++++++++++++++++++-------------------- 9 files changed, 24 insertions(+), 24 deletions(-) diff --git a/_images/hist.png b/_images/hist.png index a6cdcd109831c48405fce9a53bf9a152d19c9398..7d255f68b45675b93b47721cc76f02583c24d37f 100644 GIT binary patch literal 12724 zcmd^mcTiO6wr^uXWe}C1qM!l>vVojM5y`R1K|~~jK$98?1`HseL`8CjCP~hXs318u zEm=ZK5|9i{dTTq*oO9kgx9+`F_m5lkrfLf4u=lsWZ>{wUYxzP|S(f@B<3SV(MJ;#h zhB^whO9zFbc(s2YyyD2u{04pqV`OwN8us@vt|pFVC?yljeH(j>jpdy)E@qBSmiBg6 zd4zZ_ah-p#YSjxaGr>Wxy&<~wtN5c#78Af zm#`)%${W50LM@dCcO8ph&3nNW_~q!x71kQ+=Z{$D_wC+wfbA};AzregzRl&C%@8K} z-Rkrynv{$(a%Zfjvt)Wkc1~DCggF%~tF|PH2Y#ICI-CnX{$RaLfkGX>S-lH|y7ba# zFA8=0I0byH`qC~26w1eB4;Oss<9^s7)YBvXe}2I$rKCiMl7?B+!Qp*pG9Tm8r(@#t zGAa++X^nsV%D}O8=JvXpkMeh3o2GqUFlQ3g}9N?Q9_}$wogeVZ88x*6(~BJW>A%z ztD2sk-dpKWOkSD6nS6X|*%~9RmwWqRk=;PX@-&f?gQEfS79x|n)~%ZSnb#}cdAghZ z+_}%z+tW* z?^4q>QX_e2QK+~N$0cQiEZWY*-ajYD&dxs7lb@;_B@~~T$t4$T+ozXz_eDZt;_@e2 z6*umkiNqid0Rb)hiutEDeFBE(ktaMbAv3EK$@iMg*Vk7r_|Pe#xR1|hrpu}StjGc3crUec%zPFk7i+wfF;c8IAW zd^ZZUe_w6RhlSM4Ohp>;rC0Lu@_e?v1r4k^^g~B&+7o<->iF#k`>jiz*m-ya)U7Qo z(~0=F3)`AR+Mqhtpj5F}=T4C3-K;8A-bb$`T&S9O!HXSf)|6ynWmO8*FsEkD6=M#n z4LF&~B~3yBLE_gk>Am9fXtYWVOJsW57sUxzX-nO7 zSorjkPSNi~fM_SAo;EQtLB}vrh3=!)DYCV$d2#@|*euBZVC{Z$v?$TqOHuJ98@r_B z(A=m>vbNs9`Gs>P?Zn#;QA{5$vrkixb zO>eIj+VotJk(Hh9P~au}=*jmCms3(A&}$o;A?&A+rWLv%7aEzP>kom`#a17~0*ht!PH7 z8=m9vmCb#ba1y@Ho>7(|829QMZEh8LigRY5TpO~=Apt6tPu%!yca}bh=JV&zBG{!g zw#o1B>|HV-!+qkuOJF8m5%)Cab>Y3ep}Y~|gP{gJdgrk`MF{pfs0Bx?QSLHBck<-4 z4I19L)-;ePOOt91zwT%6uV?xPxX!-4YOW>hv@ljr!3D^BhHnkYnZ`UW1bd~JN@QOi zAI4C__s)KpcP%0 z+LtFXrnHX0e+|veSsKU|Dm(NQ&A8q~cUq6EkH>1exD<_yjD)^=73ais4tL3M?AEz+ z=iHBt-%EoWI{cvjf^t+FME`QL;Lrp?+nAtlUzsfI^xb0Y%WG$&$wpp$CPW-3JG-3I zcnbkaScYd)np$F4zIm&Nd(DxPew^8D3cQs`JceZ!n``rBW5EiTkJN%) zmdT#vrOUdk@KM$Ib%x>HG-7dY-W-P-DH!K__wHSb!3uZmIw@lL1Lf(oq$IYuRvI{T zzg8J#o(P2q1IHHg3;MA*K z!66}GF)`V*1Ld3&5=O$p!r1X>SB{+BeI*Ww@E*=EC>^VypisH(>m)w!Cbr<#u$vsk z4|q|rP0i07l-j*Pw-E?{;U5FoF{rrAdgV&T4Poc+w7EuJ>tDqqg8tpibqYUkeGBOVjke$)$ zMgsT^<{&Y38}GO8R8x* zU-GyHJmx9`83f??wzgOC+V}3=3kbLGObK{B&dtq@wzJDVdh{qAGqc^@=npOFe}f6{ zs|+_W=CIIE4i**z9_}hx%|-CS}Ddm z=kY-0;1m(jOI3-@ZeK{D+57a_Gf^+M_wNs2R1C7EOASmYJgUm>ml_0A)gnKfw+-{> z{)S!duN%Y6m+w5`YE;j^*W3k|GJu`VLgFGSTY>V>DODq*m@=1{DGWOtWZ{Sr&>d41 zucOm>706uIr-Vz<01QAGm{F2l$gZmGe-M&$Hk|$I3@LrV*i;ILz-K)-% z9Wuajhy$)eS-H7w_{ghNv z_x-JTbj@U~mfzfJ?Eaj^N^eJMV#XQQs z`h|x_{q9|j(wZnyA)~IT%RRt~4~^2Dg(7Y;>o8jTtC$$MlfqCDfNO_0`(a-eMIR#~ zNL6sQKIDR^A-pbi%R%MsmCut%jgvljtQ1~4{=K24#ia~3-{;jx*+K(n<@t)W5r0NO zyC~p_!-_KS(Q7SceMQ74z%8xU7f9HhtyLzD15kHM)(sx>-~T4nQdF zfX@8M{%l{HkLde*M*|4TFYyb}=5{ZMGn;OFnw>bOZ!fjA> z)4(PDf`VLs;}&i1AaN^Vr8c4%_ZG8>FL!A)G&OY%?QFZkI)^sD3ziK(JsFivjcVZx zPraq&?e<~v%2Z|=!8GrHjt^Tskcp1YPI%ycyJ83>oaE*(jWQ9|e7K;$c*v_fAt9lw z)XALsl#nWL5oO{Yc&DpBr*b8-lONXigbu&@0fJ9zptQ52gN}(QtC6Q%QE&hg@+%XR zknL=)yw}Vq7i^{rigr8coqd%qZ{<=jr1vQvDDP*4N}1iqjs!6B%WE4thuQRX1Dy?v zjLg{Fe2{7lySZOJ8(CDOq<58o{a_}I#F`Wcj?NE{DVJ-gK6vl~;G!4(G>*B}uQI6gnL+;aNxQYq`;O4RtSGT*%Rxt47h4JH&|%}_4;?1x)$3FaCl$j;puKq zlszXWIP@T2gCE%m{?+*F&nnLAgePxrZCHcC1Q7P4=L~)QI-a*`OwvRFDg`SmYglk_LR8c# zCNa0R_=B*qR;}W8{X+PwT#X%^ITamoDqi2JDdf~QR%W(Z=Gx+~lN{-HjKfAo?y&NQ zg@O) zY_tF{m>r{>)BdBOK|aj0)D1sMOUvZ3olkHXI#9eof1-yE z6~_MuPOjuAt$vKti9u7(c3S)R4w}_ac8yaW3w|C3r19~MXm3FCoPQOh4`*LAqAy0^ z9G=ldG?I#IV;6iA$Ln`xvuJG5Wk)@j(Ms%dwJw{}F}nbyd#U3q_Ps$k%e$`3)rvYY zkg`XWrvqo}>4|8x^AV5F{CWgKZz#TPZ-kh0^@{DXnwk{p85pq5oRC;Rp1aDNt?OD7 zA#b~$CQ^Xh0RJXEE=~&g$U>x`dCMsP8Fp^&=Jsh}NL4G`wS5Zu6>jgZT)Dy~2bmU} zbWS1M0{BI6QdgHILJNZV97b+b?rd*FLI_uFE+`lRsP^WY2MO5qr;Ux>1tR$VtUMHb zi%Zl;bKyD#57r%XEJa;syIP_}&p|-{7xifg&`IfE(fZ!BZmOUINN;j#D$#A7fm_c4 zadRX*vC%OAsd1MbwE0_3kM2N>cLjJ5vkjGr@GOVb`+wojuU{XnhJS!x0z$2US^j?e z!LIJg)j?cIi4aKZy5GXCmAwX(IvjkKesRn1>aS8gMZiTw@>wQu>lX?AjpE?^s6p~9 zZ>>)FX!5woL#kO2yVud_Ub z%gHcn3|A%sOF0~BP-M#q%rUsD+|?e+Q%vV$c=F|MM(^+V0ybknXiV2o@nXt;OWz?p z{x>ieckV^`$nmJeWaeE;ZG6QhqgTXZ$CQ4b(^#vg-YTNFVUe-wB8p-d#DLrI-b&y? z2*j#uXhf$SKutAmePofj$p`XME;zNHwY=ok>(@%8gNq)<=BTp`=0T@LFln&lPp-ObS+~VqGop?0T+v0S)-#&Z zE@^DY+P>%6_E}2K~@sa(~6 za?B8Ogm@dtr`JP1XgxiSpgP(KJy@UgBb90ns4PTd?=0|4{)+npIy>vJJL!NO%MaxmN zf!7)1{{6&&_s-U#2-wlX75$@iLE4&{p(3ucnN^+}93mpUlaaS?{po9@uVVkj)?iG_ zycfvaO7qnT`Y|}MoL(~)ZvA7$ftn>@ytp5CKORG0FT$nMb@xwRIV|1p4OA0Y6!jQJ z?ZtWV;@rXMdAA0%re;^l!4c^>h#E@yLZJvaakbW*jMg?J zNg>qOnP{;~>o4YL2)Qg($?vD}1m1~HYCrV>VLf?fjR?pi=-+Fdg9b0K(+oMLNJKHC zTcX6=9jg!4H#ZZ&6RJ!Zz;r6FedFE#8c| z7q$w)OeK#PDK=7%arYIO=>{^esJM@Q)e&ujJ%lI!YES>c6WJKrH8Ab*E;DS4GmG-*fSZtF00Yn07hZQB#E_eyLAZ_rsIDC z{b1y~ch)wB$_M-{QW994?2n&2_hVC18?7Q%R5!75Truj<2y&C5Y$ncLHO?}Zm9)oN1}mKfL5kXJRlV~f)*d2 zQkRj!^;=2<1#Ekdrzii-0sb_dMMz+Obro1{(N@%rs>#Wvv#`{V936UMG(A-e!WB$R z#)-Mo;LwfEe<3-dHz?JvJL>ZI$_fN}5=}ic)zuTA&rr&>!jwM0^2zFG_NPzbfnu%~ zJ!jt>=GeNQqnlql$++oQYQV^E6$&UA`u44^ZS@t;i?6HaieE!n_7e#6s9aIH35+*fr8Vo}6#Q$h#IX|@q|@*J3&3V@k@&!4vqR(dRhx7|Q;w4CiPl~+{6{IaeY zoy2Z0|LD=!Se*l$EiW*wJ4Ao%7~(ZufBHu|1f4T5eNjUeh}|q8B#05gERGdIg4ySC zpz&iQjjjF%dSrk0Fq>vD6jJE(J1bg-$2)}t)%wE4iez~j&owSY58X)Bq+81a$iFeV zxwMPT@c5`!dzGY!;Z1rQ(9xU_Kf(4jECv+S>jA$~?0-wg(=HX9?GX9KhA5t4V;lW& zPQ_$1^Q5ada7go&Mt<- zEJ8B-|2+cz^VW|FP!qn0>c(}-oKucayU_mHoNuw6V%aFjR)M*XHG&k3-V$sMuuRb4 zIN0AwArz!bat{=DO){Gv>3)5%c)=_z8k2b__3Ljl;ZmRvIsh&exzsNW3Mk}l&>>aW za7G=CnOTzQ!Qq2aaW|Mf3Gc^OLOt#tJH~z`FWtaoeCS1Tf>u!dp$|UJ+gs|b zJJLFd2Xwr5Hin$R>6`+CSnHjDEoL-8a4M^K(6J1GYdvea>m-|jGW7LlhtSY)diuu+ zkcP*zj4JhL#D4l5ViHLL_hVH#0ya(6G>|g$s(FhAG_&%!6s(EaXwa!_a-b!&cDA?p zO>6(4W){X@Mt1tX`jT`2y$3LK7Q&r!K-VM2yCSg)&Wlg48|erT9adw__*1&@Q5ptB>lXF)nE1WRoGypF7uBOH!-|2{47K4)o1?lN%q$pbE-siv9bQ~a(yfqhr-!#i27P~Lr1ACO?@?|yHHnf#h z2KYk#s4&5oH8s*%&|6p?^vKDs0(7?`$U^}vngrt?Xin#ewrlWZ`?diqwhI?zsTjE0m|Xkgp)?|deCq4_#Ey=Rr5^KG zf}6O0v7Pw1%g@QwSb=Z2OT5Cur47U@mK{lqITtjGLXs6CVis3Vo;-=W_IMwOO6RdJM=CdF%gH}K(iEC}+~*8_&_m-F zCx9k(`14k!xyX>bXSipqp&--s>-3kiv$E%GvMp8UvC)O~w>JS;jo3pC<6HnxkRqU8-{ zR8&-m**H+{inAZ8Vid4>v+|=SaW55v#dLQTVw8i(vRbMLaQ`tFxiSX4njpT~p9tPC z&b&2-Ovv#{Mg}L~7T6!}>!6!-p4+&}ARN7T}Y+V`*t$-v{ULqNl_tcR*R8O7XkBl*^e_nBk^ zPpRR(w!q5Df?k3ue(f`_RY4Ve+Ieo!5XzfvT5y1n)AyHN>y5@75W*(~Y|>8UP5$WY zg5Ed5t7ilnJl%2E9wVJB3sOTEkb_rjwmo?=k11)osRjGvpe4?~HhtNIkby3nNbnC0 z4j$q6tP5l++gj-ZeUt^(7rLr81F63tf4au%LzclA6}VeZ@j5DsYcka{Ia}ING+iDB z8IZVx&EeqWQ~(!m+(6=ZaR?~7Tfp?R)zyQ)w?yM$fWUHlbDdEfThN-{Chi$e%UZ+vU}ejZIavbG?gp8 z*053c17e7uym}6wl9V}q5D8`Qk&*Zg8MDJgvaA|4*DPC4QCUF-ks5hMAx}NB>!A~ ze2urSTCd%tvOqoFN4;=BI~X=B0sPgePcLYpq2m~r_wAT`pBx%AP$I~k>2Q6!bOD3C zI0;YkMRxY|UK04-!RHhZTu z!NhCdAt$bU_GJf&xYFJx)p+N?K2q8w>2&6`oXg z+Pi;x99poNIaTBg7@BBc6yG)&WsjMbF#eEGQBkq*z%5q7(`xxEbQBSU50lgnPZpi4 z&;VmOq1BjI`SNAvdnP9FUTedY&a?eJb0@D~w4n?}k_U-Hn4v)0p8=;=yY=ne4WINC zSZau`kA)cZ-OT;+e~B)WLX&R~zA7W+0!dkj&$7vscW`UfUS$r=O&%O$#oCV{cV~*} z2gl1-!ODF#CV3-9!E>eYsiRRW%MU19$ets*x*ZZXPDNt<22vNG#ezF~{prNd;g9@! zt);aZFa7+$vD8rwN?n_S{sY8N2NYXEsna;4q#d-Odn?@Yx7S;}r($F)CQd%@}VaNzL>vcofnuNL3Pv2%nUmb{|pf~kY|Jm-X?#ZvRkd@8ytON9kYjGgt3= z6jT;<`O$_H?IWx=yCxjq%~IlAiEjQqMu`U{(51?NT(kfSscbyPW6W`H-4IrCr?wwq zG4z~T7y0?o&>88?HF<1TN@94H;S^Ih+73};rW@Y6FFJ8IQsk^D>i2L?g{w$nB5U;ip(7SL3;GUwlDIM z$s+{BsZUGve-Up&+!S0+l^)X1fiWgkWBW13Qa-?C5YZQ}UR{i`AB(SuzSS|by&~ud z6=iCmycmqPU~CRAT~UbNkQtPRq4mP`=x0-3E5X+9Mq0x#5`ge)FuF2UMXd9U1w!L! zbP6kZHIy`;Bq4R%VjWUr;`GkiGstq7%4u!!_GS&|jk2?Df)#-1oZ7#N+OTTF>7$$8m_8Bq6p>zPZGbL@kQp~XRJ{g%lWV|{% zfQEB{E_%1Mc);hLVXH5%&Vu=3l7;Wl2tyPF2xd?eFJ8R3**%%mYttED6s;))-FooR zQmJ@KqyUyK<+Z4ORTjZa#KDW4z>}c&WV8rGs}O`X%%hbx_&5J&DTpg?l8U34ZSqaS!ItpCfAGS&)-Do z6M~DvThC5=slp~fR;!JkOcA!7ANg!FjF8uHgQ|>}AH9W*bH>zweO3M2bxO?3JM&_ zQ1uHCCZ3eErhV< z`43wj)7c~_c)fUUe5<*p?GTPJKlT}JD)1Yc5Yjsv@engOSnmmx4rwN4#*Q#w5K@d+?mjo*i5T=;HAK3SRL6L_a=f>u zrSPBha3vuHwtZ#bx@-=fxg;#yGo90!fxQBvCCji}3*mI&JcG55(7Kl||B$(P(+WzDbm!2G; zEpVH^gJjdz#%j)~UFTR>Skj(KrMm^Rx3`ml*^dhvfHcxN)MA8I0k#BHD!Y7E1etwY zUtjNiZ~Clin`{kMvKDNGHJ|Ji+*Odkl}jB8h;9fD4yFS)36?zdkw!AKk%V+OE0qJH zY5MAWKq4W-S_pY_rwRhtL+}iqM-KE!IPz@MId~%=>mf^>+iLShx{y6Ec~$6`76t7| zb)?6N^!1~neq7aTaUJqZh45#;e7SvmcC64n=U_qP%3X*vWM&r`k%c|Md#kd+T-N{v z#BG-g{*R1m<(id|tFBQnte20HC&)X|2lQ4!`V^yLs~_ z$-~nZ84QXcE6K}eJjen5&;gUtd`{mLp<2sB=xInxKSCxuKob$&PD$6VzxQZOP7w!N z87(LGf^8D$?|eBjW46KMGBK_=8<7%SEQ|bm0mcS*4{Btb@%mY$d2swc`IiRUk{=qa VOL=03?BTm8IT_^}+0wTk{U18@%b5TG literal 12307 zcmd^lcT`hvw~2kXFp{J-BwqmJ;-#Bii(O>SxHWd zii*a7ii-Nx{=M*tvk2Q8_#y5hZ{VWsVC~|5$JvTX?T(A%0|%D}ws+6CSvfznb+8u_ zxGHdo?~IL$i{nEHK|%E24-jy0zAq?}Uz`PBa==l^@F5iy{T<{Fb%t!ZEftlZzp~tQ z9glaEK`)mRt_eFk`uaEB15uV7k64az{+@6=lpGLqdjF{>4Ek-?T~Y)^T6(e)ri{%XB%@-EU!sgBN!8ZYhQi%hyqs{OhM#C!>O)ji)t6`(si^$# z?B;`yKJSMYLiOxu9{hdyyagO}N}-yDit5r!|2=TxssBGu$fD)u7MgMdL!( zFb^uUQd6x|R1SVEs8r}TS^H%QYiv`0Rc`-(dMO8jk6c4XrBCFmGQZ>e;pCz`=kJ|x z%(GFWSnE#6!)%TQVmIXqRnbGZV6n%H7U$M-=HAJCUbMJX>cQRN_dLh$-}kW1ed-M5 zX2K|IEDr@J`uN{2v04rb^gyZR;$*A7x_YRVmez^Gd!ypwj3+CbqWQHioyuM`x3jb3 zYurUe^*r;9$v$#^J)8FR>yN@CBBEkrv5y}=R)~2k;flR-<%%6+@1rIcYAXLP$0K$x z4m@n-7824vefqRfnR9A1pJB(;mCiJ^&abb}TWZo#QC-V=p6jtTN#pu2?S?n=ke8zK>^rI?;A$BETp%8kBRusc4x)t*fhLb@>K2H#ZL-Ul%!-fMej*vmte5_UBs$!U0U^^z7_x25gAKYo(Mr z%cMfIG2XO~hg|lnT_-L`ifb2}qMOy{tviw{t6}*&BJ$1o@ujmH_!Swn+LGyFQLpcz z-84Ad@Up+iolj4gWba#BleRbJ^i@<|{A`X(Pfx(85H<$q;3|1}x1*w*ilW>#H8o!o zIZur&yKC9nl6`JJ`}|W>=JkS-&TvAAe#{cxS8m=AyCKJ`EMs=DX_Zn*kH_YRSJ4wb zq`m7n&wg!!XO)?iwRO2s0GT>VMmt@-+rf8{nL;cP#IALAblf%3+zggG$HT*;WoL)= zmPsT|6n!5iNav)aeBaq~mx%u~@_f@bk+11n>WDY1Px)2OJ|$!OU!E!__H&3_4WoQN z82EW%W2-=F{$cZ74aLNcPOoxPg{uDkjUtgho2=}-{jTWNN$nT`QM8(UjrIC6|j)V)?_UUP)7%bFeMy4BVYaUm)`K8F`qdLv*j ztyXJ-w61|cM!cjuX}lqVNg7jR-I~A}d<-!6E*BRy?}>x9pP$i+q)`Sd^u1PRqd2VY z-Lv`hQJjPYbU3a7B zXC|Lp#gn~zq(TLzSzonkpVL^&WNH=H3m>PDw5+IZowK06{Ok83!M)-MV}sAAdWotH zzFJJM%=AXUjEb?kVJ6L^6r)~xUP|$8I_g6<$N#G^ho2!Tisw*_m{i2rS4&R@?%Y>A zQaRcNCo0WUStUIN1$JGNRIH}C-DFM>&+IsFE_x*Qj0Cc;4Ps!V~{J)vhe( zcKY~_j~U|trxsFn>tmf0!MwC6Y*3O$- znKV`(#(U~8iIkPAr>7U)(1Gl%kaquK-z|)Chik8CZ_31r7cYciUomyog|cRKXX*2b zi}xA$z=1h62Gy9giI`%`db$uM5tUwZKcB9qLEjAu)8)HQ_R_IjOl(b;-C1ij`siKe zHuL>Mrgl0h-hC*D^kfZQd35A3m)yD6OkqJScyymz=f|l2fn}55`x~4%8f@>erLX57 z7`6?Pu77QMnm|w`<`eujYks*s2t*t1>hBlD75^Q0m8vn5@$N1=TdTa%(x&hZY&!~q z8TqmEi&6S!nIX(#cALNF4?ewtSsip2u^%W^Aae8ZJy_s8*N;s~I#;54=@WS_rK6)~ zBkw>Uv9~V$EZ$Oa%lAczg`Ff`rAcK_AX#(7v9zaXVd43~(B3Utd+*$w2V+LYUL>*H z-mGumZt0_JoT@Q%RjV%btnL>%IpvM<4>WVls*Fq`tqfyD(Xlr^yn+Hbsavh0s*0M& z95>}ShO_`JZS9H0wE=v_x-4-^SEZ{))e`Xd5ETDXoTSl-Jh$0_ zOrit9w4tG)zrZS3plV6$rd8(pK-R;_7I_f@v4UnSsC5!`eCv+keJew?jZbn-J@<=A z>!W>Zm0gZD*hZbn&$^qt`8=fxDxFv&3B=1bp4mpO7``wX*5f->%qX-Kb8r7tNl*7o zPFqX7q=?VD%btMi=)Qv5-?&l@*)5&$q;eP7`q!jv^{UtJl#+UL%>x!=Vq(b9>eoku z1?_IhdjHOQ5gd$aW+l)X>OIA7H4m#9s~u3%aoBTb)y(T_gB{P_5H|UJ6P`8 zUwA)^!xmOF_R^ilp)BG_)1B$OEOfk*lE%4JD@HjALRYQ``>ZdK5)U0ZF6q zXl!hZ3=dCIj^MIgndxH^ePB>%ehNUv7`v+n8UyeVtis7t;?DQt1DBbc8#rUS%5J&2 z;R^~2L z&n-{7lHYfH4ugJOcoawV-s-=i5BxU@mAp5*vylzDy}1U2PZKE9F^>;HS-cw|xo$$;XdrI4@k_6%o%SC0wUFdV^Maj zdk^oXVUqDKJqX1*^ZjxR59}8kiQZk&9Ki5;*1QS6TXx^zd0*|n>m2S?g#F0*y~=A< zB5|(27!|U{q@|~4jmz835F}?O#U(++TM?sj3K9;nt6lZesX(*$<0M?>u7*mn#RQkV z8vBY9Uab&rcAJ@F_q$ZdO1xv-Z>9K*wgZ z_k((Sv9b1hmqcpZ9z;b)L7^po8gb0AotQYvz>>RT+rlmX~1V?v4;a#`wMqlvIx6R!3@wesX!qnVf7M%U|IWr-f1i8B{)?IGtZuhAt%!P`fe0vtBjvcWJ-5>%)GC$S zDzkAb#@x4zj!i0qRnqMuFR$w2&*orx1UD}qkML(W__XNG=VwfvE3<=HP%$dupu@1c z^d?*4msf}msI`TO{z}h60H|ajH_Zvs#?UfHWuCyU82Q3skz-V>0z~!&W_xz9f;?Z( z-a8g1%NFbm-)^MK;@1rZ&Y8>qj%%SmC;$9AkBqCrq{?UenDz(5@3J?zeo#?;k)+XM zcEbs0?@`sSFokcT&;{-XKJ)*I{~=LoN=5ZUO2aCj$XWEm#N#dtP({%OG+F` zJDaULI)QYoKn}Yyh)pdmJ)^b3amI*L9=PNiz5z`>2ZWK`K&g|8vhw9YDdZPI@QZR+ zGKaGJfRkcGw4~e28#C{Dc_6?%&=3KG^qidwrWasA@3z=f12xWFs@cbWk)L19vOW~u zQ4lAJ?nqOM!}_VKsC2;fMBHZwGNJ`}c~Kqf{Ygq3T4U`9ZA*>g?W-l)Z{P9loJbj7Nb9FCD$+a^-Nb4bc zk+<51&#~=HYalNx6o0EdX`Y>`8iPCzsWUxHMMb5^Yt>$QeJU9<{#voC7^OexIT;^< z*ZzZ4qWEIFG(all@ZMqN)YRRrHct^Xjkhd`o42|0Cf4E~NZfbIv6sApVHrO>u7B&* zE)KcbS(NU(h^cD)_RXbuuLkVM*Rq9ZVo%$Lo6CMXtA6W=J8SHwAQbrR1Z8E-0qH?k zNC0Kw%Npsd{T|@Dof`p{PEAW|oLrm+?CN=(Dp+o+HvksGAN0y?cVf)B;JYXkwY9b* z)S*}D%%X@#Hx=-Cj@q2;`LW|3Y)%cX-}@ikrPF`ryi*nAQS$c}J2mMXn4#b~k6fF^fIQT{N7VOPeffL`5Oy7{S|-7g#2 zEOp{6&;c;NM*?+k-+m7df>jJ-<7(X9Mkm+UG$`=lPU!it3Eh;+8`um_n{IM(SN^WR z1b?p4z^sDol`Ziy*I#Tnd2Si zM{8Y&P>#TCVrBh&Rh!`bJ!eLfB|pJGoc#Z7>+RnG)_+M0|L>l_c#@hI`b~{RUW?x$ zMn1<1033g==^t*?x_~%o6>}dedX~U;`SjEd9yV6coS`oJIKd<_B-BmtbKR=YmRyYulcXyJLe|;Vm``eXjkG8@*_rP z9A_zcd603(kvVYcpY)@w08J02WEgk!yn@Y->PHJ}-s_8rJJ}OWF{t`b)>v>bhdd`) zJ(>C*pJZgj7KC3q8&97FDjK{y?iwMZk-V}H@XRRIQn82AD9WZ=)_(xUG^6h2AHjI? zi?_5c@v5-eKgh-B!T!ZI?MY0s=AIK#{iROHNRJ1>;Xdr6KUNol$_ptfDl&+EbL8CX z=ODi$V`F(hN)!CNjFgpUxqi!8{DX&Q8x&n1-b)twpWu?MutW7}m5C(QWZ7`?SDB7s zlc&UbWWtb;HRaEPw>iwh4d|Y1DiB8Z3xl`8Jcx}TCx|3$$ zv9(O7z)~lj?4>4mYRLXE(@ISaz%E%bp*IMmXV-Iba>|+ha9gQWcBgXFmtbE$oz^3G z7#!WVCbIj;A!0*qg{?AKn#l^>=g;2+oeTZ117})s&oEjKXOg+J{gGX?wbHQ_Mz_xO-Y0tH9lOMb* zE5|yyxg5wBW;OHpEvu_hkeA4Ls%xrcYYhwj_fbL2mk+l=Xf$~-R>ReKpN`;TURt&3?;U4A%+gMLX<^&TV|I!`lPd7^WL z@;8r_lEfH?9xyBAtU;~oD}5&3;OiwM%AxRhsr0SjfFv;Ezk66Z*8ph zzC10oR4==IndF9WB8y7~a|8{UwUjbW*vq9!Hy@rfDYOnr@Ljh>z!Q2Ysjo0Slua57 z#;qN>Cug1F;Fo1=U&cvVQFwXk!_3T#Q75?BvBrR{{=BiQdA^%t>?r6xAeTHsrae79 z*ZW$1(>7)+G(e;!Z~FS_P=H9G0C=1EK{1`N7v4BB(kwP?!fT@3@oVI>2*`Aw4N3`M zyMv|^RA*2|pI06ebWcSf59AQcTfmrUU>`cRwwWEBog$be8|YT`NtImO|HNXCG7#|- z%kCXur}H;SWI3oumzo{}1{*%_kMytAVL$WC%uFUJ567-1bbpaDuqf=dI5)R)@JYd* zfwG6mMjwF(HWVw2ee2WWH(0-Wt6#JkkAC|3=-QTyq28$9^)AHzdb)hIJB&@^n|`l# zn?rM_1wlM?Mx|moSmg-b(r?FL+WE3mU4A@9cHjBeN+I`%qkOSNlKF4h#Lr$oawRjv+*4$0vy>&M-V=GGs`e2)$AMJ1H4H~*#kZmZor5O{nn;|7Z7FG3Zt zc!GhUSW9H~?|jOVx(Sa)=yGFIQ|Gt0LdyWFQrHPF1~VS*+NZZOkg0t^?d=u$o6inw zLc$cyZ=43!s%W_)m)@}G=0-_+ROGn*!B9P8Vt|!rHW#b4y+FOwJtCg3DLl~hvS#vd zZ2AY^LaAtP>O^q9WQq9hNzOJl*^owE)Q zJsr@0Xxiep@?|@qf+RG%8OVD5tP$jn!rvX(!uSMhK9~(t+VE10TT8qCBplCV_xZ>q zk^`IjBN)SO6Y(PVTUZb;0GK*r1HGh3XG%0|K}{(1Lxg5S%dc_+k0uX!&FR|P!*B!O4N_z6RioFbP?|#4Js<4_rYQnrUHc4Pwihc}_4Ojzx^A+uH>1 zg$AR=m*Aa%IEixE?veOEpjE;pa&Tw*!jcv~;JJmT2;Fa)%1lqdK1_J|@+HY%H_@=r z+7`qoV&5URO2;aZ;V}HssMPVp&u?#&EiQfkOZ$v)3kZa6MX?+=xYK@s-=MsoawX|5 zF^Y$uUt3G-y_$Eh89${jHkD)_w81-@(aGalvHv}T{2vA^|M#rr`JteV>0kxZzuFSX?R2w3 z=?$;NzqstVfDQ8-)ifVJpS=MK@t>P37&8MO;QU?RLOalL3p`q8XLUVZiZ+K}?=ZnY zf`#0SgB~TLpg_wkS3kVZzZUuYUsLb~1G}?jA-gT7;E68abs_?@*VH{;6x~1WW(aqx z#&~l0+(4CAiG9_w-kP_JTCA`#*u0$p2TNr09V2s}moU!Uoh0oH9m0dzw= zQtn2G_7!Pwi;BM_#Q?2UZbUT=1kZ`l$Gbivg^Z& z?AJAVPY7{~TT-Is}qnKm;GJOm#5W z=7#v8XL^ids<9HQSlnVZND^1jUIOiK?6DU>nZ7(f8lGZW;nt18*%@^Mf2Rtn);2Mj zDK)$%FaH!*xuC)->uUn0K^tgc&Ujg2kFDii@?xuO?@*POD`?F!L#{u|F&xkha!7h( zrmz5QjPzl|r3z%jDE0OANw`eC+MY1qe(LD@sPKNP9Z=i#T0!3r;7eud=bC|Q+6Fu? z0|aeO17%M@4Q2-du`7FX-@CpkElEWajesvaqi4sNRbevC3BJg=?OcM)TA=$+nt5C= z8E_7McKCEsg0vUbZ)Y2E*tUPy%PI`EfM>T+ zxW&XuYVwaA-s`&9EGE{kZp`|SS;J{wEp5gMYI&A@8a;zV!!`3%PeYWwr1T4oygZ}>?~=l6Nk6c5L>#!jnV;HD~o#9-Y>tSiV~m?OiiaJ z>J5MNK^_EN3keMH{&LqWWS;i7QeBj1t%iS&)T;k_C^f?9 z3*IFAWa$vGY41y>MK+r8tzdE)BGmiMWy>V{+?r$H*SaP?a&U#6cgBKiNodb+2gs^35kUvAg!sO#vf| zz3P-C;kLPrr}Nt&4hvg0*EtKDknG zPq^Lg67%w3uNL9$F>Q^0fi9O3=kU=G!J1`wyWlyfhRgi^u}kgURZZl>Vl)x|hLF%x z;JIjR>OEik&sijrzrqc5Z{1EDtZ+vns1EQGiah2=4We1Zpn^E!{TxK~y_g+ngXGRJ zU9#|p5rEXqO>f91gs=KR3C$69K3)+LihBL}Llm#RT|+o0W_xWCGO;D2MHv`S!Hfo7 z5Ox@n;x{Zv=~>#x=5dW)=C?&MS-5!Xizkl#oLuKUE30Wd(LU=ajsp=e?n9pG9PSSM z<9Mu>v3i13S&Nsko{o-iX-e@wEw+!zW!EkbN8dbREd|dm< zjJ#AREA{V$+qVXZ&M^@7H6<1~R#K%bA^DQy+wI_9rjIdDi zA#Bn{5K`vzw7b4mlFO}JcoE7ji?g_t0Titq)2b(Y%3&C4G@fHRRC3m)!$_o@r;&K6CAHuYB`4;)iHB3c>>^Jh!E z@m68|SUb98FfBdN*C<}X^@@q@gSVw66JX*m_Y$^sVPXU;q$BJ?!Q<23zrTj8F2uDW z;0I;I5Q}WJLn7`*goh&q!Zeo6&&|Vwh)vWjW=Xefy#S(H%P{BvjZkDaaxlvWIV$_5owye&Tb#jS@d?2szU<5^>i9_R3ccRILtW ztqyr<_^maWFF`UTA1CI}gGAc;=03Xc3x~tJp|rF z?EbQc>Dwdh+t(%CXS*PUW0n^F?6F}6r1Sx?r^vQ5X~?plt$yGswoV?T1lju|_gJ9U zuDDt@zLM zZ$7&SgB~!5h6oGrDkdE&*nN-BHuC0n)rByN_-=ZDuYsThlbHQG)oxBYA|6^jZ&-aY znB~%>iT<%SH}9UYC>!rFcIbwyBqhj-h!nR>L#6jV-g8LUrtM4>Y$8%es%kKb3|B?i ziS*idM1P5c`Hek%e}C;Lmil%m^JVbQ?HVJw6>x!~a4sarx4_##YH@M$m|=7(nA_Yi zUzN$#%OWElcj3ASR>S@& zcApz!ERIkTIINGDFksrnZH9EM>*(m%>}+p=Ijf?fA=Y7CiE8x9kPa<5^uJij=h66> z%P=YMujOhLLlHj&zf?VHK4-!Cz8KZpvtJ*$)&s|F5OvcqSWt}HT?uqRVyD0h`ulP} zDwkVaysTkZ$;G&PXO6T%FL4EOSJFtnGX0rewkxM(hzCX^j2)_U z5rT;D@QE06(uY8{j!#byWlfsmAH0ngG&h^neGgqd3s%6c+Ml|7d!3x+U^=?GK^(|Y z#jbw<*I|9qZ+lYWb2o(DSq^n(<^-^98^-3RVo^9vn5sYq>A>{Bn!7PmHRNGlff3a$`l`V*M5jxMyLnKjvd&o)2$zd|sRp&F%5^{hO z!=4L|Oiav$`XpbFT?<-Yq3}*`ZsglZ`oUPhpyOxS?vlo`&4nh{Uq7x>zUSXGG&C%> zk6J_?P*HaMH7G;W;G_54L=EAW5A%+FLy&2!*T~0QHbKJGPN$;Jp>kdUF;Sq9k%1o_ z(APkSQFSj*mjfbq6a4&=i%S@_SMlBuB0#sWsDg_bRbh&enJi}e((6zhj&a1eUtn}A zha-V7%!guIJpT%3eW03B!92Bt<|*Mc`UD8{d*C;ABcGne3f&Kd*@)>5Q^dylH>XXy z(8cNVZXb{V9BBH;{7D3^ST8jvwCry)EpPC!LrI^%!US$NaSbMS$l!nXEKD>N12>}d z6)J*R0;W5jk>BXVvd?}_Xi>+!{y3duEdSd>>v=ouKi(uiI<2k<`h|*0SzcWZcf;cG F{{Z^r`qlsd diff --git a/_images/hist_binned.png b/_images/hist_binned.png index 88122e2cf3dd0d4f204448b160a24241be120bbe..43b966d0d14aed1f7c0cd526b1413ef86f0815a2 100644 GIT binary patch literal 11093 zcmeHtbyU>r*Y6l0iik=n5~6@KBHb$G&>-D{v~(kNz(hiaZloI|1q1{Y4$>_QrASK* z-MssI@K@`e_pbG>b=UpluKUM1gEQZFV(90D9S*{)hR zJKH-6adO)H^8yY#M{`czcV)Tokkj_}w4G2W;s?lo$FjsTEm0_z2DIcIHTU?1k;m?8 z>wh%j+!UXo{pcUo)8A%bNWOZW!+?d)-=Ed}^wl#fD4V$mQ=+?m<+oEcvd>5}y||lF zu5;m!QxR2HZmZ~oQxdQhR6iwMzF2jUDEJmwI%*Zk(ja8pSvD3iP27q zW}|!YEpblmdm*_gDGlT>E-I6lbMSHAk_qOGI+tp6422R1^2bA=#&4d13;aI){~!Kl zNggC;WJvFBE@>(#1kW-xa*-cgBK8e>F5dWwb^=G#n6j->)F3G#5imQc*tYo8O4+_c) z3`&yRRU*kud76GaXS`p88mASIB=~<~XIpXp>KYmuA3lhTc+Tg`%E{d~Hcs(en|a&X zD(}5qf9ja;)J#|E*XCvw9i3PV1`{3`nGqjPMJ?*tJL?XC-qyabMkIE)x9T~Uof#e* zn?on@jERd&g@J)#sOUie-=lBI6b9~hDn>o$n-@Z9#S4Oh&Mu7B=t?|4*Z1w6iMpO% z9=yBe@L+f7y+i6yxy`(@JS2|pQPB~*?Q$Eea|?Tg#Z+rd)%H{z z88tOKTBrEoOV_2*{9nHwwIv8|{@hrdYU>G863b?gi)6ZSqiGhYI&FCM-z@DuN;dF)oV0HbR7V`AC}PgPShvpMWWZh5(e({#IN z<*8iUegB1_GQuq<2L}fqYyuk6Lc&rabYOmccL)R7LD^J4y?R;E@mj#_G+pRXs!UvA zf52vJY#cP|TSCE>)RD=2Kf?lBZc{Z8BFy8nw`EqD1S90-;o)hqc^r+q%cBAYo5)!bY)tT!)-&?vpy679e@`QA~?rmYb^ zdxE9{`PfOB=%*b4@-{s4f=LQOs=$VCu zb?s`_BO}?gQ}nA{EkF7lW8vWFhqdjkuro9@Hy5V90MF4DG$=YpC2$oj~|noP+?KZg+!?q$&~*No(Q#y0$;rL2xY7GMd{w zBrq`0d29K*(KLKX@HkUc(gN#x6L1(M8RUmI51G8;E>hoq902e_ENNb-*v`Gjn~Unx z?FkA$|GH!GV1GAhF9VAG^K;Y~dZH_Qt!j*r=tWbu9|WAPN42DX|MZ*{a#oohzFnR& zsIW~)Bl(h}5XUF0prC&DuK%DKyzN1&s72@1p3Cs(wKLq6C;o-8Znn0ImYVH}qQWm! zkY6P}B0;OiL4ijIg<9l&Qz)&S5L|y-(qVdXGNv7_Ij);jfCfnw+_pMP;n)|?5?KRV}$>= z2tQm|S(&LX_;};jRcT~Z&mJR;w81)7>XEXIpJfT5=^5xNljh#?5~CJVHRU;hN@m{N z!c8ccqZ+#5mss446Y?ujPCdK0|IgI-SQ~XaD+&@^xaC&-rrv6~M zT-5JZAuE4M@4I6qvVT{bklpaL#g?Ba5EyZU+v8(ge*SsE8~24`sMz!s1UMN9Nh*|N zYC*@(&V0xY{ftcGvl+@Vtn=~Qna%9WRH9W#5K@Qe?IZTxlIYonhcqaLDP2&Ek&&KJ@$^QF~ik#9G@2O^zrzZEfu;D76Yxuw?|g zi;&eVlaARCHglsj)wUmS(k=@_ea;-nL?+u?TDXrk?7hM%*f%Yq8%@lO>dcxWDkhg7 z<(83>ng2StKn3A&`&HN1ocpcy481^x~%zPG<|UvhLCPY`tY`Q4OUL<$3t$c_|s0xDfc+zWr{75#)Zy(ryT~ zFpIdjAq;>w93d@xmpHY&cQ@31d}<47cdP)Zv-9%gtp^JFQlwt-JZLy+GgOL(3-W3_`SD~U4KI0NyEf-(kI=k45aQg24A!=9UEx; zq^j}`zJtWRi!@ibxVWU3#@y>Exs0ETZH`pA^mOu_e;fp&^~r%X4!d zSVXrLk_w2Q-Sd7VDJ7MyTVX5B4O7eHhAHf?Ws3K~#M`ZQA%OUut~tRRzP7YP#K*IR zHkk;8sJ!JNH>A#1o$oh0yt}gPm6N~D@)tVsI~ZqK3%2@O>~FWV8NY;SC*ke-s7 zYFgPUYN(elGS|(}^=)5HgwLPuAz@_GgbEb;+Jl|>lA+PHf{#Ya?jr0zHbt(yy-6PF zqK9xsiR&%JcNyiF2%a{{Fg*}aRN>U-Xqk~;;vpiP=WZ2HeaA}Kl* z>XfmJ2QH}=8Tf3Q!Ubr|#;?KaXoTOKAtYo#0|X%(ad5C%XWf~6r)sTRuCLn7j)9Re z2e#jL>l5wTX5FDagb5JBeh*XBdA*XQ8kL2KwnP^rZ1<+nJsQn)Jr|iavv)djdYu#& z?}h<&T=%431qPOSu3OcaVk_(hHWsi9Xl7>Szg{(Icpw$VsDR{fnZtxMJQu0wb3K`% zjlowkllFez2n_u3;o?=Q(onZt&#~*z?tfe1aaIXxGFhX#g3ejo;vOVrOa9{65yRbt zyVBOtq3PpuP+?0!OIwIXNG{-W2oq;~`U|}XpWnZ-uoDG0x5J;;p7I)fMAhLbiLQrd z$j78ymkEhRpM*S{V#Aj2lYjp5#d3YF59n^iSt+Dy*eSHvQwln!J;L_GxPBKZ1;%`| ztZesY?WU;rO7jiI71T$!ANjfB4hfZ>QC(C-L}J?cLDDEA<&WCO!otGVXET%Vg$Yq! z=Cn(Pd$g<5G3;6tZspt2e4YMyUI+X+=j~h|Id3zCxZy-)@TTuk}E2_EmqCTAJGpV zy!lt0wVkkt>8=YyvlMk(PqRU1pdPfU`+OnVg`SVgB^7ZKOe1CqJ zbBb1(WsfxAgY3O~H{-zexf)b?iiq;z5yg7I=ms-+u2Ka5r<(frN=D>J1=CrcHYl@F z|44=qFTd3Z*wpf)*!v=C-cEJ2rm`jRKWqOMYkO>c*Je~;L`>}L3TQMMQLT!KAt5xp zj~&2x@>{*IY}_%{XA&x!0Yc1Wrt?m7b2G3G(S>qgftu3N&k)i0R^mA#FMxh)7#Jju z`W|}Q48K=_M3tMd;xG?>mrOTFEjpf=1XIvRezqg&%D{c z%gky)W5`V&!c>yr$nfx)@%jKt0ehpcPksQOvPw#t+S)NtE9{u)Ag(H%D(uF@#?Ks) zQvUgbsPOQ6m@1cfa(izWm6Gki))*}L+jj4&Pj>YJYy(@&^$_oPdbAW2(-k8zu*(7z zY@Y$G>k8SmnS!5oOow$07>Rt!HdGM8VIFMQ`%KLL#Y}^w-#onHtH0t|6ZnokX(6mt zOwDxnQmFLXTjZHO!IDSNzCSH~IB0>&43CJ&ep|oHdXJlxlarsCj=uC|@PHTjEW(N_F;W!)(a{w~xP&R_z$GbXi$hhDlaIdv13?&~s8D6FRBI zU0F4?UdzxByjQ!A6s7GrfK_7BfF}6O=jP<>l?#Ufpa>t$<3EHZV0>*(R(HqrzDA_! zfzD*UZrna$^Ym(Vd4KMVMJNteq!*czk`iQAWTPvVq!ek|Z0b%C33L%4R+>Bho3Kju z%#4LLM@cBLCTnPwGnyxsPOb5}TBHAF#8e;Ks!>9I<7$qg+r`Hdf;#3-2NARSf7FlT z+;u)LdGN8dU`%7YxrrIx-lVy)6EvvW^DSF3oVBNkK>sbyD_>m2C!gsPUW+4h2H6DN z(@w1y@XUvkQ&W`Ht3Z5n?`J9wy)$_pLMy&lQ2;Ut;t;+{2wIu~Ml3*~aHc=OZ8ZBF zwNTdk_wNUnh9@1Fxw-E*g-|1g$83ddSBg|lR+h4vSq4sjA7WrSrJ1e)Oq~5`--FCi zuT=%m1qlPewR`oSRsND89dBd1A0!uI%QVr?7HPVG5Y(DfN~(P>eEtgH&(EK zt&qb&>?@MzfpKHCzq9_etxf&Toj-tz00+y<%VTRx6pfode;jICPnuB~7%T`uoKEuf z8Rd^nN-Esj+bbEZ1@REeZ+EegvLYj(8n-y{QC_DO>qHBqXEZ=QQF`SRWJen7TxmO2DyhJDe0!yZ z6G3ejUfw>*ziRA2nvv+nHxmHP0Yl%Kqw=`)uzqK2B9zy%n?7Ib-Cc;pSP_rnW<6Mh z2QBPqD1ZQLfWd(;Uv}B~?&>ly#?~laM9`}E5mrM=>M8v!0DB+s3PBMd-^$lqwFsntR)K!C)u(4fKtKQ)YZ&pYTcf$) zoxM<({y|mFXjob0TqGe`uRGkW!~cO?Sm!rwr0@RyDGMhj@ewYbhoT7Ka$hZcF!$pL z)V1fiZyTIXetG|>@A>U>rDq|)5PGR3zOM#IkG$=ga_if%*pRD+0ZM(meX8=-Ju02Y zx2Uh><>vOZ#&9#B`A3|?-rR<_eQ)=k>7;`-w}Kbwls}5uSRBa(ax((_U2+sI+6oM%%IZqk#XfEbY95fA-)OAUB*U%q@{=Hu&k z{tMg37s06c%~D>8B8l-g4!ct*mEf(vYNWrv|8K#&*wE16$EwGn`8pMzEQ!BaY}x|q zd6`(D~~^?CLlUy?G_h@3WQl>NEC0aytqd!=}RE@yny*qvS1e6`iCPncFdwy$L8 z4Ro|!0tMeoYJ?B=yvr3nkas;v&Zg)H49-3pY!r>7O%3F=>Se0KtJ|C8M0gjqhw!Ug;oA)aF1JJIdX);S*uTW1Za zjY&f|)!XMZ-C(ns2*5yYZ#gP~NAM4(={%zh*cbboX(Fugw{rn*0EGI-ZN!5|z4=pD z(_F~^Ar?e|Db3A4%xO?O0ZIotW%GfDM@KhacbVHPIt1AQ#eX?3$#^eALkGM!M+P2lr$-r3mLi2rks!vu4_vbS9~5;2 zL;Emi9tt;4&#K>Sq{e68v*$8B8thB3^t!?Ljd=Y!nYHkPD(GWgYC?hh!OhXE4V>BZ zT$xRFgg$d&7b(imm;4rYWfVA|tgJ0|gX;r^h0}?T6@j7N3_l}Kvw^c!UwZu6{)}$Z z6-w}wO$AP&#?|OlihTAaXy@m03pEN2YJkVB0aarLFENhKrW^c%wGFHtI2#E#J}WCL z|8TyoBT=5`a2D*+@ANk|Xwc=~&u%mqj;)YdUVtV_@Wl5LZ`FYBH|ai_@78Wx*^4|% zve^@DnO|pVyd_Sqx*9AaFCR2f;lXh?#b|%Ec}-K#;VICQRB-5_md^s*bP@3n+c#pF zSXu8&NIb0b4@dNQGT%E~PJS+b?03NSzW!LwI58~6t?{SIJ zxVRWZ(6I5w-oXIOH*RU&YvZO-QBgrmj?@Z|0(dK)v34Y*VtiIg%C&`W?0W2N4Hoo!G26WE=1Td= zpyzdsqFP;DUB!BITnlei#ITv*7feiix0+Om;&|D(XlNxusch-RmezSGbn1LDo?Lgc zQz4???MC{4>-R=qr4}KMmRr8Hp{Cl6PVw%Ce7lUJ-{=&>PoKe?_+IEB!WPBA8tC8W z&eXc*{+=z$Sm)`-#~L-;?_S@v5TPRP?s$KAuyhzn5Ay1gA`+Y%K@@oqG1)*qnpa@9 zfSK|zMi8A3mjfW^;%`hmCm3^|AVQQ>)l{rCxI-yGMHWV?HRJg0B2BdsR}G4!u@IQ1 zAGNs+itveP@N^4WmXPWh zCJ^xgja!09b$#>f-T{G=S~ zob>4aj8sXsa|l5FUFrRw$e#Zj?a<*2z=&&x`rZMQlwM{M-^x=`+_4h&%lA&8c&eY_ zCmpQd%)xY+b5WuAbh%U2{=X|Omk<;A@2bw<{LolN;Gih<8C}UObE(=F8|hW96xo7l zF=cy3pB<5-X2W+JbyZTOs8;Grm&s05Rlfy3bZnp%vom)uf^GhN7uy0>4KYLTNxoTG zSSYKhh0~W1y>fhNKc1f(HCdeIS<*par=QTZd&)o9f1SOypr9{ECW$+?e%e~u#U)s$ zBIJ#!)a5o~$0ag9r%l{Jhr|!!i^=KVsX%M}Ly{ep%>NktQ~COxcT|>~D+j&nhX% zfJzjwZY0$3_O5}x1|vWixcynahXRa!4+^(=;!6YR=HR!b0_4Os6O7`csbj+C{FL<-RyiEC17X9=|e80XUrBG zhC5@Zs(KB5jQAKMJ$)9qWj87yfeB7E683kc$}oTf{s*xz3_W2OAo3~|7?Mb`HM-YZ z4LiA1)u^eft7nc>Bg`idCf(>%cs#*eT}9*gL*scT z9v2PURwVlDSZ;fXjd-oLA-WaNJPWA^U<1T*o1dGUJL|eQoDIeuD;?dPR}`Fl)Hkv~ zh7>?cbf#T+sdqBUumJIpfp_qad6gLW?z{BhV#x*;Mc#sO=;7f}wcf7_7I((y&ywpi zT@o=dF+1Y{#PUsqr{yBqRG@W(c;rsgiaicN+R)ZPcD}b)4H{`GKpuL4Go*Hi9}YX0 zCIj=v!^12xon2;i!APJW3<{i*W4Zgx}b+EVXIT6gS z22E5sj!H>lk!3&N+2%q9e?p@~Lqj7{r@}UWqA4^kgv41&N(v$F;PMn&7uIM%Ke!tV zfKuBLp^?W+HHh*eXVWqg%9wcXI?WFqKM&FM-uuvb>U&Km5gr|#g~433`Brr23g4qn zLe3A#(8TL=mNyaGnYoTM*bvv?P2q*^mv^~L8qd~%wTj#t&1FJ*Z>!@XCZL_gXmXdg~76>vBp<)c`p9O{4V9 zZl;&a&Cjm~(C*zfH8u5|PH36~igt zzG;DmQv#5Bb}_c6vojfdp=MCZ(AD!?@6!bHhjD-Wl=w|*_N+vZVr?nUom-PO=$$z4`^)Z}HKx8a5#rT-X*ri-t%AkYVS7xo*mLx7dE>Ifo$bbg7 z>vhL;kGiIQ-@~2ME4J_NVAdcHV_uNIVbXdq0~RO}QusuaX~K)|KRL(0?$xTgwh+wF zTR3uA_S!m^Js?Rqqt4;4dtod3 zay5YoTK@T(E@MI<(Aq6A;XltC$TywNfieM`oh=he!#)@O$L#}f0c5&g)~E&G6LsH6 z@^W-cFx3V}r5j8#GZuqRh#~`G(Y4n!o-=erR07I~w1ZO-Wgx(igA7$LEMAY5hdo@^ z@$pz&Ny*9Q`0KWVr#g}fL7v8jkYH$h_Z$#Q0r7ONFFtH5sdP05@A>BSr}0%)LJEl@ z+TioV3cK09!Un8EmDhow-$6Xtq#_H<$>_+owL_IAA3iJ^xHj+a> z2WrKLQ-|oYF#L|*?E8K1Ok~=kxg_?a12NA6Zn5OG`o5W4aG%qpGofQv7bMKoH~GJ z0i^P5i11=3(tnjXlY^Lg;7i8}x#ZxVy<{X5;sC}G2Ix67{bcoB2TcQmgVjMWL~ZHJreml*s+6*0fWa1kz|4+TV72QNyurGST2)io|}vLhg+eC%3#XhzaW7R z1y~eY&TBKoQ?oOdOUZAm_bQG;5wlpmB$l3$VbvZln34MAN#k?_m^iR-H|kt!Jl9oW zVUgHVS5sr6qpQE&Fpji+k==uE*;bf#>{HjYY>VZkylLbIg@*@ZYXI~0Q+O?Ys|j(I z;4$W8XA3SgHjFLMQ7Z*%jBFFqbSi+B!im{dZRm(0hgraNPK>8uR@L`j@6#!@c!Pu< zl<%#4>ugxsGChRgcrI2>>kNBn218@~1jkspO&nqc_bBks`V(>}!{4vNV!E{G#SXS6 z80Y8a=1O5{5jLJ;$gMcJ?#Yng!}6?gk|y+qMa;F!c&tJ4aeVCKE6B+fD6|Ouf3@4& z2}L^(jxZtE385h?FV91rt*!rfp=@rbEEj=WNT0!_p#(y5w%6E&erT-_WuB!0*0{S= zXNc%hIH9$^x7tzh4a!)D$g2FuNyMy%(eXG~0XC*8t zUatb$%!p?*{N91xj3Y0%ph~uGyUh+nUZzT_^!CD_ZkbgC(xy6g0-uS4quuE1pIx_T z)L-1wEq|l}J|Xy95cp#^j49U_u>2|Ko+3pV%qiq}7QzuB!!5zn+xb<}u?BpgJj>c` zYHG@=FGn46rca7OpLE&YNm{zG`C4G)^g!J~*)w9=0?VEZOK`iYwtl=SvmW38PUx!| z#i748lNuTua)~EZCbWOaXHyuEWDfkh0R{e%v?otal2K61L#b7Fb}ogQWG7_yIoXKr zk@vy&bnya-rsvMck`IM_+-VXRa+Xe4MXetpVl$G$E??H?T@R_Xyg@b)Ep@J7?`d ri}bQA%#IG1{JT~0AH4hMhmFIYCx*)YUj8F+FA6QCC|PjV$p60p`&>Y+ literal 12062 zcmd^l2T)Y&wq|=g7(h@|K#3|SN)(Zt6hs6h=L~X)P0kq)h^Qn5MKVebO_Cg2KtLr) zY{^1P>Lv)-b;q%u~e+Kcl!7Gzx9RnR8?7ylAN9#g+fuv-@BuZ zLj9(TLLGX3>kJKfWBMWIfbA%70#NM+lgP&{GscW!HX zB`uBxx@nS<4_0ua$73EI4?lAHWAw2X4{pn7ad};^R^^mCLw#H1x3qFh`{@@f+Ome_ zF1Pr!o?@>Dm1|unelp1Yl80QDo9|3nMSk(26^e?xGNm+>m!98`j$dZsYkYA_dh@>I z>+f5_p=YXHXS+BZKXq_!j924xF_;q+aA&Q;6^G$Rnb27-_|be7o*(sCtr-43k#2ej zg*tb)@i!FedUy~S3T1kZ3=VmJotzehdT93l%K^Ign*%Y%_4oj|DDfP8k5T!#+RjT{DD8GotG4}8j@D616kN=io=pu5 z2>W$7Z3G!{K08(0$ET*ZxA$dgYLWNa4AYu2yit3XEhEpd%kl~0-mAw$<^~H!_$rU* z=H)3&Pfshz%c~h0CM^nU^M&2(U_HI|*`ETm82A-4tg5B;Y7nExn%bSs z;7~RBhwG#-fk3d6bE34Qe(HVa0rQJEIkp++-%Fnq#?9#1#Jdv*bKkvF#~Hdt)Oaoj zNN-Rc3D&Q6$y{F=@~Htl7HY+ID#5YKj0$6_5OBAxH@AGwWZn4m+Tioq)P0bl0k)? z+VXh4fXnxfXKI!sgvN6wn?up>A0ArW^4p$Ek9zs~b#?@UkZseW<34*N-1Lf9!kDtR zw|DKtn4X%NnOG3|`ai6~Fp;ayxTv?UufX!Uda*V}_pOsKMn2}sCuik_Uj2zcxv3C3 zmz|ZmgZ-W8jIy$u=_9aL zpH#$f=$iPggb3Pwee>bN9V74QS8awxSy^{$Jr;Y}Q~get_|0}D=V377wtKfOylDxe z;}jIs)-mxXeY*2I3T5pYF>A_gP;nm~JX%vG+gG-> zwr~U$<56juCO=2ui}h-l~g21FL@d^A7o}`UW1d1c`SUH=}ep! zj$B<^i(vLZE<+JP#(C~K%eCjE2 zvrIO2-Af(Ql(p(&5XcA!{K>!{5 z?%lhWFJH339&T!Cx`H#Ra(cTP5Ev5(Sd~tF5{0^um*&ERA)}zp!C>w`efkutURzI3 zuXH2+x>*o_(xv7Wr+6L|%8Bq)A=rC+KKoTlN+DF^^z1Bpyw1CG+-mB>Q+mD!cWzF> zGM44$oJ9c0+75cjx0l}%%$=an0=L>tz6(cgZ!8yKFkCIIt;3N}%1%v&8pX^3o0Ctl z8w*1kWMpLYA}$%3ci=Py=Jlo)fBcd2=FP3<(33jq>d~Lu+ew7{BHNxc*#x*TL5II>b!K8{My;P(v;f|m?t_fRGTw9rxZ)Odq`P|ob~7y zAAPUX%~Ik1Nbf^Si=Mw9k&Kg_oqcL~ety1&SXc||lo8KwMJQ=w?o;Hg?_cnMt7_?3 zZG4g#=HTE!z*DHBiD5)G^ki-NSN^Db4smi5fg(y;JYFjOT(Rg)8;24y%s zuX^Lm>}-Qh(|S{;_D9Fh{9H>tF#J`(+t;pLQ&av!<@z~IS=kVH57TQ~c5Nk}l}b0K z@(&Y6hn5`gQTp1&$w>%x%Dm+*#~%m;K25MD4{auF@S1scG?R_~+%;n;eIkjYNhmTTeMlnlh8XFfv=bLZm z#rA)E!TJiCMZ^=-3B~)*SC>B81hiZw56ujef9aR9x7zP#FA#PnuWWmhGO0#k>%jv| zH|v61Y~68few6(+j=y6{yMls(rn>qidAJ1)W#vd^sXezbA7X*ea{We`S@V&_39N}x zja!e%Y*P9PzKxib=n#z~M!Jfk7*lm_GmUS(nLcZ_MNp@iUHh~$EO9t3ucnoN7kaYQ zc3P(c@6;_ulV$q$@Kc3Gj;mKyZ{NOMN_1Zw){2tcw!V1@R!J8>95V|2Us>yaku9aI zs)?Y6yBdn9KH@&Hw~1H_w4FC1U?e3`RmaIFgj+g&A5@EaM#kX3?wS6q6La~?|AZcc zYyLO$H%y6X0kEV}%T9G|?bzt(= z_^zF&uPA`TIWRDgtojgW)7IYpm4l8HiJk9Q8H7I2_WfX?pyg84(~CcS=FF?4Bn)8G zmE|9w*i+|b5*@XrrGxH|GVS=Fj zuv&Y!)WNQ{pCY^y51>BTsR8=1nUSIh2xx$wg!|4kg~yXN@lj}?4}{)KMf@sY-BosW zIR-(yFUtWNViD*0vsy0JxD&I0NLTFF!l|5Iw8}gJ5QOuf*QsE;Cfu-4xKkaS(Wfk? zR5|96$TpwsInKv;1~9Ilx^I_*8<(rWE)NwZ@pcDDWPxF|y6?u)tBGYCvM?`RnB9OL zb1RWgAE6@`Df+U){rh%3f_Zs)%5!`O3AsLnmYd1a zdnA1^M4Ej)E7JOp%_W`0CNp_*gD%yB&9_eX-tAy#M*h4W)ynm@m^5o6BoX*^klK=( zj?Rj-5pZ5gu!89}b6dN3LweSgoOks~ zSns@o>dCEU?tf%p#({h8W9~R3U^xTu0#xQ2TxU9-ZtncgvM`~}sjwod99OGaEG)=H zEuEt@3`E!=^_XP5v-0LoR3H8N*AK0&pI5#n%N1wEdi#ZD$Ef7yN?0DLkAQHqlV#L+&UcF(2J+|Qpsrw^X|{WtwO zuaXDm=I*2coysc!P7ekCiQ&oXH~3XQd-jY?erRau^QTWeg+{eEZFiU|5XbZ^_XNT%UB?^4D# zHP~h98XDu}F%i zK~H=_&HC$sel#BC;Nj5*y#nBJ(_=w*dS=G<$G66U{Z?26I~y)tUPJ%f5Z_3 zK{C~BjQhGTRnNj3k)KWREnKSKF!qPfd!E1=oYLa!`8pRwMxm*#odt^GGCO-d2D1=H zWES^Qg^B^%pLjQtF&7AuGOz+%X}4rP2ng%u$CRRrWqoPXfPxn|(%v0KlHK(McvFC)p=LdVwQRmRz0PJ6+9AgAx->8|9*f!uoXi$#ypqkV|58ba#qG>}gO@NmV&X!2{~Gp3AXpz{Z5UcVIIOR2er1vM55q4LR|gK5>M# z!Q&4~eozdtF;z0njHB11wwXFTHUxzh7O6sH)RPCUPEbAau9ClMc;MRPYSZRr^fWB2 zbbC{qLc6*4_gYZS-xrS`KTb_#Qt|e#CJ=@<`0oL+TRc|yEn+c^Kv>_&_(Bg<@hYQB zOSfrp)}Y7l@+6Vb>nG*&5D0D5^5T(5tM6(el9*j*l?+Psi|>QLFJZc98`Ss)Aoyic z63{#=u}Ce@r6!ups&*Ka$YzUC>9^1G@`DTGLh;VuNj{)?LYs%nXZb}US)BT5wOs?H*rkd ztjjY`{xI$osqH#z0tBV%DJcllHLv|xjn>hV%;8l9;99h_v=9dJUz6}T@bcK3Y#Ud- z#KGEl*RVCiu($de8(w7()E;`&!)KQf zX?`6uW@vqOE+>G`KfGqg++wHxLbBVf(8aqb6b=+S5^5nb%T-ZE+WwTW$ijv8?O8};7sKR7gr8Dp*oZH;Xnn7!!R zoyDP2xo(M#Bxo*}{(j8}MiF(;vRQa2$2-YAK_q}C!eZrwwt~Vl9_;Qa_)MUU%K$E0 zvCvEPz;7D}KhJ;vF7)IlqUmG+ovL8)oMBgfi6h$g_=6=@xV1KmhMORa)mE-APZR+J z&NUuo=|6l@{LQ0BzmK`Jb9Xvq=j9Rpz}ISDKNr3^{6e7P!dY@Xw?|Zocwnj0ZG`CLkZER_)J*%=SjE)SUiB+a$ncG&{pU9wJSD)B3sO!LI8bsVGn@ zRnlMC))x#HX#3H?E4z}#riI(2jO+mF^78TLGgyDLdh~>wh@-_Gqs6yaaKs;xNA21k zDkl4Su!P8n3kl}T`$z3JRPOCdNBS5S=>SdE=07(QOajVH08H<@{Myi^cUmF(2o+;a zWAIVLy@7KRa77c&ILGeSt{}1Va&lB%T;BOfrh@edJl9{%`&LOwgQcRU+?V2`?aqwe zUoFxByj8CPAsQ$?ia1Y^p{cJ`g)``%&Z@7}^wNgYUuWt64y_4!PSeliN{9 zrWVQgrE*USM>1wxguWFE+P-o7t@WH{N4jydIAauRn_{DS^7nqNJam!@bKAHvrnpaU z^@^_V?(&rTWuNe~7+&nIdf;X=iyIgepy}H_T+uQx$UiB$d5bwp4!o)lEeoex3|($dxztQ{Y%c1_&H zH0qUF+JN`V&H$wBy?~bi7-SF4TBX8Hp}sLUCJb+*O$UbS?Lu(G9E}sNwQslGZv5?` zhaE1ZyJ2tcMlBgJY2Qk{_{&?TC#U|ONd>CY5Wnc-@`lis)%wCv1+wvzo}U{zMDGT= z9oA9Ib_>i_$BUG(XvFF)Q|Q`CuBka&|>2w`D=^l{T$RukgF^s&&UL6cI^CZYoP`2%g9vWa*CN6Y3fRhG>ygrQqSrKH=PHA-=$exdh$7y4pRk_Othwvkv(YzZ5zZf zVgSBp@cMSm6v+pSJO_bbPV&Jd5!Xxm0h1wgw%{3l?&{LMaOw+#W8GV|^t()+41nA{ z;nrIJ65c?NbzJypL3FB;PLrmO_RmaZ%?gl#wH?UVQXqZGBBhG z#G1}8FlZZJ`FmRG>w0-su-nm`lyL!%I?oGc2sull=M|fc{u@=u2svS(p z10JQjyD5x@ba0}>vhgy_~tru@-S zLrP}xuO8rPK0NaPTun<$4u1YVj}vff=9tuA;0<5K{{s<1d~E~Yw&%Spa@+Z@9+}+N zc`olW7|SO|kkF1vl|B2evv2B4e7Wy+B7$uWp=4n)kKm}sB}a*8doDNRH*69fGS0pk zV@x)mUZ!^xfai3OYZR5$#P!>Dv0`KKUIjBBv4I>A1wOR=ui5&v=3;P1Oi!~5dp&+{ z@ovggg7%xFLz8)^2i+Y$tG1&h#@G#EH1HQ$vJVtr!DPGe4JL>?YvB+_VxY*k!>0<-x zjlCwxjC>c%xyQ$UOg1B_L;ot6#eX}Tj2J}0^Mz&q$5BcKL9Peh&dw!;)id;C&TULJ zguMK-3=AV_i}2!Ymqx1#A`rl#FOa+=3>QiN{E7{Zxevnj3#j8v@Y`d^L6bRgJo_xa zlq~8V&E{P{PCH=*o!AEioZIFPv&^h4TO>2Oe?R=LI8;^64dY^HNnzgc=Eao`~eL=vy^+X>vlxx~&>&Cp?+@Ahi4J{+10>~T7txsx$2P_b{ z?-xNYpa5~_Ago!rMLVs;=C@#(Y{kM*5YDhdEtke1&^e zRV9oc5vOh?*S>nT*S>NrYijDjnBQ7w&E#VSeK+i(!$+(k{)-4)?#&EqjbbTs?Uv91 zai|a3g+s%ZrAXI`3LPgeua1$?&fe3NRu46I_b(nN$k0KM!tP8AZ$7Ul_#3VG)GMf{2-S3+vB)qDX*TPOgz z=bD|=wzI=9s)x(0>OYP?CW z>>}khr&>xJM(ljXwio!a-H5|IpT9lUt2Lu_P(PUZL}4uxYRXKClgoJQEzB$zS!qs( zdE6Z25Es&hm{5B-nm%RQya{d{^R~zVNMx1gl7rhc{yib`D}z!Hb}y?jg}YTsl{5+o z38Ck=42ON-GwM?AI3c+>T&}pYz8I#vzf`*{xKv@U3dip(V@)h9ED&;!Fs(|#D+mWc zlP)&Z)rljn=gP_oFve77|DQeSgP*#(5US5M5Ll*cY@9OF5r4+HWgUpkNBoNQ+?ThA zAVjD%ynX-Ol{SP~({k(g4?h8v(1u&{hf73fI5uqEjgnZ`jUi@aW`f6S9uKq%yx)wp zv`e7$RQUM#2qTq6OLc3?$b&#^Uyjr{<_Gv0j}uKO1+}!aa(55bZ2;ve0v>qo?`gb> zwp%uO1fP=+FssV87#9**uQA4ohHMbu7s^htS;~{=7Zxs!^wGo}UE6FZKJrshE2-OR z?}Nh#BymiIqL?n{S2efjdNkgq*R7j=aOi2L`%%`7t;m&DwJSE54|EW}g^}iu>fv+Q!e{Fw349 znZ2Gk$``iHwzxKtMGDf=)MWc*-AC0Fm<>TB(U%oJdWDBa+23cQmje4;)do0RhA|;< zOR*vyB`m8oLUkcGux9ah5}?oe=WY2V#D~hba`MpjUclumR|E^8GMqSyjf)%hx6$(I zxI(369;JKttPP<9eA9&B5ME`O&>+}MDf#A$nW9eL-t%oZz=u^Yz+rJ(($bjKgKlLD za>XzWK2B1{&|yGvD@FrL@$0vzY^NWDkA-Qx02iAD5BCoa5}GJ@5o%iwjz1;+&3ll^ zH$pNX%@Vj<0`j`Q$V4jfFQjIh850+GPJ-00fuIz$v74?l_dyH!f9~k$k7N>a1G%kQ z7>Tdn81Fl8m2?pT=G|St5$EB45Rc_PB-_28*-}W3KTv9=0@Q0hFTb!CGMxuv#+oZb z$s{Dug~=EK*vkXevnlz^5;*8O&bVzOu zKaVJ(JZOoCK+d`!pVlq8)8SDjNJAA`4*t#b_wRFXV(lX1dN+jAf)d&unb@}!Gp>EG zC!HRR5IQuNmq<4;_FWVh=a&`+tPf#>vr{P;?d#JxP4K&Y#d%wK1^QBt&ce3WKK$C znCwo`B}n*IEb7`@g3mu(?V63Ota7rb0M7w9YEniXLl#greGsC#Hl*m=TyV^cn<(!V3awKvvE5&z7WDGie4QbGT^pQ2nZ>Qw8 z9F#1_l~$S^`n1BdH0i@fPN;(43mft53e}!fs=qcE+eKHD5;9;V4DJsF=t|vrGKdHk zI8QbhHk_9)w|Fpe-nenY4eV~Ymz?rYYACCD$uEN31UH-hI0U?Np1J2(q?y8wPcNM7;=z9?B$WhSo z*tt+KWx{cgLFTDm%?RVEnagQsK^Rr^PsmQbJ{jauD^|W8O2wq^;81vjpWl70Q)na- zuRxiZUteGRV!U_ljl-8ICb$uDY9_wcBIAuhzEgy{<+ z4!d6tTGw36I8h8x@%!2qB;sk1x!)OGZ)I@27Y!+@8LNJ6zjL0i*eZN8tHzWYWB-gGIrfj7FSbrfQoxPonW!3Bx zH>ZmN_wqBg>op;F*@jS+!4a?(oKpQ_(?1Km?3cp%yS{+dDnfXIOeodBD;?upDBoAH zv4n!k@m_#y4cJ8kP?fe&2Tp^(@FqGjkn?AMBZn1>N%|_kgYvBPu(^+iRW;zKI zSghpk51Gyc0Y&8V?e)cc;2yfl!yXRUJr5F$oRnI14^r^feW~&THUjpKU+965`RUMO z-1k&e9Q{Vz6!#IipuT5u9Ht5Zl)X(Ojb zvS(3IIH))XhIv0ZGfJ#=@W*OY6ab=VB1SZ9)cuXX1D({s{c0o+A0E~>g2L3V^(a_; zvUtR|nCqO7LlSuDiL^zj5EsZNNCh_RL(*vtPw$en-WOpY7PV|p@*u>rJEh>y!$%3& zeIoWO3yUL18X79Ejg~4D>Ac9E{Iw3XJV|UYvY`ZeXh33P)LiTt=gnQNB+qegAZmv79MFCea9yOGB1t^aYmthKc=m>E z|5b>NSjzoCBO(4B8J*!9u;}Du9-k8SQWDAxw1ZGG_L#n1kH&fmzj3dPf)h|OPVBF*mhsl&3=BK-|}X49hlWfy=@cn z#YSr%$8sBF!4y*-G*hHLKxLYVscRa!e7a2N%Z@Vko~D6)BrsJf2I0S2%ZCq0@C~(= z43#_ImyMqO{OYelVA!nv6`RD~&psudR6+X$kLB?Kv8AeX86)d57>h+_7|OlZERk74 zp)ofNy#3bJ)-W~@3p#4TtT4pAN0x3LEVo~J9A3TL!jJ(nPr5LazSbqC0)ZK=Mg&Bn_mt*sD(Gx zKt&o#26#Z`RAI_vpvVM!<)o06m6Z^!nwxl()P7ZA)f73R?})e}+{u6+hy6DvL$~`< z_cOq}=}eWH@c1CeZ`pBfZ$=2K1~W`YPBLSVv6BF-34-&9jt#kAzv^-uRv~>fI4DG8 z5PD9QQ`LS-A$1lgq#S{ zBHch}b;z0_01I+`0O-`%(uPmqYaDR^@I4PK3uOeLkx4f&*pRpuXAr*Y6l0iik=n5~6@KBHb$G&>-D{v~(kNz(hiaZloI|1q1{Y4$>_QrASK* z-MssI@K@`e_pbG>b=UpluKUM1gEQZFV(90D9S*{)hR zJKH-6adO)H^8yY#M{`czcV)Tokkj_}w4G2W;s?lo$FjsTEm0_z2DIcIHTU?1k;m?8 z>wh%j+!UXo{pcUo)8A%bNWOZW!+?d)-=Ed}^wl#fD4V$mQ=+?m<+oEcvd>5}y||lF zu5;m!QxR2HZmZ~oQxdQhR6iwMzF2jUDEJmwI%*Zk(ja8pSvD3iP27q zW}|!YEpblmdm*_gDGlT>E-I6lbMSHAk_qOGI+tp6422R1^2bA=#&4d13;aI){~!Kl zNggC;WJvFBE@>(#1kW-xa*-cgBK8e>F5dWwb^=G#n6j->)F3G#5imQc*tYo8O4+_c) z3`&yRRU*kud76GaXS`p88mASIB=~<~XIpXp>KYmuA3lhTc+Tg`%E{d~Hcs(en|a&X zD(}5qf9ja;)J#|E*XCvw9i3PV1`{3`nGqjPMJ?*tJL?XC-qyabMkIE)x9T~Uof#e* zn?on@jERd&g@J)#sOUie-=lBI6b9~hDn>o$n-@Z9#S4Oh&Mu7B=t?|4*Z1w6iMpO% z9=yBe@L+f7y+i6yxy`(@JS2|pQPB~*?Q$Eea|?Tg#Z+rd)%H{z z88tOKTBrEoOV_2*{9nHwwIv8|{@hrdYU>G863b?gi)6ZSqiGhYI&FCM-z@DuN;dF)oV0HbR7V`AC}PgPShvpMWWZh5(e({#IN z<*8iUegB1_GQuq<2L}fqYyuk6Lc&rabYOmccL)R7LD^J4y?R;E@mj#_G+pRXs!UvA zf52vJY#cP|TSCE>)RD=2Kf?lBZc{Z8BFy8nw`EqD1S90-;o)hqc^r+q%cBAYo5)!bY)tT!)-&?vpy679e@`QA~?rmYb^ zdxE9{`PfOB=%*b4@-{s4f=LQOs=$VCu zb?s`_BO}?gQ}nA{EkF7lW8vWFhqdjkuro9@Hy5V90MF4DG$=YpC2$oj~|noP+?KZg+!?q$&~*No(Q#y0$;rL2xY7GMd{w zBrq`0d29K*(KLKX@HkUc(gN#x6L1(M8RUmI51G8;E>hoq902e_ENNb-*v`Gjn~Unx z?FkA$|GH!GV1GAhF9VAG^K;Y~dZH_Qt!j*r=tWbu9|WAPN42DX|MZ*{a#oohzFnR& zsIW~)Bl(h}5XUF0prC&DuK%DKyzN1&s72@1p3Cs(wKLq6C;o-8Znn0ImYVH}qQWm! zkY6P}B0;OiL4ijIg<9l&Qz)&S5L|y-(qVdXGNv7_Ij);jfCfnw+_pMP;n)|?5?KRV}$>= z2tQm|S(&LX_;};jRcT~Z&mJR;w81)7>XEXIpJfT5=^5xNljh#?5~CJVHRU;hN@m{N z!c8ccqZ+#5mss446Y?ujPCdK0|IgI-SQ~XaD+&@^xaC&-rrv6~M zT-5JZAuE4M@4I6qvVT{bklpaL#g?Ba5EyZU+v8(ge*SsE8~24`sMz!s1UMN9Nh*|N zYC*@(&V0xY{ftcGvl+@Vtn=~Qna%9WRH9W#5K@Qe?IZTxlIYonhcqaLDP2&Ek&&KJ@$^QF~ik#9G@2O^zrzZEfu;D76Yxuw?|g zi;&eVlaARCHglsj)wUmS(k=@_ea;-nL?+u?TDXrk?7hM%*f%Yq8%@lO>dcxWDkhg7 z<(83>ng2StKn3A&`&HN1ocpcy481^x~%zPG<|UvhLCPY`tY`Q4OUL<$3t$c_|s0xDfc+zWr{75#)Zy(ryT~ zFpIdjAq;>w93d@xmpHY&cQ@31d}<47cdP)Zv-9%gtp^JFQlwt-JZLy+GgOL(3-W3_`SD~U4KI0NyEf-(kI=k45aQg24A!=9UEx; zq^j}`zJtWRi!@ibxVWU3#@y>Exs0ETZH`pA^mOu_e;fp&^~r%X4!d zSVXrLk_w2Q-Sd7VDJ7MyTVX5B4O7eHhAHf?Ws3K~#M`ZQA%OUut~tRRzP7YP#K*IR zHkk;8sJ!JNH>A#1o$oh0yt}gPm6N~D@)tVsI~ZqK3%2@O>~FWV8NY;SC*ke-s7 zYFgPUYN(elGS|(}^=)5HgwLPuAz@_GgbEb;+Jl|>lA+PHf{#Ya?jr0zHbt(yy-6PF zqK9xsiR&%JcNyiF2%a{{Fg*}aRN>U-Xqk~;;vpiP=WZ2HeaA}Kl* z>XfmJ2QH}=8Tf3Q!Ubr|#;?KaXoTOKAtYo#0|X%(ad5C%XWf~6r)sTRuCLn7j)9Re z2e#jL>l5wTX5FDagb5JBeh*XBdA*XQ8kL2KwnP^rZ1<+nJsQn)Jr|iavv)djdYu#& z?}h<&T=%431qPOSu3OcaVk_(hHWsi9Xl7>Szg{(Icpw$VsDR{fnZtxMJQu0wb3K`% zjlowkllFez2n_u3;o?=Q(onZt&#~*z?tfe1aaIXxGFhX#g3ejo;vOVrOa9{65yRbt zyVBOtq3PpuP+?0!OIwIXNG{-W2oq;~`U|}XpWnZ-uoDG0x5J;;p7I)fMAhLbiLQrd z$j78ymkEhRpM*S{V#Aj2lYjp5#d3YF59n^iSt+Dy*eSHvQwln!J;L_GxPBKZ1;%`| ztZesY?WU;rO7jiI71T$!ANjfB4hfZ>QC(C-L}J?cLDDEA<&WCO!otGVXET%Vg$Yq! z=Cn(Pd$g<5G3;6tZspt2e4YMyUI+X+=j~h|Id3zCxZy-)@TTuk}E2_EmqCTAJGpV zy!lt0wVkkt>8=YyvlMk(PqRU1pdPfU`+OnVg`SVgB^7ZKOe1CqJ zbBb1(WsfxAgY3O~H{-zexf)b?iiq;z5yg7I=ms-+u2Ka5r<(frN=D>J1=CrcHYl@F z|44=qFTd3Z*wpf)*!v=C-cEJ2rm`jRKWqOMYkO>c*Je~;L`>}L3TQMMQLT!KAt5xp zj~&2x@>{*IY}_%{XA&x!0Yc1Wrt?m7b2G3G(S>qgftu3N&k)i0R^mA#FMxh)7#Jju z`W|}Q48K=_M3tMd;xG?>mrOTFEjpf=1XIvRezqg&%D{c z%gky)W5`V&!c>yr$nfx)@%jKt0ehpcPksQOvPw#t+S)NtE9{u)Ag(H%D(uF@#?Ks) zQvUgbsPOQ6m@1cfa(izWm6Gki))*}L+jj4&Pj>YJYy(@&^$_oPdbAW2(-k8zu*(7z zY@Y$G>k8SmnS!5oOow$07>Rt!HdGM8VIFMQ`%KLL#Y}^w-#onHtH0t|6ZnokX(6mt zOwDxnQmFLXTjZHO!IDSNzCSH~IB0>&43CJ&ep|oHdXJlxlarsCj=uC|@PHTjEW(N_F;W!)(a{w~xP&R_z$GbXi$hhDlaIdv13?&~s8D6FRBI zU0F4?UdzxByjQ!A6s7GrfK_7BfF}6O=jP<>l?#Ufpa>t$<3EHZV0>*(R(HqrzDA_! zfzD*UZrna$^Ym(Vd4KMVMJNteq!*czk`iQAWTPvVq!ek|Z0b%C33L%4R+>Bho3Kju z%#4LLM@cBLCTnPwGnyxsPOb5}TBHAF#8e;Ks!>9I<7$qg+r`Hdf;#3-2NARSf7FlT z+;u)LdGN8dU`%7YxrrIx-lVy)6EvvW^DSF3oVBNkK>sbyD_>m2C!gsPUW+4h2H6DN z(@w1y@XUvkQ&W`Ht3Z5n?`J9wy)$_pLMy&lQ2;Ut;t;+{2wIu~Ml3*~aHc=OZ8ZBF zwNTdk_wNUnh9@1Fxw-E*g-|1g$83ddSBg|lR+h4vSq4sjA7WrSrJ1e)Oq~5`--FCi zuT=%m1qlPewR`oSRsND89dBd1A0!uI%QVr?7HPVG5Y(DfN~(P>eEtgH&(EK zt&qb&>?@MzfpKHCzq9_etxf&Toj-tz00+y<%VTRx6pfode;jICPnuB~7%T`uoKEuf z8Rd^nN-Esj+bbEZ1@REeZ+EegvLYj(8n-y{QC_DO>qHBqXEZ=QQF`SRWJen7TxmO2DyhJDe0!yZ z6G3ejUfw>*ziRA2nvv+nHxmHP0Yl%Kqw=`)uzqK2B9zy%n?7Ib-Cc;pSP_rnW<6Mh z2QBPqD1ZQLfWd(;Uv}B~?&>ly#?~laM9`}E5mrM=>M8v!0DB+s3PBMd-^$lqwFsntR)K!C)u(4fKtKQ)YZ&pYTcf$) zoxM<({y|mFXjob0TqGe`uRGkW!~cO?Sm!rwr0@RyDGMhj@ewYbhoT7Ka$hZcF!$pL z)V1fiZyTIXetG|>@A>U>rDq|)5PGR3zOM#IkG$=ga_if%*pRD+0ZM(meX8=-Ju02Y zx2Uh><>vOZ#&9#B`A3|?-rR<_eQ)=k>7;`-w}Kbwls}5uSRBa(ax((_U2+sI+6oM%%IZqk#XfEbY95fA-)OAUB*U%q@{=Hu&k z{tMg37s06c%~D>8B8l-g4!ct*mEf(vYNWrv|8K#&*wE16$EwGn`8pMzEQ!BaY}x|q zd6`(D~~^?CLlUy?G_h@3WQl>NEC0aytqd!=}RE@yny*qvS1e6`iCPncFdwy$L8 z4Ro|!0tMeoYJ?B=yvr3nkas;v&Zg)H49-3pY!r>7O%3F=>Se0KtJ|C8M0gjqhw!Ug;oA)aF1JJIdX);S*uTW1Za zjY&f|)!XMZ-C(ns2*5yYZ#gP~NAM4(={%zh*cbboX(Fugw{rn*0EGI-ZN!5|z4=pD z(_F~^Ar?e|Db3A4%xO?O0ZIotW%GfDM@KhacbVHPIt1AQ#eX?3$#^eALkGM!M+P2lr$-r3mLi2rks!vu4_vbS9~5;2 zL;Emi9tt;4&#K>Sq{e68v*$8B8thB3^t!?Ljd=Y!nYHkPD(GWgYC?hh!OhXE4V>BZ zT$xRFgg$d&7b(imm;4rYWfVA|tgJ0|gX;r^h0}?T6@j7N3_l}Kvw^c!UwZu6{)}$Z z6-w}wO$AP&#?|OlihTAaXy@m03pEN2YJkVB0aarLFENhKrW^c%wGFHtI2#E#J}WCL z|8TyoBT=5`a2D*+@ANk|Xwc=~&u%mqj;)YdUVtV_@Wl5LZ`FYBH|ai_@78Wx*^4|% zve^@DnO|pVyd_Sqx*9AaFCR2f;lXh?#b|%Ec}-K#;VICQRB-5_md^s*bP@3n+c#pF zSXu8&NIb0b4@dNQGT%E~PJS+b?03NSzW!LwI58~6t?{SIJ zxVRWZ(6I5w-oXIOH*RU&YvZO-QBgrmj?@Z|0(dK)v34Y*VtiIg%C&`W?0W2N4Hoo!G26WE=1Td= zpyzdsqFP;DUB!BITnlei#ITv*7feiix0+Om;&|D(XlNxusch-RmezSGbn1LDo?Lgc zQz4???MC{4>-R=qr4}KMmRr8Hp{Cl6PVw%Ce7lUJ-{=&>PoKe?_+IEB!WPBA8tC8W z&eXc*{+=z$Sm)`-#~L-;?_S@v5TPRP?s$KAuyhzn5Ay1gA`+Y%K@@oqG1)*qnpa@9 zfSK|zMi8A3mjfW^;%`hmCm3^|AVQQ>)l{rCxI-yGMHWV?HRJg0B2BdsR}G4!u@IQ1 zAGNs+itveP@N^4WmXPWh zCJ^xgja!09b$#>f-T{G=S~ zob>4aj8sXsa|l5FUFrRw$e#Zj?a<*2z=&&x`rZMQlwM{M-^x=`+_4h&%lA&8c&eY_ zCmpQd%)xY+b5WuAbh%U2{=X|Omk<;A@2bw<{LolN;Gih<8C}UObE(=F8|hW96xo7l zF=cy3pB<5-X2W+JbyZTOs8;Grm&s05Rlfy3bZnp%vom)uf^GhN7uy0>4KYLTNxoTG zSSYKhh0~W1y>fhNKc1f(HCdeIS<*par=QTZd&)o9f1SOypr9{ECW$+?e%e~u#U)s$ zBIJ#!)a5o~$0ag9r%l{Jhr|!!i^=KVsX%M}Ly{ep%>NktQ~COxcT|>~D+j&nhX% zfJzjwZY0$3_O5}x1|vWixcynahXRa!4+^(=;!6YR=HR!b0_4Os6O7`csbj+C{FL<-RyiEC17X9=|e80XUrBG zhC5@Zs(KB5jQAKMJ$)9qWj87yfeB7E683kc$}oTf{s*xz3_W2OAo3~|7?Mb`HM-YZ z4LiA1)u^eft7nc>Bg`idCf(>%cs#*eT}9*gL*scT z9v2PURwVlDSZ;fXjd-oLA-WaNJPWA^U<1T*o1dGUJL|eQoDIeuD;?dPR}`Fl)Hkv~ zh7>?cbf#T+sdqBUumJIpfp_qad6gLW?z{BhV#x*;Mc#sO=;7f}wcf7_7I((y&ywpi zT@o=dF+1Y{#PUsqr{yBqRG@W(c;rsgiaicN+R)ZPcD}b)4H{`GKpuL4Go*Hi9}YX0 zCIj=v!^12xon2;i!APJW3<{i*W4Zgx}b+EVXIT6gS z22E5sj!H>lk!3&N+2%q9e?p@~Lqj7{r@}UWqA4^kgv41&N(v$F;PMn&7uIM%Ke!tV zfKuBLp^?W+HHh*eXVWqg%9wcXI?WFqKM&FM-uuvb>U&Km5gr|#g~433`Brr23g4qn zLe3A#(8TL=mNyaGnYoTM*bvv?P2q*^mv^~L8qd~%wTj#t&1FJ*Z>!@XCZL_gXmXdg~76>vBp<)c`p9O{4V9 zZl;&a&Cjm~(C*zfH8u5|PH36~igt zzG;DmQv#5Bb}_c6vojfdp=MCZ(AD!?@6!bHhjD-Wl=w|*_N+vZVr?nUom-PO=$$z4`^)Z}HKx8a5#rT-X*ri-t%AkYVS7xo*mLx7dE>Ifo$bbg7 z>vhL;kGiIQ-@~2ME4J_NVAdcHV_uNIVbXdq0~RO}QusuaX~K)|KRL(0?$xTgwh+wF zTR3uA_S!m^Js?Rqqt4;4dtod3 zay5YoTK@T(E@MI<(Aq6A;XltC$TywNfieM`oh=he!#)@O$L#}f0c5&g)~E&G6LsH6 z@^W-cFx3V}r5j8#GZuqRh#~`G(Y4n!o-=erR07I~w1ZO-Wgx(igA7$LEMAY5hdo@^ z@$pz&Ny*9Q`0KWVr#g}fL7v8jkYH$h_Z$#Q0r7ONFFtH5sdP05@A>BSr}0%)LJEl@ z+TioV3cK09!Un8EmDhow-$6Xtq#_H<$>_+owL_IAA3iJ^xHj+a> z2WrKLQ-|oYF#L|*?E8K1Ok~=kxg_?a12NA6Zn5OG`o5W4aG%qpGofQv7bMKoH~GJ z0i^P5i11=3(tnjXlY^Lg;7i8}x#ZxVy<{X5;sC}G2Ix67{bcoB2TcQmgVjMWL~ZHJreml*s+6*0fWa1kz|4+TV72QNyurGST2)io|}vLhg+eC%3#XhzaW7R z1y~eY&TBKoQ?oOdOUZAm_bQG;5wlpmB$l3$VbvZln34MAN#k?_m^iR-H|kt!Jl9oW zVUgHVS5sr6qpQE&Fpji+k==uE*;bf#>{HjYY>VZkylLbIg@*@ZYXI~0Q+O?Ys|j(I z;4$W8XA3SgHjFLMQ7Z*%jBFFqbSi+B!im{dZRm(0hgraNPK>8uR@L`j@6#!@c!Pu< zl<%#4>ugxsGChRgcrI2>>kNBn218@~1jkspO&nqc_bBks`V(>}!{4vNV!E{G#SXS6 z80Y8a=1O5{5jLJ;$gMcJ?#Yng!}6?gk|y+qMa;F!c&tJ4aeVCKE6B+fD6|Ouf3@4& z2}L^(jxZtE385h?FV91rt*!rfp=@rbEEj=WNT0!_p#(y5w%6E&erT-_WuB!0*0{S= zXNc%hIH9$^x7tzh4a!)D$g2FuNyMy%(eXG~0XC*8t zUatb$%!p?*{N91xj3Y0%ph~uGyUh+nUZzT_^!CD_ZkbgC(xy6g0-uS4quuE1pIx_T z)L-1wEq|l}J|Xy95cp#^j49U_u>2|Ko+3pV%qiq}7QzuB!!5zn+xb<}u?BpgJj>c` zYHG@=FGn46rca7OpLE&YNm{zG`C4G)^g!J~*)w9=0?VEZOK`iYwtl=SvmW38PUx!| z#i748lNuTua)~EZCbWOaXHyuEWDfkh0R{e%v?otal2K61L#b7Fb}ogQWG7_yIoXKr zk@vy&bnya-rsvMck`IM_+-VXRa+Xe4MXetpVl$G$E??H?T@R_Xyg@b)Ep@J7?`d ri}bQA%#IG1{JT~0AH4hMhmFIYCx*)YUj8F+FA6QCC|PjV$p60p`&>Y+ literal 12062 zcmd^l2T)Y&wq|=g7(h@|K#3|SN)(Zt6hs6h=L~X)P0kq)h^Qn5MKVebO_Cg2KtLr) zY{^1P>Lv)-b;q%u~e+Kcl!7Gzx9RnR8?7ylAN9#g+fuv-@BuZ zLj9(TLLGX3>kJKfWBMWIfbA%70#NM+lgP&{GscW!HX zB`uBxx@nS<4_0ua$73EI4?lAHWAw2X4{pn7ad};^R^^mCLw#H1x3qFh`{@@f+Ome_ zF1Pr!o?@>Dm1|unelp1Yl80QDo9|3nMSk(26^e?xGNm+>m!98`j$dZsYkYA_dh@>I z>+f5_p=YXHXS+BZKXq_!j924xF_;q+aA&Q;6^G$Rnb27-_|be7o*(sCtr-43k#2ej zg*tb)@i!FedUy~S3T1kZ3=VmJotzehdT93l%K^Ign*%Y%_4oj|DDfP8k5T!#+RjT{DD8GotG4}8j@D616kN=io=pu5 z2>W$7Z3G!{K08(0$ET*ZxA$dgYLWNa4AYu2yit3XEhEpd%kl~0-mAw$<^~H!_$rU* z=H)3&Pfshz%c~h0CM^nU^M&2(U_HI|*`ETm82A-4tg5B;Y7nExn%bSs z;7~RBhwG#-fk3d6bE34Qe(HVa0rQJEIkp++-%Fnq#?9#1#Jdv*bKkvF#~Hdt)Oaoj zNN-Rc3D&Q6$y{F=@~Htl7HY+ID#5YKj0$6_5OBAxH@AGwWZn4m+Tioq)P0bl0k)? z+VXh4fXnxfXKI!sgvN6wn?up>A0ArW^4p$Ek9zs~b#?@UkZseW<34*N-1Lf9!kDtR zw|DKtn4X%NnOG3|`ai6~Fp;ayxTv?UufX!Uda*V}_pOsKMn2}sCuik_Uj2zcxv3C3 zmz|ZmgZ-W8jIy$u=_9aL zpH#$f=$iPggb3Pwee>bN9V74QS8awxSy^{$Jr;Y}Q~get_|0}D=V377wtKfOylDxe z;}jIs)-mxXeY*2I3T5pYF>A_gP;nm~JX%vG+gG-> zwr~U$<56juCO=2ui}h-l~g21FL@d^A7o}`UW1d1c`SUH=}ep! zj$B<^i(vLZE<+JP#(C~K%eCjE2 zvrIO2-Af(Ql(p(&5XcA!{K>!{5 z?%lhWFJH339&T!Cx`H#Ra(cTP5Ev5(Sd~tF5{0^um*&ERA)}zp!C>w`efkutURzI3 zuXH2+x>*o_(xv7Wr+6L|%8Bq)A=rC+KKoTlN+DF^^z1Bpyw1CG+-mB>Q+mD!cWzF> zGM44$oJ9c0+75cjx0l}%%$=an0=L>tz6(cgZ!8yKFkCIIt;3N}%1%v&8pX^3o0Ctl z8w*1kWMpLYA}$%3ci=Py=Jlo)fBcd2=FP3<(33jq>d~Lu+ew7{BHNxc*#x*TL5II>b!K8{My;P(v;f|m?t_fRGTw9rxZ)Odq`P|ob~7y zAAPUX%~Ik1Nbf^Si=Mw9k&Kg_oqcL~ety1&SXc||lo8KwMJQ=w?o;Hg?_cnMt7_?3 zZG4g#=HTE!z*DHBiD5)G^ki-NSN^Db4smi5fg(y;JYFjOT(Rg)8;24y%s zuX^Lm>}-Qh(|S{;_D9Fh{9H>tF#J`(+t;pLQ&av!<@z~IS=kVH57TQ~c5Nk}l}b0K z@(&Y6hn5`gQTp1&$w>%x%Dm+*#~%m;K25MD4{auF@S1scG?R_~+%;n;eIkjYNhmTTeMlnlh8XFfv=bLZm z#rA)E!TJiCMZ^=-3B~)*SC>B81hiZw56ujef9aR9x7zP#FA#PnuWWmhGO0#k>%jv| zH|v61Y~68few6(+j=y6{yMls(rn>qidAJ1)W#vd^sXezbA7X*ea{We`S@V&_39N}x zja!e%Y*P9PzKxib=n#z~M!Jfk7*lm_GmUS(nLcZ_MNp@iUHh~$EO9t3ucnoN7kaYQ zc3P(c@6;_ulV$q$@Kc3Gj;mKyZ{NOMN_1Zw){2tcw!V1@R!J8>95V|2Us>yaku9aI zs)?Y6yBdn9KH@&Hw~1H_w4FC1U?e3`RmaIFgj+g&A5@EaM#kX3?wS6q6La~?|AZcc zYyLO$H%y6X0kEV}%T9G|?bzt(= z_^zF&uPA`TIWRDgtojgW)7IYpm4l8HiJk9Q8H7I2_WfX?pyg84(~CcS=FF?4Bn)8G zmE|9w*i+|b5*@XrrGxH|GVS=Fj zuv&Y!)WNQ{pCY^y51>BTsR8=1nUSIh2xx$wg!|4kg~yXN@lj}?4}{)KMf@sY-BosW zIR-(yFUtWNViD*0vsy0JxD&I0NLTFF!l|5Iw8}gJ5QOuf*QsE;Cfu-4xKkaS(Wfk? zR5|96$TpwsInKv;1~9Ilx^I_*8<(rWE)NwZ@pcDDWPxF|y6?u)tBGYCvM?`RnB9OL zb1RWgAE6@`Df+U){rh%3f_Zs)%5!`O3AsLnmYd1a zdnA1^M4Ej)E7JOp%_W`0CNp_*gD%yB&9_eX-tAy#M*h4W)ynm@m^5o6BoX*^klK=( zj?Rj-5pZ5gu!89}b6dN3LweSgoOks~ zSns@o>dCEU?tf%p#({h8W9~R3U^xTu0#xQ2TxU9-ZtncgvM`~}sjwod99OGaEG)=H zEuEt@3`E!=^_XP5v-0LoR3H8N*AK0&pI5#n%N1wEdi#ZD$Ef7yN?0DLkAQHqlV#L+&UcF(2J+|Qpsrw^X|{WtwO zuaXDm=I*2coysc!P7ekCiQ&oXH~3XQd-jY?erRau^QTWeg+{eEZFiU|5XbZ^_XNT%UB?^4D# zHP~h98XDu}F%i zK~H=_&HC$sel#BC;Nj5*y#nBJ(_=w*dS=G<$G66U{Z?26I~y)tUPJ%f5Z_3 zK{C~BjQhGTRnNj3k)KWREnKSKF!qPfd!E1=oYLa!`8pRwMxm*#odt^GGCO-d2D1=H zWES^Qg^B^%pLjQtF&7AuGOz+%X}4rP2ng%u$CRRrWqoPXfPxn|(%v0KlHK(McvFC)p=LdVwQRmRz0PJ6+9AgAx->8|9*f!uoXi$#ypqkV|58ba#qG>}gO@NmV&X!2{~Gp3AXpz{Z5UcVIIOR2er1vM55q4LR|gK5>M# z!Q&4~eozdtF;z0njHB11wwXFTHUxzh7O6sH)RPCUPEbAau9ClMc;MRPYSZRr^fWB2 zbbC{qLc6*4_gYZS-xrS`KTb_#Qt|e#CJ=@<`0oL+TRc|yEn+c^Kv>_&_(Bg<@hYQB zOSfrp)}Y7l@+6Vb>nG*&5D0D5^5T(5tM6(el9*j*l?+Psi|>QLFJZc98`Ss)Aoyic z63{#=u}Ce@r6!ups&*Ka$YzUC>9^1G@`DTGLh;VuNj{)?LYs%nXZb}US)BT5wOs?H*rkd ztjjY`{xI$osqH#z0tBV%DJcllHLv|xjn>hV%;8l9;99h_v=9dJUz6}T@bcK3Y#Ud- z#KGEl*RVCiu($de8(w7()E;`&!)KQf zX?`6uW@vqOE+>G`KfGqg++wHxLbBVf(8aqb6b=+S5^5nb%T-ZE+WwTW$ijv8?O8};7sKR7gr8Dp*oZH;Xnn7!!R zoyDP2xo(M#Bxo*}{(j8}MiF(;vRQa2$2-YAK_q}C!eZrwwt~Vl9_;Qa_)MUU%K$E0 zvCvEPz;7D}KhJ;vF7)IlqUmG+ovL8)oMBgfi6h$g_=6=@xV1KmhMORa)mE-APZR+J z&NUuo=|6l@{LQ0BzmK`Jb9Xvq=j9Rpz}ISDKNr3^{6e7P!dY@Xw?|Zocwnj0ZG`CLkZER_)J*%=SjE)SUiB+a$ncG&{pU9wJSD)B3sO!LI8bsVGn@ zRnlMC))x#HX#3H?E4z}#riI(2jO+mF^78TLGgyDLdh~>wh@-_Gqs6yaaKs;xNA21k zDkl4Su!P8n3kl}T`$z3JRPOCdNBS5S=>SdE=07(QOajVH08H<@{Myi^cUmF(2o+;a zWAIVLy@7KRa77c&ILGeSt{}1Va&lB%T;BOfrh@edJl9{%`&LOwgQcRU+?V2`?aqwe zUoFxByj8CPAsQ$?ia1Y^p{cJ`g)``%&Z@7}^wNgYUuWt64y_4!PSeliN{9 zrWVQgrE*USM>1wxguWFE+P-o7t@WH{N4jydIAauRn_{DS^7nqNJam!@bKAHvrnpaU z^@^_V?(&rTWuNe~7+&nIdf;X=iyIgepy}H_T+uQx$UiB$d5bwp4!o)lEeoex3|($dxztQ{Y%c1_&H zH0qUF+JN`V&H$wBy?~bi7-SF4TBX8Hp}sLUCJb+*O$UbS?Lu(G9E}sNwQslGZv5?` zhaE1ZyJ2tcMlBgJY2Qk{_{&?TC#U|ONd>CY5Wnc-@`lis)%wCv1+wvzo}U{zMDGT= z9oA9Ib_>i_$BUG(XvFF)Q|Q`CuBka&|>2w`D=^l{T$RukgF^s&&UL6cI^CZYoP`2%g9vWa*CN6Y3fRhG>ygrQqSrKH=PHA-=$exdh$7y4pRk_Othwvkv(YzZ5zZf zVgSBp@cMSm6v+pSJO_bbPV&Jd5!Xxm0h1wgw%{3l?&{LMaOw+#W8GV|^t()+41nA{ z;nrIJ65c?NbzJypL3FB;PLrmO_RmaZ%?gl#wH?UVQXqZGBBhG z#G1}8FlZZJ`FmRG>w0-su-nm`lyL!%I?oGc2sull=M|fc{u@=u2svS(p z10JQjyD5x@ba0}>vhgy_~tru@-S zLrP}xuO8rPK0NaPTun<$4u1YVj}vff=9tuA;0<5K{{s<1d~E~Yw&%Spa@+Z@9+}+N zc`olW7|SO|kkF1vl|B2evv2B4e7Wy+B7$uWp=4n)kKm}sB}a*8doDNRH*69fGS0pk zV@x)mUZ!^xfai3OYZR5$#P!>Dv0`KKUIjBBv4I>A1wOR=ui5&v=3;P1Oi!~5dp&+{ z@ovggg7%xFLz8)^2i+Y$tG1&h#@G#EH1HQ$vJVtr!DPGe4JL>?YvB+_VxY*k!>0<-x zjlCwxjC>c%xyQ$UOg1B_L;ot6#eX}Tj2J}0^Mz&q$5BcKL9Peh&dw!;)id;C&TULJ zguMK-3=AV_i}2!Ymqx1#A`rl#FOa+=3>QiN{E7{Zxevnj3#j8v@Y`d^L6bRgJo_xa zlq~8V&E{P{PCH=*o!AEioZIFPv&^h4TO>2Oe?R=LI8;^64dY^HNnzgc=Eao`~eL=vy^+X>vlxx~&>&Cp?+@Ahi4J{+10>~T7txsx$2P_b{ z?-xNYpa5~_Ago!rMLVs;=C@#(Y{kM*5YDhdEtke1&^e zRV9oc5vOh?*S>nT*S>NrYijDjnBQ7w&E#VSeK+i(!$+(k{)-4)?#&EqjbbTs?Uv91 zai|a3g+s%ZrAXI`3LPgeua1$?&fe3NRu46I_b(nN$k0KM!tP8AZ$7Ul_#3VG)GMf{2-S3+vB)qDX*TPOgz z=bD|=wzI=9s)x(0>OYP?CW z>>}khr&>xJM(ljXwio!a-H5|IpT9lUt2Lu_P(PUZL}4uxYRXKClgoJQEzB$zS!qs( zdE6Z25Es&hm{5B-nm%RQya{d{^R~zVNMx1gl7rhc{yib`D}z!Hb}y?jg}YTsl{5+o z38Ck=42ON-GwM?AI3c+>T&}pYz8I#vzf`*{xKv@U3dip(V@)h9ED&;!Fs(|#D+mWc zlP)&Z)rljn=gP_oFve77|DQeSgP*#(5US5M5Ll*cY@9OF5r4+HWgUpkNBoNQ+?ThA zAVjD%ynX-Ol{SP~({k(g4?h8v(1u&{hf73fI5uqEjgnZ`jUi@aW`f6S9uKq%yx)wp zv`e7$RQUM#2qTq6OLc3?$b&#^Uyjr{<_Gv0j}uKO1+}!aa(55bZ2;ve0v>qo?`gb> zwp%uO1fP=+FssV87#9**uQA4ohHMbu7s^htS;~{=7Zxs!^wGo}UE6FZKJrshE2-OR z?}Nh#BymiIqL?n{S2efjdNkgq*R7j=aOi2L`%%`7t;m&DwJSE54|EW}g^}iu>fv+Q!e{Fw349 znZ2Gk$``iHwzxKtMGDf=)MWc*-AC0Fm<>TB(U%oJdWDBa+23cQmje4;)do0RhA|;< zOR*vyB`m8oLUkcGux9ah5}?oe=WY2V#D~hba`MpjUclumR|E^8GMqSyjf)%hx6$(I zxI(369;JKttPP<9eA9&B5ME`O&>+}MDf#A$nW9eL-t%oZz=u^Yz+rJ(($bjKgKlLD za>XzWK2B1{&|yGvD@FrL@$0vzY^NWDkA-Qx02iAD5BCoa5}GJ@5o%iwjz1;+&3ll^ zH$pNX%@Vj<0`j`Q$V4jfFQjIh850+GPJ-00fuIz$v74?l_dyH!f9~k$k7N>a1G%kQ z7>Tdn81Fl8m2?pT=G|St5$EB45Rc_PB-_28*-}W3KTv9=0@Q0hFTb!CGMxuv#+oZb z$s{Dug~=EK*vkXevnlz^5;*8O&bVzOu zKaVJ(JZOoCK+d`!pVlq8)8SDjNJAA`4*t#b_wRFXV(lX1dN+jAf)d&unb@}!Gp>EG zC!HRR5IQuNmq<4;_FWVh=a&`+tPf#>vr{P;?d#JxP4K&Y#d%wK1^QBt&ce3WKK$C znCwo`B}n*IEb7`@g3mu(?V63Ota7rb0M7w9YEniXLl#greGsC#Hl*m=TyV^cn<(!V3awKvvE5&z7WDGie4QbGT^pQ2nZ>Qw8 z9F#1_l~$S^`n1BdH0i@fPN;(43mft53e}!fs=qcE+eKHD5;9;V4DJsF=t|vrGKdHk zI8QbhHk_9)w|Fpe-nenY4eV~Ymz?rYYACCD$uEN31UH-hI0U?Np1J2(q?y8wPcNM7;=z9?B$WhSo z*tt+KWx{cgLFTDm%?RVEnagQsK^Rr^PsmQbJ{jauD^|W8O2wq^;81vjpWl70Q)na- zuRxiZUteGRV!U_ljl-8ICb$uDY9_wcBIAuhzEgy{<+ z4!d6tTGw36I8h8x@%!2qB;sk1x!)OGZ)I@27Y!+@8LNJ6zjL0i*eZN8tHzWYWB-gGIrfj7FSbrfQoxPonW!3Bx zH>ZmN_wqBg>op;F*@jS+!4a?(oKpQ_(?1Km?3cp%yS{+dDnfXIOeodBD;?upDBoAH zv4n!k@m_#y4cJ8kP?fe&2Tp^(@FqGjkn?AMBZn1>N%|_kgYvBPu(^+iRW;zKI zSghpk51Gyc0Y&8V?e)cc;2yfl!yXRUJr5F$oRnI14^r^feW~&THUjpKU+965`RUMO z-1k&e9Q{Vz6!#IipuT5u9Ht5Zl)X(Ojb zvS(3IIH))XhIv0ZGfJ#=@W*OY6ab=VB1SZ9)cuXX1D({s{c0o+A0E~>g2L3V^(a_; zvUtR|nCqO7LlSuDiL^zj5EsZNNCh_RL(*vtPw$en-WOpY7PV|p@*u>rJEh>y!$%3& zeIoWO3yUL18X79Ejg~4D>Ac9E{Iw3XJV|UYvY`ZeXh33P)LiTt=gnQNB+qegAZmv79MFCea9yOGB1t^aYmthKc=m>E z|5b>NSjzoCBO(4B8J*!9u;}Du9-k8SQWDAxw1ZGG_L#n1kH&fmzj3dPf)h|OPVBF*mhsl&3=BK-|}X49hlWfy=@cn z#YSr%$8sBF!4y*-G*hHLKxLYVscRa!e7a2N%Z@Vko~D6)BrsJf2I0S2%ZCq0@C~(= z43#_ImyMqO{OYelVA!nv6`RD~&psudR6+X$kLB?Kv8AeX86)d57>h+_7|OlZERk74 zp)ofNy#3bJ)-W~@3p#4TtT4pAN0x3LEVo~J9A3TL!jJ(nPr5LazSbqC0)ZK=Mg&Bn_mt*sD(Gx zKt&o#26#Z`RAI_vpvVM!<)o06m6Z^!nwxl()P7ZA)f73R?})e}+{u6+hy6DvL$~`< z_cOq}=}eWH@c1CeZ`pBfZ$=2K1~W`YPBLSVv6BF-34-&9jt#kAzv^-uRv~>fI4DG8 z5PD9QQ`LS-A$1lgq#S{ zBHch}b;z0_01I+`0O-`%(uPmqYaDR^@I4PK3uOeLkx4f&*pRpuXAA;5Al)TMNlK?QNH^?@ z`@Wy|dH;a@+n@G_0l9wTTI*WtjN?4cV?`(_NMU1=V}d{+?Dx_VDj*Ot?C}Fe1D>>+ zr_2Mt_*|hdS5*gdR}Uj+GmyNItD~)htF4tWwY!!|gR=!2cU5gEFbIaDw3Z79gk$vhK`Ig{v;u)@Qr}C6s(GgGXLzLOnl0QP77Nt0 z(EUDL41_N}ML`Y+i$)^lgAqaZykqzkIfYFlcD_gFO-)QVt{9l6`)#v5Tj1lr z@+Q8vLmr=1kzuj`f5UOVWdHvU{{Q{>f7=|GkUo6)fUp{;e~OLW(DJ!Dcv|S;Z(7rn z$|ixojU+sTu$N+xct;-$GmJ`~`xR~vbbSwxWj8i`2E?OHirIcZj{3)N&HulB(0h1} z3@qTI@p21J-D=|ZB`IFDpqElq;Sodf_G}S^?1V62b>V20ZB3MIw z(KQ3m2zt32o7hzl>`-Z749ma$HI;FZ%%H6UiuQ-QHI55n2~5g=oK7NSzv-N*uG~9- zbI~s#0jrdz2ZTxtymyW$3nhuY!Ts{MG<|}XJ~kuTzpszI>Qogz+vvxm?`bEWsVN?b zB!x01bTJ=N>3>!Vt2V{xjd>n+eeKO+(5ib>4`ca&PUVZ6tmjS^D|jp|m(Giq@Jg}w z{i_VP$ivl$G#$PIOB}GfWAaRipCl2W<;<`waW3M)wMc1>WoeR?xPV)eZ{NOsEiT3w z8XB^+vceO#Klw9sxo05~m6k@%qTftfnCZ>r?d|<{D>rWS`O+m?rtk6ldB2N=zn+2$ zED4We)1}Ip6V-42TKpX)mFY!c;cu&aPYlJRl!Cx`7CmV-%C$pdp7X4Jl4Xq-u4rr| zZ@b-KtMb3|o_CwpyX?U64>WkVp7vae;c@Jz30oeMqUs635#H*?#{jlTuX}a&_h zPmG0@J1-bEBk>D7m~0YD$3(FzHx-Z5s>JO@zyl8xGjmOyrn>sdpuznc&~gunfva)E z7J_*jg%r>TIwyjVwTN0v{5Ju9-+hv9Ps+?nNW?NrB6*wRUh)(+Ss`K zuSbMAw;cHJd$aQv9ZKE0R5nM2Y|8hZzBjQG2x!pvU#Qzj_RTET;xz4o#$y^zTiDYThLed-M*U{;5oFAy;s>3fYWJY z#+6ssh%e;#ByxYGx$fCg%PQ_5#b2|4g{bske3+up8KLk=>WJZdy%Vg;7_~Q!s`946 zJ`5Qv$dJ8%cNw|);3{l-o?_sv@#YT6vt_`0xkkjF<=|!ni}b~S!iwE|9hQyo%m>T5gJ+E-0;sC%_v;CYt2t4uVydbH8fCDc?eW5<7CKtVex^sILHt@RX>Fxs)+lona*zRBD=!}7W!p&9xB@SJ%o%s2U%4HH=kaXEnHJ!#fE|)S&AG_Im&$lgmsJa?Ud@Z73rF)daH+KOs)U?jKN-92;T~}x{j&5N|wgNowj)lwjaglY4BjFx$}aQIKqBY5x80g zLN^0VGgFOo#T)U+q5lM8Wl{6-k7OOlf!hgvYcsUO43x<-NP|?Kv+=d@o&WQdB*^Ja z;-B2jEPp{{q>XcrDf`ZyvoCfA&lz?94P!*6&;z8l>S!-H6AA?#=e)m19{0Oec`A%L z(~_7Z|At1?RQZsRSFNF$UdK{Osze&LOVusd%uAjlQ~%dY`XMjvyDLkct|U;2NY)=7 zGG{`$h-+-D@&f+_Giu>|37z{5(1TQ8+an`OO4Z7l*6+FKal#h`da|^rPyY?JV!HSp z_(TmB2TjY-1n?V5&s*r}InHeLTa|hxLp;DBnZg^vcm8aGknz%|vBIXp=89QgXBI_p zJK8Aqtmdwzjl_bWzz!Bs?*MPUK32-r^(Xfg#)Z&%=NHSlIV&%_Jjegmg9}BNq8>Et z@%S)36LE|+_7TkN7GlnJcf|<->ie# z3D$ULfPw|0kD&@lAf{lM_t<>GMfFAwIurCwS8Y|Ip{u1>LS5FjaX~_D-Bmd_Blu=}dp2+t8B8Za^*Q+(YiLG-N zJUMPEnEKx{s(Fju0A~v3b=Y?5^t-svvFoJz`nTMM=$m&0Vq8VSQ1A&eWnx)`s_scD*?aC*NY`tPP1S^#hQjL+~b z@z0Ec8DYYRl~yTUu|lTp zq5X$m_s?Pi$Gw#s=DI?ac0C+nyX~1g_W#Dfo#RT0GtB3EAdp?YV0P$osJO=kHm%mz zclCd^{HVU&azYGSBdtpQ?DFzR3Vh)NS2z;?XNl6%`6_kM1MyDhj8RH@WGc2x^=_~9 zy?ioWZ&Dw;`|m6C3Am`AeCeYlp=z2RoX-2=@D7?TR!DG32xk&j1OIWZcwX4*V{O+hSSmE zu{7C|JEsczKUL6mMK~@wr^OKy{o@SB11&frl{Pvw)NzJ<$sqoVZ#_j|rnt60A?2PH z`;vXbvU~r8rSRQv9_NiMC^S_mC&I7>u8GOz(}Y<31D*T!@n6G|DzJae5r6f~7c_KK zVo>_gSlri&0-357vrT=$hgoZ>5&6BK|Bh+b*;U&xlqvW!&lEl^^x#h^9$%EZ`D*H4 zC#RF9g*^kpiSund)))(E_W19Gu&^xup`#N5oBw7x=7>`IFtXXR{ptn%{KaSjTW)FL z(h)cAznf2kkB=X;@mXG+75!&w@KsF#Lmdv(xc(uYx~ij^Ak#9Ghp@e zRaC^OX!t|U0z-g+=Uu_5SdK&7(_ae<`yw_TBW+`NUr$%&iTZlxdwF$Ii_B)}f1-M# z;gJFP^SMJaUa3ZTCxD-w ze!NUB5=17l+DA=)wKl zNGRj_LMK5T??73fX5P*}^vj&$Jl*huN_?P2w)yetWeUGr$)7cqV#0&^wP$LYnrk{s z*BVo;m45p+MU|C(86Jy2R)v5)sGuf!N<4&C(Yjdc*H z{Juu`(wexqa*wxA|A=;N#Z7e_Rmk_H8zp7QlX;*<%8h!~{q6mZym`I?1EKTT?LjY} zT^_J{jEFV+hS901Kj-)Z`2RDa?u8mtXoqMOua%Wmm9KA;)!~*>8IKCt&s}Y^>4hhT zE9pNx&la#F{l2pp1P!wC_N*ilu?lA?rcn%%RA83P&aP;TAJ{v!)_?!bv+HCH6hULH zp+sb3mV|b8c9!<`lI*0eK73|R{wqHPDt(v|#duj_S>#gR^!%#I_*zn;UA5TQINMyN zKH~Opc#>?q@JED}d{DuxZf{4zBH#u3aMsEte*~!}szzh4j7E26MT?Ax0`_*@3hc(`y0moV|t$3uD{gLe;@eb*ox&XYnTIQh(=`?uj3rsso)Wn%ib-IpS4jduJ$? z)1^H1cmYgcyv3k*|Y^;v&-Lv6zEVL9hJR4F!+) zb}j98`)3!&CV?u_kHW%FPO$4EZy0UXr(^?vGLI!ckEuFMeJ|9?=3`8d;m$;HE^=u} z3FgE7MVr&z+4Nd=7-i=`BJX&)xT35Y3^+)IEocAqgJhz7= z4As(OO124na6Fa(BPb%!$e{vjm=~$-cKj~V4@dAGU*WP}w5W9Djw=g@NA|5(=JUQM zLyc4hnwnu*_os!I+lm1@-OgY}G7Z5inW?rLbcpA{r26H0U!0p26i%8u1A+A@g(Ut7 zf3j)3`11#>&B|x$yd#_8{%T9+cDiB1W^NfR^i>xIjo9iDO5K6d^@{C6)m-Q#u5qks zJQN{u9~r6K$I7==AF*!#q(H11pa%PCglHDXt7)e~6;#rt3+9L}N&8 z5Sjz{>CbRVbS_S6y!b>PKB-?0&BT@a@$D<73c6%BZ$azYzbw3OdYDRqGm8YeT%z- zeb4=cGuE=ATL6ybNq@vB^AwE8mgX8MrRjdrb87O=bPNRYH(0?cYfNKG_o|+`**OTy z#FP9J-tx~3dx>C{z|ey{Plf`*?4o;223;U)DG029xwt17>JH}@A`11r=R%1RNdUw^ zh~Xp9!wmzCj`xXqsJtLlyp^#X0})mL$@VdDYkN04F5ShIb+;SRjW9E@MXsreNv9^r z4zh7N6z2qebStB3?Pe-karr(nFYy= zVk&f>#o~Q9FjzpmmTjpp-hf79A1>lP0BEp2U@;K@IhYZ70&^bet3x0j%c|fHQ+xpr z4{4i(QzgM;%wGxu26(P`e~!0n6oUJ5=kMoBOL^@FY5w_N-%yB$BqPRs>+MKdk00zi zH3KfCd{+Vj9;5TFQ95PkZUoK8 z20#Tg&>fqY7S_$DQ9c*lkqw)wgRumW=s#97oX>n)177`Lw9HpcYqFx51v0=e0+M;4i<~oPpiyuhzd1zB2o&wg2 znXbl^Pu8)sOEoZVEzP%j6z)J|4x#L!Ll`?%;b?G78Ri$4JT>}V+=qE_=hssc-fIka z67S=|@wVKBgiG`ooZe7&1&ws`HS3GskOh9ms8W;58n4fzZiA)Io2C2iWs{23iB`3= z)R4pp-h9AfW|EJ*0nCN$Ya%7ehg~Cx^8GR0Ff{?}$LFKic2nRy-=ho~bmOrY^7eRj zkjVm-rtj)Ya*{a|U}I2YHN4refx}Vtgrdo?Cm%4EfRoD5O8aSHAjgT06Ap`OiJtTO zAn^TFzYK|nnm6G?A^ao0lwH3I{q5xY^v+$PC8nR?vYa$1!}CN{i5jq(ry!;7?T@k50Q`Wy5Yt|_7sDxzC<-Qky|f(vIEZSIPVF0D;BQ0m)^>5F zGg1cqar0kH8RC79mqf_r-Ar()Woz;F+mXvi8Oqz*cS^z3gO(+0|M2dVsRN5|H4f@f+%@@MC2lt1By2_}}Bz4z@L_m>lILZ{Dg_n#KrPfKH zVEOh?F)3<&ZaB~|t9PHX7~2m!QuBAa|C z*ZC>cu(AYl=>*^m>?Q-AK*$X;_F+PuKU?Mm@&+$Z@#MXW=r!Kj+19kBnuCRDi=sr~ z7Jke>`#D2YG-*eq9jTD=|q!*Xy&>VK4pKr*DW?J1B-L5jO6iSbf;D+VTLsNdt6nOjIUUr27 zCe@C|@68aWh)DwtFAH(BHKDLBNrkYWHTv8ftvx^NteaYCOav^@_i!MJ-RhP!S=0Qf zRiu*2ZG{s%XOphziw>r&`tILU0%#+x%`zO){^NCeo<~Eqyyt(P=xS>@DG6s0ibY1B zD^#_Uk1Iu`F-amKg9`P1ebjW3-f1d|+@D>_vR3rJcoSsC1TEr!R)`?f5TpmrIICVl z-3)9Ia7((<+E(dF%<*=r2%rI^gCH@6+>@Na>U8rb4rV$xSe4~YMlYv6PRgf}k*eyx z#g;*$DUoF|6Ltrp+_YNZOlx7w^Ely$$0$en7?YLGT^aP|Ly$yvteKRFD&AqliqoRX zKmZ1@z#0+B2rcqm*ic!|q{sdH2qo|iZl+Dxn0|$sQaxG-Lk=I@gxqH3$aDG38=I){ zi_<(koxB)v#~bC4eEV@F7-s1_5Mo*QZ3BL$y#+#S0Cg~WB>P4N+dorFFm@Jvm>qi{ zPK_DBbrZ+SNxp?5_K08rWz%!`aE|MLk&OO#csAxkmcj5_>{K8Q`f9%s+Z@}}?>jiJ zxMeMpegqnz_jLG{Bu~95=jtnoJHvl7=q*MNnIaE<9<$7}Moih+b|~IEJ~mpg^?hAl z`@5eAdET_(U{i?Ojw|^CdFMQf6Fcm6die}x+^eIDu*{){;7HJ8Z2CBSAiNU8AZth# zVW@0~hb65FcNb`QE}WKbVW1W2>ATdZ%D7xivNU#gtHz{Wr*QCwRq#Y2o4YT{p`xd^ zyd1D-#G^%n;@xm#f8fF-tr0m@DI460v_PiUsXJu45nF^)tE0_iLB7>!{7p?>Qn&R1 ziucB>ENQw>=*0#Lf*vTi2uJ{8Q0hea<%Y?Ys5Bl85scmjkpkfwKG*X(8W)+5IUm;d z6l@1-vnUq@9a|YSLV;s&(vb<#pgc@10QGZRLQ}MhqE2*TWo3sF-Hp_o&-1#K{R`pl zY^*=^->N%vsUfgpHB20#Q(Og+JJ+9IcyI{l<=R)msA34do0e1GO?&d(-s@gwM?Y>h#M?a z40K`?(_O#)11OUu1qS1TabeT?KCd5J5zAdTBHh38WsiE;{PD&M+DZ%4WL4 z%_joB4n)Sm-LtRR72c;yl4!y;QKO`HPsC>sP%TvzhS%F;u&0$RO_a=;-l#erd+xWs z5D^B@U$2-Yu?adg8t8X`wtDAP2p&)O|D{}1Sq^Y|t)&zrtqScCIRYnzMwclM3j^tvuX+?QQc_kkj}D>$qbpFZ9~YApYn-FlmoWV<|l`V8ZH zTWv3lBrRHv$&7!JG^*$5MCU$ea<>iy63i@gnheN@iF?tQ_1cCYzM7*t&wAW&POFTT z$q}6a0issJ>uxA~-J5lPUu3)l@Lq8y&qP4kkzcWxnOSt>4DIIXumKa1qVjW10`iTj z0v{>};c=+XlO!2#6D}voDF8NNRsfEnX&ReT4=~G5@j1I5%3Z}IRWP^*(tXl& z-iI>E_ZnaFC942N6Y4iOSwNFaAnc3_WJDF)!=3HEakiF(2UH^J3am1%8gm-br>lvY z`l1dF4pXgtQ~@tQ2+t$q#~GOcK7WrW`o|A0GE_s$WlmaH@5hBL=<6MGc3Qb#^GB71 zgmdou+Y%NYmCIx2)H;=^X^h-XTGGg}`s)e+X)K(DLz2n(mdfwqPTosj-e}c35>Zu! zw{&;lakOygPa;L(MyMckrUo!6CP3T9^Zd8PQNxJevt)hm;<-UOItSN_XJFL$L@+UG z5=VOLm=5Eg#fB#FdcCAy)lalms#B$PWnSXJ-d)Rh3;CJpuV?k z>7T5j2CILpRU(-y+AojRoX#dS*Xri%pD*}NC`+w0pA3sr6ltr#l^+zTF`1;wz4Y&-g!o=y@~(cmT!D%?@(6Wo0O!dHP`6vjkS71Pl(yzeGm8! z&%EOk|NE1yHJ~tmJ1p|xJ25?N^2lTjd$fiq`mPdO0u9n&&S75hGt%<%a;9f35WPt9e-Q_V+QZl88dzO=*|I+5mt3;r5k~m2z z7x2i=&mXJfZj2evI$PLZSiPYBquPva9UhAWdi{D1$QkUlZ+~-m)YTay6!)^s6Aunn zKD*I<^2u*Hp;)VZlLe}!}AY0#b+x^+tKHwHy2MwE)FMR)Y z)c;Ad;X+cB=-d*lJ=YNg}aG%z*a_IJ)X;y0V3!DEW z-D`We_uQ|Y9$j3FEuc5+6C?kRePX%Z#f|Af)VlFBFYfV&ogcIY``H1B{vx^=W zvDQbOlE7M7S>AErUd3odPZ{^!uriA*{k{yHnF)Rvw6w|Tst>#cH73n_E2gVIYhyH zXGr09irBc9=UIRs9PB+G)bm&fmH+Z~WjO>#QeHmh`5>*A`5nDk5gBOpi0&F~o-OSs zIwUA@PBcZbQvHb^BARCRxTbWhGg3Zep)b0R;Bx5U4ol?fZsBr#iK=Hhz?oU!&qD9K z>g8E^0X%vKVd2xAOtz97^|NL1(B-a9OQ|14V+n+sw5xJkRx{jbaDPlvrrUrYM&VBS z7_1&WZYYi0^G~XUlCpBpZbj4ZzS$?iD*uFL_G+N-_3=Wr3i5`GVw|C(ytsI3^ABa> zE%_^B(@vTUrkY3!WNMO{Rnz^jxxcebRMGbW@zTaX+wQSoi@}unU6nx3Pm|ykZump6 z>?wsfKU3e?oVh5?jl#ixZoBhc!s^MD8ldZ-y}ud>SOq%GQe5Oc^-gP!fM=}k zlvefvj}Fh@yr%?OS~CbOVY%<6g;c7t&B@sThTtb514(-vpTHWgRpHN8Y*7X=;*H+E zKF>A`bemgb1zM&#?h@^TIedSjCDkFYw|XQ3C>ku1xynNQ{_AHP(5=>Xy9jWT5J zh?FSTNPyZ{D^kfpo*c*@FW8(tsDsTkzCr1-V&qm{M*ZoBCzD^LKrN*rl{98Xl=*&N z-U-9S2Us5#-&o10gdj%|KBbc82amg+e-=e4Ro$~PFQvUvQe>jxJ;cCrM?_>d;jN6tYy=x>lDIt}P4)R^=|z7%1@{Nti@H74@UB{Vt#}=wN{Roms7D;b^Us}A&HD7 zc?t(_Zw!A=K`q7On~DhHUBErzW#lT1pNBj-$sUJ#`+e^hg%RThSGID(7?(Fn(jL7` zw=__$JCkI;|ALl!IUKz#ZAbny4{XO|swqBHAX-^ZG-+6MFB9!bX_Q)s!H5XoEt^&b z=)4!Sur%bs+&haGF+C@%U-g(~HbPz!v?)v&ruzAq3ByvAsZ$x=rve8TKIlu>uqzZ= zj~0b23wNcY0mzYqoQ;6Q_nHpd+T8tuh;J%zZ~N=w&zu=H`H_2)4&S0iHwglI_}4zTy?ot} zNvofxTrv8)ftH^`54@{N`xjn$Ii!=F+YYPi{UJ+?MJ|TU?E!gWFhFhyQ|vJ9H?)ZA zcYnpAFi?i+ifaULJNz*PI=u{a$<~qVl!{+-Wv^yW!7MEozGH01&IR8ClxFp;rdh4?}C^q1<%9Qi0 zlOv|q(z*yLUQQjXp2OG~d!TO=DODPR%Z}S&j7<#s3Ixoy`?dh%v&Pq8v|FIP6W7^L zNRj+9GjEJKgcX}oD-!X}7omolB#y_zt(=6DtK1^SMH9Yvl>#ALJ@N!dkm9Z50{JI2 ztYaeV@T4iB$o&&@IW!QU*kC+A!+x5WSC{~>-J_|H37rrq0GKa#?-UJz*+3sqd+*|! z!+A6v`n}}_SihkCSi{PXQrhRNszj3=QXS~tRq~3o%XPMOj3SXlxJKtQX-c@k$~qw3 zFW=h!rnwc%5O9$≿vy!a(>1~L#2jLoUsjSejz1cKjGr!XzHXGwiVjut%I<&$t z`b+}l;=ys%^=G7U{0;l-6&Eic@x2faK1eB=Bm(S&p%rvyRW>n5t?nyzYeq1b)5UL+DvTHZOK`2B?BK#HeKUkzKU4FSiuKvy^(1h&;2}{DcX@%VWtX@VONrd;NNc9*o+Yt zZ--@fvY3HxhwK@yBBF*@tFwA=^Wjqc5VI|%V;2}9> zQ|Q?jZNfQ0O2gsP_hb*}U-h>_)wPjJOA8gZ3d(tcU+$_6_WU3(11LlNs{QO&`c8Yk z=3~$Kss}CA(jcyRQKR-i@FC3p5cnn&;<{KU$_*`Adr`f~8T?X;|8FY5)!iO<{Go`n zQ+*X9ZpJI{ndQy%eHM2pELXZ2Ja zOvI-JH7fXHhF``k@uCObPg__;h;|9Xm>>ghUwK5;fT6_LAUpDj<#vmggfO~8X~2#q zULm}%(YSWSA~Aq*0`I>FqiWo%!mIlP#-Nsx=|z6@zouoH`WL>ot7Jeex0F;STB%NT zU;VZzX#dppkF|gD$V1CT4g!c;nfyS2(Vd&#AkKLv7H2V2Ad2Jt$mC40+2%2dg={7) z{KP7VQhFWCU9HHBYH2}|tygOWaGm^_Y_fR23Pcs$%%oGq4)@tI4y|(mgwsrm4+BDM z=jW84mNhjxsm3fC?pT5V?`rM(pgrX?Zh$%@KM)qa&|Vd92T$Z_Wm1#nt)Y_>DMm?;0UFgT*GBbTZ{U|p230m2p1 z3`!WtH4Kq{+(8~m9H&}y4^CQVwT){Pdz0FILuKFf*xF-uXsgu8(|)};{IaCWQq5uZ zATvOuaMvwGt5A8O30y9LupIyTp?|0)-3D=KMdJnK3cv;Z!2oEiS}%A$UdPUJQhff| z-F<45b$!_e-b6?=c*>v%R^IVzuBx~Ph?Bj*hw|=X1%0?mlf2lR)5s&8tk41mC*jW$r^xGx8=AWN3mv=a8#^D9N;2fp#V zk+EwzK(aU)e58BIC74o7#2E?H@f48MT<4$4U4%x&(Lju(<{{0<+r0v`P)fGDRN)K~ znjA(_=ro4i=*%nO?>>^n?9|5fzd8)4m!DqSBj>kW_uk!ssJ+KKKgU__Z4>78PG7ti zz1V0neVTK%zj_SQs2EfOtgJT31^-RNbcxl1!@0d_e_#4ryI;YB^vqK1_AO@#?S4S+)zV#QkNwQ*T)-Q{2d~dMKEo< zp&caca2h*hxV;5Y^D1X+t5t{}-UU=+{O?^bmfxYsYDTi-oB<^yB(}zBS7C*uFsZ|m9*|p{pf13vY!@>sBBa;jx6-UEDD3 zDf~uTa=OFN__kVSsM^-zoKz4roK_lJ^5r?!8)D2~@FPzZZd8^2J*z_%Tdc6)BFv~= zQd81mS7-X*m&En%5rnV5K}6y$pFUi~^{G=OFr)3iA?FTmWffc7O!g|-#)qM)!b3u) z8o~QTe&hIXb6Nm?e&33TISDEnZTTM19-3IMDB2^S30!BGvv0yaY`tMcLr3SZpXYty z)Q$JgeU={yXHo*vMl|^Ef&y{IUqzt{4gwMnw7;V@k^7G{SI5oBn&$$KypaKNB${x<&X?BWVg3oltv)he>nph=54|2%MVk`7r z-7h+K&thl(dM+P%vYU01iZ5A(%87!@0Qp^MWh?pjC4T|)pD96RgGt%IH5~zugYGD{ z*6^exV$3qg%S0KYF5>)-t+HYQTrla)rF_xvgj_>o%SoUpq?!GHn2JIvM=bTXHGF7yQZm+t- zS!S;A&kZ%DD`(zL?ekWi8~birbKm!8LV$k2%Fj-*m&8$6=o-(@+L5E(@n%IP^~=!? z>U=1l-yJ^Q4r9~%HgV1sCC62u!gzai7`GMKzAmW_$XY52!7*4Yzc=NG8?a$;g;_la+f9*~dMDbQogIYf5B$g5N&7GHvBLl0Ah)NJT|bp{(c(3*;>CPAZA9U6 ziBu4~jiwTX7N!bUkO+whucNTrCuJsGv_nl5xB>18jQK_D;(e+_zLRq$i~yeUVO++_aDg#jVKEZD~TzU_X6EgC7yA?;y0ASK1`yJ)fB=Jn15tJ3IX@DyTzr(nZ2G-9*VTqox1BuRy77 zZW4Ui+_}57IF{jdm-DHuN}4X%b3St?U#UN3BW3|;$NdUGbQt0eCbRXyF$h4QDB{&fTJsVAw`tEmQN2RM!H3On|vQb`#B~E8XD^6KH z+ww15W_-u{xT8{c?^g=!BBz%xe8$EngBI@;f~EV61;xhi?wY=hyVUG zHk?xETWxK2e(yXuqa(XRd8AzKu>4}mLB%(7cD4yVod@*BT3Uo6{aRZ5wEDJoc8G=B zzJKo%&dLf3LK?K;l+E`0UOF~jetUx) z_Yn?&kNU@;c=t46<0}j4{m4&W-{?Swn>5td4=F4{ay%_)n8q!ETkj;?``82hTlj zXrsBNlt_Ub$6|&hG4r%g<}p*n&}9|&qr`p1Et;Z6-ZKL_!NWD<9diw|G&eIj{XUIm zn&_VJj&I_Gb%ysOgiGWU6@g>@F)p4-aG2Y2c4qq>ivH4}(Vgx-S{rLDBw6{JS+<{; zsIIkJQc@wwTV^X!R8hh4?Y^YM8s2rSSN2L#gNmxQN!GVzl2pVWxj;^NO3;3Otk|pU zL$9Qox_WL-j;hmw8L$YMxVh1pJnvz&=fYW4pAF7lnDoU?3Q95PMgUE|FmV%cKm9g? zz|K2+&0MGGOHOUP;rr({mX}JG^~I`%NpfkUZb94@!!JPZ^fKzt>00!dxpv(d5V&Bp z5L7pcw{~-=l{`)M*#%6|+p6@i>nE6@VkvxX$Zx-!J^-}C;4>8Dpk~Ep9+w56Xds#{ z@UqPa%taMO--%+@Pe5f z3K{d9viU13Jh+0Wmu@9>S|~6&TI~S^;s{^9t70RLG6HlKMI|MjKo~l1;W7qr^@pLk z#3z}X!|A4jl?2K>Mi1{$zSJ>}XoZJsA2W*+6~vmAMU5_UHQIVQ&miT#t2N%8H(Gr& z81k;2?e=y`5)62lwXZ2-SlJ8=Xi* z^sV8=4k{BiU@h+AW9Y`bVM09i)3~^~H~f$|&40E7;_~pvMxR5#jm}i-GHy>4G+C*9VkSkBom39blx4WS9W4+Q>GXp8 z0r^ulf@ShkQ>G}$!rjKd4dA8IcD=s~UziN?rAyrI4$Y77(2ms1p)=zXQLzyc zl2q$lMJh)Lu1m_At#%wJ4$L4Kq8Q7h&&b}lf4<23^|Cu4cmT+@Yivb7>sf`Yra^jGh;&RPXG{rzGpxUf(W$0ESfj~o> zL`|Y#R1%1m?7?F(S3ZT{!x|J0axNMtRN$y55vhV+Zyu#J-;+gcsR7g!B0un~I#rdP znv{Jyhs}7Uc^lT^FFRESsK(u%>k#%PRUfm|Dv4mizCJ-ERspQq39lh4;k~5)(Es?+>T#w z$R|%IBXivS4Me+XBav6yH--1@XH~W-<+>D~R%J}pxu2dhKcxIgOBZ1<2{L6hs@P(Z z0Im-t&_bdGWfdnn!GNsFPmFvtdFn@5*C!|kGLncOvS`|kjW#{gyaL`i&Wwd?aUms} zkxP7&2FhS;Y3WOFZH{TNnvAkHh&|X0zQbhJXTn81a{V)62Se6M?it8);f(@q{vdkr zDYc=0drdT%YHx0%%2inNBLgt9hLTh1S<|-o6lj)JbVSP7|DyRKEklB|6#$UvV(qKv+bKI@O~wmv97nwM#@Q`Lp^#4OsSbU5%%k)oVKb@vUmqGRZj{t+|z7mLDJhmqx`sr%is3Nj!mhp$h6q|G)MXD zLJT`OZZB*%yxH9lqD0`A?s~;5`C2!rxvgDQc|7fKLq7ZQuSfTQT-flv4Z;=ZbzT}4 zXQx8GtsGm=aTR4rEK+x{inXZ8LSU)+wC?UIButAgBSIuT7Y9%qo6T!AKvCY1a%b-}j&38p3iR_}=7(9{w^@Ls!2Mh8lTjw;>GKX5=?|#SiC~gc zl|<^l@EIgWcVH+V?1Z9cxr*X(zMz#)=es>iO~kMxKc(G)paizw`-$N0?d7qmHGg09 zW^Vl(%2xj;2r7eB{4n`+gM~}Ll5!lNw+A?6fg+JYLP&t9wK$;Xo%bCtdbm?-t3R()mfqQ_z^k>n{#^7=eh|NiI7k9eBY5mJ2V z!{n?xA&pJG?>LGpLy=G;tO^7rMctnIyNnmcmD%2cSOaO#7h2r(k|C^U)BN$Mmo~*~ zP(1hArZy@t0G(^h#slwW5={Q_&Lp#gQjV&FujvPp+|_gDEC%v$OKi^98)LNT)j>QI za5?eWSXeb;eF*$Upbt24)UAep0!u*?oHwSwA}-4Z+x2;Z?#~=Lm8#`h#NHMySZAN zsyrpf>uV`!=i|(_=iO(TBL7Ri_AY(D;E zLMy6-G$x7c;U|Nky#1eOIxj1=buNVtY8Rtr9DSL^DCbf7}>~jdGB2cWv%**0kJ>C$Qjiba&b5H|?@}j~oXwc&E|_i-g?=QS+-Z*@`;?*=Kp7uLA_*VW-{qK0KEFiK3D^St=4lTUzGII5@NXRw6RkrGV3%3GkG(&~0v1PO`_hrt6u`#-w zV|MBLui?tX8dg^MD(`kENIQlW`z%r0+uoZfJii?ia4vx)#HE3geYvCnHv>Ft-r@q8 ztngsoCjBj#cZ3c~jf)dv&qC(dzqh@Q*#+2^Lm)tEy1(-tIlAt36LY;5tMV_kshr_d zP}V`hOerf_v+-YGs)awPLBLTQ^VFq-ycl)&yw;Bd#i)X`_T6k&!S%zK3VnQf@_F^( zAYs#hb|y1%+`zhGt-_3k~ed(M~cB$B;8c@lrrd)&BzksLyar}#@f;Src zeRa6P1u%p^nuS~7vI#in^(Ydd-hy+j zb!h`;T3VXmCz+#8kx%DocsF_V{7wIA8JJ}j0QovghE(>GlvMmj7*1qHxz-lz#vVa; z1}vyXlE_)1-Ps|CW{Y*vu~B$j(^Nj?9Pc{DtcXO7y&nBET+p^PQn{6z%`6z9)$_ zXisxZc$9Nb=W6)>wuotx4I6R9OQ2y^&tLTYh|X7yo-p;sL@FET38ZXl1pVS~eHp@@ zC8Uhz3xLxF@NFYnJcJYlSJ3Z&H@*PgeW%E~@qJUO6QXEZ$lbP6F8~ODx{PSlV_LNX zKo5uKdGxdsZYzf#K%*^+)99Ma?AN-SsN>ToQ0jva+jJg+rCR!>DxY=cv zNX{?>Yv~qF4*VH&6f&pjWLFX}PTZQ4#NZiiveQUQqK5fxe^X_SeBeW(Zg565VX`v_fz)nQ!q4Y7=r?}N5Eo$`wO>k1wwhF z*1O4NDnc($d$FrRwtG=%D6!{m<qy3+_JE$G#4Xddb+e+ui&DVBtG7pxf00F zFKs6~^e|gxl!OxHct$yxo;(iC!V#JxlE~}#`*4%^L$*|QB@k`KG=&482$RIyv;`bq zKhvIk%91lBu<%%-{N?g91zsLH`6q==&;$euj&??p1LrO5w8Hd?{rdEd8h=0a#dvc= z!hbvJzGh~V&U6G75EAqYGwkJe5=8!dFacC+aLx7oqYFnIwG#G@>X7kWm?P&UU3fZJ zdvRy1#+8#$`yZL`sasa>J7htUmJiq(jy1&cp@fY^7s&WIK58Na8X6izQ2E6x**LcO z`MqYXH~{;M&5A{bub< zWM>eb3y@QC8T!o-C4Z8y-Jgkky6lozUAs9!FHJ*P*n3o1sZEpLx&1T*3H&^+dck@L z5UYCN9+j~j>#Tz8-DG`UFch^ZYmB6|~Wfftwpt47;{ zIhSnUzz||Oyh*PF|7zQ)D_U-`xNHoj24_bJW5>v#-&e7qa&s$715N5Jgnwa0j&$%xAc;swXVmJ);ag{KjC;Nk+9C>>37<8}WrNiEz?Jt6^ z%nvw;UVwF3^Ay;!P;*T;sISj|G=0Mu!#WUuVsO{NEj@P}$?ZKw2n19sF$cn|bYKoZ z8absN9N00K07>{pT+rbQ(d1^L;8^EVUN046HlM)i?^Y42aM5*Hs~FFEz__3y^zrM- zt>qg*m4H~(eo8(+h$a~D{Zdvx7yGP3lIab;3sN4li1{5FjQ{*C*~@Iwb>u@j_RY(xdSFmdrvRaH9$OY)2 z%W-7$Aqd{$fP+yQMSPqr-m;H_-R4Iy7k??ORaVkdh4aGdSxHnM6y7HIyoXYiquBQq zuy<||{U+h)CK@%mDs4W`46D}>^cHTp=>7mMA_vTMyVu?nKf%rYh)ov*0|>>}FBw z$5w@(4KJxFV2G^DN&PY`{j%Hq*!>R$GrXIojx$vzcVfOdE9?8^!JlPl5O1J=mU^hY zR}{Lx4@tBWKV^+1G?WE~Tu6dmNZ5k!iiC4an?vV|(KoU?llb$qF~nM;Hyt-P8%jNO z?4otQx`=4XI(2H;y`2zJtmFe>1VGt0y#}q5od@btq9@iwXsOM-W-o-U%f=eb zIDZs71zHhFtJo-D8;vfMH5D)x+bREY+J-veed5}zZ;##|bSRpo$eUbIpz%!%p?`BL z=@kh(Q+dit5-f_g3JKF=>Ht3f&V)6=Kn>q`plXV?9)wMVAS=R0_}7^_XzkI9x*P&- z?@bHYcK|l$vY8pItNVzF5FoJpx>f*06mYy=pW|B38%B+2w3&Rm-26b@G=IHWjfcc|#~JU{Ov{HFIjo1%8N z{I{TD4ENrNctnCA=CNcsx;P~;Qw2Kys(J=TSe+Yq9KuoF+u*Y^iGbOE+hgxKN?`x) zxVaim4ztsDvwam_#EbKX36N#JpS5e=JKK7O?HK(`8^cFj&{>G(Xb2){)eV=N^ghcT zMq;z3HbLkG6zSmm*?Ix7HIY-u1`A&75Vf)!{(&g;35<{)V(h+7b)Y>Le$hhf`v(&R6Xc*?Uzn$&AaDL@N(Xv0LaN+#aG=rJh9s_rIlVl*R^gkY$ zjr$8K@zx4RLc@oA(P5y2(aeeK!OkLQ&1hTTds4;6|1fkke>!{lr|4n?tpGU{S$wvA zoPg>&fQNJ$eVpgree0is@-TSeZoc*lY~pVl>HxglgVjMGG9R-#&->;58kHPNf&#F4 z(Kn~_k2${o^#kiQdwEl{oSN>A_$e{IWXM?@=UOyk%Kdib ze#+YBhTbp#qG_=TGDsF_h3h_r$c|Io_Yw3n(jv(O|8~=AU&JIKT7_FP1Ue?}P;I_r zJlu!YRB~*7zp;Ea(%m0{nLG_<$Ad}+HkUQ5SUJ*afT3nH)cvTj{4cCKdR%J zK%F>EM|J+LrdQ9APIg-8_u$V(pHT~)YggWFk?JfO(BTV}?5L<#DfJ2eVN^TmS6%nXkyRu0lE~>UJ{^@f0LNf_D|n!D@X9)`w^IV|1D7R>;pTPNJU*X zg}6FY3!HS@?)1IH3Yiy`C}w=~Q_Jm;kkq#yAE4aUUoQiy$K>Yje&?may#1nrchAzJ z!fv|BX~aNfS0f-wXVzz=Up5gg*+_td`NtoP> zUm`E=Lk&S{0~O$8?yKh`*N@0H6VQNzTKQR!h5BCsb)8G>CHI475&*0*|6-5XaxrMv z*i0RZHTS~(Zzs67wxRVYd^V`14cC6LP%R%>s;NshKx=WiC;@|Ox>3P&cc+@159CA$ z#fZK`mvtvZ)C}+WII#VL6~^B%GASbWX%XM9wi02Nif_Czn&HM*^BU9x2^pvkTnjIu zkMEO{Hn*QCwF){8z5q(RF8WTM_zhFK>mRZOudBVNo6Bc`uXS{5_Vx(&GlZN(N-rF? zBumEzGWg)6-P+BzRTBxTzC8w&j*4_t0Y35MtWMb~FUNkag*;B+0m4ZEMINAzyq0#* z@#qyM<{9PrD@3g%Lm@rU8;Lx5yGb(uFX?9o1#tQtUsyUhGoLCswOMC$OvdYp`UmBh z{n*^T^j0X$4Jtx_ahg1DP2-xCT|^>&z38wzM_0>`#Fay~e9?z7c8J+64;VA9JkQsf z@#ZV2EIF*<5eu0i* z%2&_J82p^3Uk_V|Nd+u2b;wVMjr;mMebBmWpTWT}O4P18OOoh8GLqXa!Yy#-(6&4_ z7F%Q3_nC>EEl}`{xig2?dDDxWRV&a+@YrA>N%&R|PSm%!fo)+ualmLJk}+r{8Zrt= z(4Ih-YJ9IR5{-f1A}P5iv50jxns+bw@F5<)nDIbVpmhJE_YV+JK^NW@uEXU1q^H1So6K*E?o^N&|AH5aAB%^y?3e$pv6w5a%1?V>8=P71~I)ZCQZg_rz1P!z~ z=>_Pc2wv@0ak>68x$hp>+t30BcK6A&LA0I68pVuV>y7SPX(r(DVlAybAP6t|xt98V zkBB6zH1~R}yi%BzpVr93ZY+fof?k zp6@eu=c-jhVg2QPdpEvi%8O|TY@JX9o)EQJ2O(uU;C9^O8EqO z!u?dfvD|i1SY5L*j{OqciqL!J)lY^DNt&-5pOgAWl)YL4uwy_ShcYui8fdV1ilXyz zA0U;DK0Il0+7g0bc$#`PpQiGW4ew2EjFo;&8=Drrxl2BN{D{f+vrg9<*Z6^)s!#DBkdBPqfFFxn*b)^IW!y_j8DT=zlvlQVT!DhLuvk8vh>DZ%dhjhE z`e)1j5Hz}n%~JsH5uT-f5kmgfnV*xB(d#BOfMq$^YMHBB(v=7k6#>(b%^wSKAl5gLp8qF^a=`U``j4v&f?s&jVHs+em z1$1kR`-JtM5p=)2L($RE zDYtgc`%|-jutOz!kiOUy7`gpR?QNn z0oWF;ifCg1&Rac!4!mmW)79o@wz!XQ^TnPM*q=&0{p%`!hlkR6kU8aau(ubVZY*tG z^!Eacj-=#zn>WKYU*smqbY(T(QoFe|vNhi&|1YpP!8p0Q71@q@U!sAIE8rT~ERp=T zy8MVBI|ukdn=L^AZ?3k4cS}oa33%Dh`&%6BOA8jO?>_m#4=SlULh|iGJ%rwh%Jc|8 z2~C@$7MOjf_&-+W*|?SLpJ^Ru5|O!F#_|+5eM5YP*XN_gQ`3_)v2kH!LA;|8O& zA{*z2gTTLxjhbn-a?52r*!*LAn>?VC7BpKWVJhnC=qhiucsy9WWsY>Bf7aJ7`afJ* z>xrb$cUQ0}`EzJxwFB;333!n5iwpaNYkM}dD6JP}Fc&rP2M0ULtk0I%C;7l+9s>_= z2fDPFGn44Ln8xdm8$9SqJzl-LHU53SVOk*0rpY~UI77se0L;gcZhB@aS5ZvQpDR#C zp9vgHc<6e1dcH|cy8?ggfB9mqCcL%1hkPHk_<)xTh4hvH-~QiE1~ioY??;N0kkt9i zmvx&!|5|42j`Cto82Tvq*NNFQwmj*y&z&caLM zOOITewR?`-njz?@kiekfJg1T(=GWO9@nvkB4y&jV;k#}Nx^Kt=Q`ZiY%;|}eyh|gNI_)-mquE$|_$KE{}kRK2t)s#eujDJMf z!>@^i!JG{Ag`5p{9#tp<>-vM`rr1^4t`1io$A_#{2&!-INRmf`!00Kkje8lMFIF|U zucM)2zAOf;yV(xaHsq&x?o)=mg}}OEYGH3ivH~3bh|e}=EpN4yGPb>1m(3gB4jr7y zzL1MVda6f#Ob%&$oN&%p9zFuJv)cI*vL(HX3Si|0y!Y()SEh-2LHERWYlAEDD8bbb zk+QSN_X!CYTuD;{0Z)!gj*En)e}^_Uvj*@D$t^O(V{})oYz~;jqhrheAXVj z7*gE`Q4nsxvHdRfj-1=>6R>@OM$HGcl1gLCl|#m+IqvSFfvom{b0`>Q=Y*HTNMFKe ziTy7mmsuq)j4j50;hNfwzYGh$^`*T&e(c?oYts~PmD)40=B}k5kc+vo2MLP@+*Lv0 z+m49vCOUpRvgcp2@`JTggFGI06G@jJXRv%_@G}MDOvOxED}&((!Ti`Q?k_!(qg0|*~Zk;@Xa|z5wuL@%0-~breOj#kxs|tT| z%$~z%W=qmwyf2u0)*eU@5s{KQPAk3yHb_2S&~%IX`W7klJ<3C^JR{}*Q^n`|85u9J zg5HC3PGVRQ7arJA<&E{ywKTu5ei84CZL>PqZa>ℜmv7_`CkoB}B~w(Hpe$t~b)D zQMj`Te|nh;Qr+)-R)j^9>BELMBI24Z%gv3Yvd2C|e2Y4sP@0X06%$BitqSoWU<0`3 z2m2b)NLLZ+aV81CiFzM+0?}kO8w3De_q@}k-XKvPxCLIbI7F7suba>?hLe-D-AUkv zilVj}`%GX;V3fLX4by2m5_e7J-;(5{>c-~128!rpm^Rq7x_eK@34Hf zT$$<+9cq!fEA`FEpI^_Pp7L~89xoxCF+>l(AHRbAyMiZ+@g`Qi>IomhhmRIoNed^9 z>}C_1-rMV#&%rG|pvx&I?ehHU`7A^$0cZw#>*=kA z!+a@x2q5Sd^39=cM`iuiAwsPlG;qgeIySm!ec9kP)?@|Ww||2^XwK~<8}u;Pud&oH zbc+SMSi&5kyXgOz{{VmA&MLp1FVPcQVV9UUVtAwTwkj{#tA+I+4{2x$0o%|3;72c4 zLK2eQxGX{Pfj4|#KaNRatK2;P!*7E4iR}n#xx7UmMtG9UGii7_Yf5(09#yB49T;O_tjYYjPTc5nDX zFda>0qR~?BtDIiF9w(e_MhB&g&PPvKo7H7?d&X5*V-);*ctn_cAV7}WsG6avYWVRR zn3QMtd!Wk=Tl4Dp=a`C092@2y)y!nJF)M=>gYI3AdxdQ_LYHsqad^?8F~!mM%CQbv zs)T`WRZV#YJb|A%xV>HH@9Vol!K3&rGu}e1R-okV_0&>Iv1H8BUoXwWwCaCourut@$99SnI%>k=kum zSxdp*^a)4_$tq~qb<_AW)smO}wq6g%Ts2@8Rn8In1C%w?;FD%d(+Urs@uCGU4|Zm0 z`EioQBlrXs+fL|&=k+<=w_4&YNOFF7Ik)bEXz4qxx+Ne5S~~c-_Mn4*5?S*$1emA} zCYH!!6wpM=cVF3Mx--4<)j$Ft>iNafgKnKr&zCy73Z&BZrdR+FjI%+e^yG(;JubW} zT^w|6w0CZv>DLc?m^&&{$Eck3%N~XbWtybArGwe0zQ&PqIRA#n2jDS6(lEzsRn@l z;nyL2=qD#Z2>Wb--Ehn-ODhvad=n#8 zkxp>rV2)md0x*>ID^uRR-5Lt?|J?;%FL|)gQct|O1|+<7zx=oKCAE2alUn#_YBry!d zCw(>6RqG7Ur3th{)|D+B8V? zh7JMfMoR5HA+QHSt@N_bS5NgqdkkD~(EL>j82KF7>A+T{A5J?7Nf>fU26DV(9EX

0.17.6

Date:
-

Dec 26, 2023

+

Mar 14, 2024

The datascience package was written for use in Berkeley’s DS 8 course and diff --git a/searchindex.js b/searchindex.js index cd4f7f50f..f35665a50 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["_autosummary/datascience.tables.Table.__init__", "_autosummary/datascience.tables.Table.append", "_autosummary/datascience.tables.Table.append_column", "_autosummary/datascience.tables.Table.apply", "_autosummary/datascience.tables.Table.as_html", "_autosummary/datascience.tables.Table.as_text", "_autosummary/datascience.tables.Table.bar", "_autosummary/datascience.tables.Table.barh", "_autosummary/datascience.tables.Table.bin", "_autosummary/datascience.tables.Table.boxplot", "_autosummary/datascience.tables.Table.column", "_autosummary/datascience.tables.Table.column_index", "_autosummary/datascience.tables.Table.columns", "_autosummary/datascience.tables.Table.copy", "_autosummary/datascience.tables.Table.drop", "_autosummary/datascience.tables.Table.exclude", "_autosummary/datascience.tables.Table.first", "_autosummary/datascience.tables.Table.from_array", "_autosummary/datascience.tables.Table.from_columns_dict", "_autosummary/datascience.tables.Table.from_df", "_autosummary/datascience.tables.Table.from_records", "_autosummary/datascience.tables.Table.group", "_autosummary/datascience.tables.Table.group_bar", "_autosummary/datascience.tables.Table.group_barh", "_autosummary/datascience.tables.Table.groups", "_autosummary/datascience.tables.Table.hist", "_autosummary/datascience.tables.Table.hist_of_counts", "_autosummary/datascience.tables.Table.index_by", "_autosummary/datascience.tables.Table.interactive_plots", "_autosummary/datascience.tables.Table.join", "_autosummary/datascience.tables.Table.labels", "_autosummary/datascience.tables.Table.last", "_autosummary/datascience.tables.Table.move_column", "_autosummary/datascience.tables.Table.move_to_end", "_autosummary/datascience.tables.Table.move_to_start", "_autosummary/datascience.tables.Table.num_columns", "_autosummary/datascience.tables.Table.num_rows", "_autosummary/datascience.tables.Table.percentile", "_autosummary/datascience.tables.Table.pivot", "_autosummary/datascience.tables.Table.pivot_bin", "_autosummary/datascience.tables.Table.pivot_hist", "_autosummary/datascience.tables.Table.plot", "_autosummary/datascience.tables.Table.read_table", "_autosummary/datascience.tables.Table.relabel", "_autosummary/datascience.tables.Table.relabeled", "_autosummary/datascience.tables.Table.remove", "_autosummary/datascience.tables.Table.row", "_autosummary/datascience.tables.Table.rows", "_autosummary/datascience.tables.Table.sample", "_autosummary/datascience.tables.Table.sample_from_distribution", "_autosummary/datascience.tables.Table.scatter", "_autosummary/datascience.tables.Table.scatter3d", "_autosummary/datascience.tables.Table.select", "_autosummary/datascience.tables.Table.set_format", "_autosummary/datascience.tables.Table.show", "_autosummary/datascience.tables.Table.shuffle", "_autosummary/datascience.tables.Table.sort", "_autosummary/datascience.tables.Table.split", "_autosummary/datascience.tables.Table.stack", "_autosummary/datascience.tables.Table.static_plots", "_autosummary/datascience.tables.Table.stats", "_autosummary/datascience.tables.Table.take", "_autosummary/datascience.tables.Table.to_array", "_autosummary/datascience.tables.Table.to_csv", "_autosummary/datascience.tables.Table.to_df", "_autosummary/datascience.tables.Table.values", "_autosummary/datascience.tables.Table.where", "_autosummary/datascience.tables.Table.with_column", "_autosummary/datascience.tables.Table.with_columns", "_autosummary/datascience.tables.Table.with_row", "_autosummary/datascience.tables.Table.with_rows", "formats", "index", "maps", "predicates", "reference-nb/datascience-reference", "tables", "tutorial", "util"], "filenames": ["_autosummary/datascience.tables.Table.__init__.rst", "_autosummary/datascience.tables.Table.append.rst", "_autosummary/datascience.tables.Table.append_column.rst", "_autosummary/datascience.tables.Table.apply.rst", "_autosummary/datascience.tables.Table.as_html.rst", "_autosummary/datascience.tables.Table.as_text.rst", "_autosummary/datascience.tables.Table.bar.rst", "_autosummary/datascience.tables.Table.barh.rst", "_autosummary/datascience.tables.Table.bin.rst", "_autosummary/datascience.tables.Table.boxplot.rst", "_autosummary/datascience.tables.Table.column.rst", "_autosummary/datascience.tables.Table.column_index.rst", "_autosummary/datascience.tables.Table.columns.rst", "_autosummary/datascience.tables.Table.copy.rst", "_autosummary/datascience.tables.Table.drop.rst", "_autosummary/datascience.tables.Table.exclude.rst", "_autosummary/datascience.tables.Table.first.rst", "_autosummary/datascience.tables.Table.from_array.rst", "_autosummary/datascience.tables.Table.from_columns_dict.rst", "_autosummary/datascience.tables.Table.from_df.rst", "_autosummary/datascience.tables.Table.from_records.rst", "_autosummary/datascience.tables.Table.group.rst", "_autosummary/datascience.tables.Table.group_bar.rst", "_autosummary/datascience.tables.Table.group_barh.rst", "_autosummary/datascience.tables.Table.groups.rst", "_autosummary/datascience.tables.Table.hist.rst", "_autosummary/datascience.tables.Table.hist_of_counts.rst", "_autosummary/datascience.tables.Table.index_by.rst", "_autosummary/datascience.tables.Table.interactive_plots.rst", "_autosummary/datascience.tables.Table.join.rst", "_autosummary/datascience.tables.Table.labels.rst", "_autosummary/datascience.tables.Table.last.rst", "_autosummary/datascience.tables.Table.move_column.rst", "_autosummary/datascience.tables.Table.move_to_end.rst", "_autosummary/datascience.tables.Table.move_to_start.rst", "_autosummary/datascience.tables.Table.num_columns.rst", "_autosummary/datascience.tables.Table.num_rows.rst", "_autosummary/datascience.tables.Table.percentile.rst", "_autosummary/datascience.tables.Table.pivot.rst", "_autosummary/datascience.tables.Table.pivot_bin.rst", "_autosummary/datascience.tables.Table.pivot_hist.rst", "_autosummary/datascience.tables.Table.plot.rst", "_autosummary/datascience.tables.Table.read_table.rst", "_autosummary/datascience.tables.Table.relabel.rst", "_autosummary/datascience.tables.Table.relabeled.rst", "_autosummary/datascience.tables.Table.remove.rst", "_autosummary/datascience.tables.Table.row.rst", "_autosummary/datascience.tables.Table.rows.rst", "_autosummary/datascience.tables.Table.sample.rst", "_autosummary/datascience.tables.Table.sample_from_distribution.rst", "_autosummary/datascience.tables.Table.scatter.rst", "_autosummary/datascience.tables.Table.scatter3d.rst", "_autosummary/datascience.tables.Table.select.rst", "_autosummary/datascience.tables.Table.set_format.rst", "_autosummary/datascience.tables.Table.show.rst", "_autosummary/datascience.tables.Table.shuffle.rst", "_autosummary/datascience.tables.Table.sort.rst", "_autosummary/datascience.tables.Table.split.rst", "_autosummary/datascience.tables.Table.stack.rst", "_autosummary/datascience.tables.Table.static_plots.rst", "_autosummary/datascience.tables.Table.stats.rst", "_autosummary/datascience.tables.Table.take.rst", "_autosummary/datascience.tables.Table.to_array.rst", "_autosummary/datascience.tables.Table.to_csv.rst", "_autosummary/datascience.tables.Table.to_df.rst", "_autosummary/datascience.tables.Table.values.rst", "_autosummary/datascience.tables.Table.where.rst", "_autosummary/datascience.tables.Table.with_column.rst", "_autosummary/datascience.tables.Table.with_columns.rst", "_autosummary/datascience.tables.Table.with_row.rst", "_autosummary/datascience.tables.Table.with_rows.rst", "formats.rst", "index.rst", "maps.rst", "predicates.rst", "reference-nb/datascience-reference.ipynb", "tables.rst", "tutorial.rst", "util.rst"], "titles": ["datascience.tables.Table.__init__", "datascience.tables.Table.append", "datascience.tables.Table.append_column", "datascience.tables.Table.apply", "datascience.tables.Table.as_html", "datascience.tables.Table.as_text", "datascience.tables.Table.bar", "datascience.tables.Table.barh", "datascience.tables.Table.bin", "datascience.tables.Table.boxplot", "datascience.tables.Table.column", "datascience.tables.Table.column_index", "datascience.tables.Table.columns", "datascience.tables.Table.copy", "datascience.tables.Table.drop", "datascience.tables.Table.exclude", "datascience.tables.Table.first", "datascience.tables.Table.from_array", "datascience.tables.Table.from_columns_dict", "datascience.tables.Table.from_df", "datascience.tables.Table.from_records", "datascience.tables.Table.group", "datascience.tables.Table.group_bar", "datascience.tables.Table.group_barh", "datascience.tables.Table.groups", "datascience.tables.Table.hist", "datascience.tables.Table.hist_of_counts", "datascience.tables.Table.index_by", "datascience.tables.Table.interactive_plots", "datascience.tables.Table.join", "datascience.tables.Table.labels", "datascience.tables.Table.last", "datascience.tables.Table.move_column", "datascience.tables.Table.move_to_end", "datascience.tables.Table.move_to_start", "datascience.tables.Table.num_columns", "datascience.tables.Table.num_rows", "datascience.tables.Table.percentile", "datascience.tables.Table.pivot", "datascience.tables.Table.pivot_bin", "datascience.tables.Table.pivot_hist", "datascience.tables.Table.plot", "datascience.tables.Table.read_table", "datascience.tables.Table.relabel", "datascience.tables.Table.relabeled", "datascience.tables.Table.remove", "datascience.tables.Table.row", "datascience.tables.Table.rows", "datascience.tables.Table.sample", "datascience.tables.Table.sample_from_distribution", "datascience.tables.Table.scatter", "datascience.tables.Table.scatter3d", "datascience.tables.Table.select", "datascience.tables.Table.set_format", "datascience.tables.Table.show", "datascience.tables.Table.shuffle", "datascience.tables.Table.sort", "datascience.tables.Table.split", "datascience.tables.Table.stack", "datascience.tables.Table.static_plots", "datascience.tables.Table.stats", "datascience.tables.Table.take", "datascience.tables.Table.to_array", "datascience.tables.Table.to_csv", "datascience.tables.Table.to_df", "datascience.tables.Table.values", "datascience.tables.Table.where", "datascience.tables.Table.with_column", "datascience.tables.Table.with_columns", "datascience.tables.Table.with_row", "datascience.tables.Table.with_rows", "Formats (datascience.formats)", "Welcome to datascience\u2019s documentation!", "Maps (datascience.maps)", "Predicates (datascience.predicates)", "Data 8 datascience Reference", "Tables (datascience.tables)", "Start Here: datascience Tutorial", "Utility Functions (datascience.util)"], "terms": {"label": [0, 2, 3, 6, 7, 8, 10, 11, 14, 16, 18, 21, 24, 27, 29, 31, 32, 37, 38, 41, 43, 44, 50, 51, 52, 53, 58, 66, 67, 68, 71, 73, 77, 78], "none": [0, 2, 6, 7, 9, 21, 24, 25, 26, 29, 38, 39, 41, 48, 50, 51, 58, 62, 63, 64, 66, 67, 71, 73, 78], "formatt": [0, 2, 53, 67, 68, 71], "format": [0, 4, 5, 53, 68, 72, 73], "object": [0, 13, 29, 47, 54, 65, 73, 75, 77], "sourc": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 78], "creat": [0, 6, 7, 18, 20, 22, 23, 25, 29, 38, 41, 50, 51, 63, 72, 75, 76, 78], "an": [0, 1, 3, 8, 10, 14, 20, 33, 34, 39, 48, 53, 56, 62, 64, 66, 67, 68, 69, 71, 72, 73, 75, 78], "empti": [0, 8, 20, 21, 24, 29, 66, 75, 77], "column": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 49, 50, 51, 52, 53, 56, 58, 60, 61, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78], "tile": [0, 10, 44, 65, 69, 70], "make_arrai": [0, 1, 2, 3, 7, 9, 10, 13, 14, 15, 21, 24, 25, 26, 27, 28, 29, 32, 33, 34, 37, 38, 41, 43, 44, 45, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 78], "letter": [0, 2, 3, 10, 11, 12, 15, 16, 30, 31, 36, 44, 47, 61, 62, 65, 67, 69, 70, 77], "count": [0, 2, 3, 5, 7, 8, 10, 11, 12, 16, 21, 22, 23, 24, 25, 26, 30, 31, 36, 37, 38, 39, 44, 47, 49, 62, 65, 67, 69, 70, 75, 77, 78], "point": [0, 2, 3, 11, 12, 16, 22, 23, 25, 26, 30, 31, 36, 37, 43, 47, 50, 62, 69, 70, 73, 77], "arg": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 27, 29, 31, 32, 38, 39, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "list": [0, 2, 10, 14, 15, 20, 24, 25, 27, 38, 45, 47, 58, 61, 67, 68, 73, 75, 76, 77, 78], "string": [0, 2, 4, 5, 14, 21, 25, 42, 67, 68, 71, 72, 73, 74], "The": [0, 1, 2, 3, 4, 5, 8, 9, 10, 14, 15, 21, 22, 23, 24, 25, 26, 27, 33, 34, 37, 39, 42, 43, 44, 45, 49, 51, 52, 53, 57, 58, 61, 62, 63, 64, 67, 68, 72, 73, 74, 75, 77, 78], "instanc": [0, 10, 14, 15, 48, 52, 53, 55, 56, 57, 61, 78], "valu": [0, 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21, 22, 23, 24, 25, 26, 27, 29, 31, 36, 37, 38, 39, 41, 49, 50, 51, 53, 54, 56, 58, 60, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78], "row_or_t": 1, "row": [1, 2, 3, 4, 5, 15, 21, 24, 25, 26, 27, 29, 36, 37, 38, 39, 42, 45, 48, 49, 54, 55, 56, 57, 61, 62, 66, 67, 68, 69, 70, 73, 74, 75, 77], "all": [1, 8, 21, 24, 25, 26, 29, 39, 41, 47, 50, 51, 53, 55, 58, 65, 68, 73, 75, 77, 78], "place": [1, 25, 43, 44, 45, 60, 64, 75, 76], "must": [1, 2, 3, 6, 7, 9, 14, 26, 41, 43, 44, 48, 50, 51, 53, 57, 58, 66, 67, 68, 70, 73, 75, 76, 78], "have": [1, 2, 20, 48, 53, 65, 67, 68, 71, 73, 75, 76, 78], "self": [1, 29, 41, 50, 51, 53, 65], "follow": [1, 4, 5, 8, 13, 24, 33, 34, 39, 45, 53, 62, 73, 74, 75, 76, 77], "exampl": [1, 4, 5, 11, 12, 13, 16, 17, 19, 20, 27, 30, 31, 33, 34, 36, 39, 42, 45, 47, 53, 54, 58, 62, 64, 65, 66, 72, 73, 74, 75], "record": [1, 20], "with_column": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 73, 74, 77], "A": [1, 6, 7, 9, 13, 15, 17, 20, 21, 24, 25, 26, 27, 32, 33, 34, 41, 45, 48, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 66, 68, 69, 73, 74, 75, 77, 78], "1": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 48, 50, 51, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 73, 75, 76, 77, 78], "b": [1, 2, 3, 9, 11, 12, 13, 15, 16, 17, 19, 25, 26, 27, 29, 30, 31, 33, 34, 36, 39, 45, 47, 48, 54, 57, 58, 60, 61, 62, 63, 77], "foo": [1, 13, 33, 34, 45, 60, 76, 78], "c": [1, 2, 3, 9, 10, 11, 12, 16, 19, 27, 29, 30, 31, 33, 34, 36, 39, 44, 45, 47, 48, 54, 57, 58, 60, 62, 63, 65, 67, 69, 70, 77], "2": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "bar": [1, 7, 13, 22, 23, 25, 26, 33, 34, 40, 45, 60, 75, 78], "3": [1, 2, 3, 9, 11, 12, 13, 15, 16, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 50, 51, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 69, 70, 75, 77, 78], "4": [1, 2, 9, 10, 15, 21, 24, 28, 29, 33, 34, 36, 39, 40, 41, 42, 44, 45, 50, 51, 56, 59, 60, 61, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78], "baz": [1, 33, 34, 45, 60], "bat": [1, 33, 34, 45], "d": [1, 9, 10, 29, 33, 34, 44, 45, 48, 57, 63, 65, 67, 69, 70, 71, 72, 75], "append": [2, 13], "replac": [2, 43, 44, 48, 49, 67, 68, 73], "__setitem__": 2, "i": [2, 3, 4, 5, 6, 7, 8, 10, 13, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 38, 39, 41, 43, 45, 48, 50, 51, 53, 54, 57, 58, 60, 61, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78], "alias": 2, "thi": [2, 9, 13, 22, 23, 25, 26, 28, 33, 34, 50, 51, 53, 58, 59, 60, 65, 68, 71, 73, 75, 76, 77, 78], "method": [2, 4, 5, 22, 23, 53, 64, 71, 72, 73, 76, 77, 78], "new_col": 2, "equival": [2, 10, 28, 29, 59, 66, 68, 75], "str": [2, 3, 5, 6, 7, 8, 10, 11, 16, 22, 23, 31, 32, 38, 41, 43, 44, 50, 51, 52, 53, 63, 66, 67, 68, 73], "new": [2, 13, 15, 19, 25, 29, 32, 37, 38, 39, 44, 48, 49, 52, 53, 55, 58, 61, 66, 67, 68, 73, 75, 76, 77, 78], "singl": [2, 32, 38, 43, 53, 66, 67, 68, 75], "arrai": [2, 3, 10, 12, 17, 21, 26, 29, 41, 43, 44, 48, 53, 61, 62, 65, 66, 67, 68, 70, 72, 77, 78], "If": [2, 3, 8, 20, 21, 24, 25, 26, 29, 39, 45, 51, 53, 54, 58, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "everi": [2, 6, 7, 9, 41, 50, 51, 66, 67, 68, 75], "contain": [2, 3, 6, 7, 8, 9, 13, 21, 24, 27, 29, 37, 39, 41, 47, 52, 56, 57, 62, 66, 72, 74, 77, 78], "which": [2, 4, 5, 22, 23, 27, 48, 58, 60, 75, 77], "same": [2, 9, 20, 25, 26, 37, 44, 48, 49, 51, 53, 63, 65, 67, 68, 71, 73, 75, 77, 78], "length": [2, 43, 44, 48, 53, 61, 67, 68, 69, 70, 75, 78], "add": [2, 25, 26, 73, 75, 77, 78], "being": [2, 4, 53, 68, 73, 75], "No": 2, "ad": [2, 50, 68, 75, 77], "default": [2, 5, 8, 13, 25, 26, 29, 38, 39, 48, 53, 60, 67, 73, 75, 77, 78], "return": [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 77, 78], "origin": [2, 8, 13, 21, 24, 25, 33, 34, 37, 43, 44, 48, 52, 53, 55, 58, 67, 68, 75, 76, 77], "rais": [2, 3, 7, 9, 10, 38, 41, 43, 44, 48, 50, 51, 52, 57, 61, 67, 68, 69, 70], "valueerror": [2, 3, 7, 9, 10, 41, 43, 44, 48, 50, 51, 57, 67, 68, 69, 70, 78], "doe": [2, 13, 21, 24, 44, 48, 53, 67, 68, 74, 76, 78], "number": [2, 3, 4, 5, 8, 15, 17, 22, 23, 25, 26, 35, 36, 37, 39, 44, 45, 48, 49, 52, 54, 57, 67, 68, 71, 75, 77, 78], "z": [2, 3, 11, 12, 16, 30, 31, 36, 47, 50, 62, 74, 77], "9": [2, 3, 4, 5, 11, 12, 16, 21, 24, 25, 26, 27, 29, 30, 31, 36, 37, 39, 42, 47, 50, 51, 56, 60, 62, 64, 66, 73, 75, 77, 78], "10": [2, 3, 7, 8, 11, 12, 16, 25, 26, 29, 30, 31, 36, 37, 39, 47, 48, 50, 51, 52, 57, 60, 61, 62, 63, 75, 77], "new_col1": 2, "20": [2, 4, 5, 7, 39, 48, 50, 57, 60, 63, 64, 66, 68, 75, 77], "30": [2, 7, 21, 24, 39, 56, 66, 74, 75, 77], "40": [2, 21, 24, 32, 38, 56, 75, 77], "new_col2": 2, "hello": [2, 76], "123": [2, 43, 75], "traceback": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "most": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68, 77], "recent": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "call": [2, 3, 9, 19, 28, 38, 43, 44, 48, 51, 53, 59, 61, 62, 63, 67, 68, 74, 75, 76, 78], "last": [2, 3, 9, 33, 38, 43, 44, 48, 61, 67, 68, 73, 75, 77], "int": [2, 3, 4, 5, 8, 10, 22, 23, 25, 26, 32, 38, 39, 45, 48, 51, 52, 53, 57, 66, 67, 68, 71, 73, 78], "wa": [2, 53, 67, 68, 72, 73, 75, 77], "given": [2, 3, 8, 14, 22, 23, 39, 52, 67, 68, 74, 78], "bad_col": [2, 67], "mismatch": [2, 67, 68], "fn": 3, "column_or_column": [3, 14, 52, 53, 75], "each": [3, 6, 7, 8, 12, 21, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 48, 50, 51, 53, 60, 69, 70, 71, 73, 75, 76, 78], "element": [3, 44, 75, 78], "provid": [3, 8, 21, 24, 38, 39, 50, 51, 63, 73, 75, 78], "function": [3, 8, 21, 24, 38, 53, 54, 58, 60, 66, 68, 71, 72, 73, 74, 77], "argument": [3, 4, 5, 6, 7, 8, 9, 19, 21, 22, 23, 24, 25, 26, 27, 39, 41, 42, 43, 50, 51, 53, 58, 66, 73, 75, 76, 78], "either": [3, 25, 26, 52, 66, 73, 78], "indic": [3, 8, 14, 15, 24, 38, 52, 53, 61, 73, 75], "match": [3, 25, 26, 29, 38, 66, 73], "expect": [3, 78], "column_label": [3, 22, 23, 29, 33, 34, 43], "exist": [3, 14, 38, 44, 67, 68, 75], "typeerror": [3, 38, 43], "insuffici": 3, "pass": [3, 4, 6, 7, 9, 22, 23, 25, 26, 38, 41, 50, 51, 53, 54, 58, 68, 73, 75, 77, 78], "consist": [3, 58], "result": [3, 8, 21, 24, 29, 39, 62, 65, 73, 75, 77, 78], "specifi": [3, 7, 11, 22, 23, 24, 25, 26, 27, 32, 38, 39, 43, 44, 48, 54, 67, 73, 75, 76, 78], "t": [3, 7, 11, 12, 14, 15, 16, 17, 19, 20, 21, 25, 26, 27, 30, 31, 36, 39, 47, 54, 58, 62, 65, 73, 74, 75, 77], "lambda": 3, "x": [3, 6, 28, 41, 50, 51, 59, 60, 75, 77], "0": [3, 4, 5, 8, 11, 14, 15, 19, 25, 28, 32, 38, 39, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 61, 64, 66, 68, 71, 72, 73, 75, 77, 78], "y": [3, 7, 26, 50, 51, 71, 74, 75, 77], "6": [3, 4, 5, 7, 14, 21, 24, 27, 29, 39, 40, 42, 50, 51, 52, 54, 56, 58, 60, 61, 64, 66, 68, 72, 73, 75, 77], "take": [3, 21, 53, 58, 67, 68, 73, 77, 78], "posit": [3, 50, 73], "were": [3, 75], "whole": [3, 25], "ar": [3, 4, 5, 7, 8, 13, 22, 23, 24, 25, 26, 27, 38, 39, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 65, 66, 73, 74, 76, 77], "18": [3, 53, 60, 75, 77], "max_row": [4, 5, 54], "html": [4, 6, 7, 9, 22, 23, 25, 26, 41, 50, 54, 73, 77], "maximum": [4, 5, 54, 60, 75], "present": [4, 5, 75], "convert": [4, 5, 17, 19, 53, 62, 64, 71, 77], "option": [4, 5, 25, 26, 50, 66, 73, 76, 77], "repres": [4, 26, 71, 73, 77, 78], "form": [4, 5, 39, 75, 78], "can": [4, 6, 7, 8, 9, 22, 23, 25, 26, 28, 39, 41, 50, 53, 59, 60, 63, 64, 66, 73, 74, 75, 76, 77], "us": [4, 6, 7, 20, 25, 26, 29, 38, 40, 41, 50, 51, 53, 56, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 77, 78], "websit": 4, "few": [4, 5, 25, 26, 78], "These": [4, 9, 25, 26, 75], "seem": 4, "difficult": 4, "u": [4, 77], "observ": 4, "understand": 4, "sinc": [4, 75], "thei": [4, 25, 26, 49, 73], "when": [4, 10, 13, 25, 26, 66, 68, 73], "you": [4, 40, 53, 73, 75, 76, 77], "want": [4, 40, 73, 75, 77], "displai": [4, 6, 7, 22, 23, 41, 50, 51, 54, 72, 73, 75, 76, 77], "webpag": 4, "simpl": [4, 38, 77, 78], "name": [4, 5, 8, 14, 17, 20, 22, 23, 24, 25, 26, 27, 39, 43, 50, 52, 53, 58, 60, 63, 64, 67, 68, 73, 74, 75, 76, 77, 78], "abc": [4, 5, 64], "xyz": [4, 5, 64], "uvw": [4, 5, 64], "ag": [4, 5, 32, 38, 64, 77], "12": [4, 5, 21, 24, 56, 64, 66, 75, 77], "14": [4, 5, 64, 75, 77], "height": [4, 5, 6, 22, 23, 25, 26, 40, 41, 50, 51, 64, 73, 77], "5": [4, 5, 9, 14, 25, 26, 27, 28, 29, 39, 41, 42, 48, 50, 51, 52, 54, 58, 59, 60, 64, 66, 73, 75, 77, 78], "table_as_html": 4, "border": 4, "class": [4, 5, 53, 64, 71, 73, 74, 77], "datafram": [4, 19, 64, 77], "n": [4, 5, 8, 68, 70, 75], "thead": 4, "tr": 4, "th": 4, "tbodi": 4, "td": 4, "table_as_html_2": 4, "p": [4, 37, 48, 78], "omit": [4, 5, 39, 42, 56, 75, 77], "sep": 5, "text": [5, 50, 51, 73, 77], "seper": 5, "appear": [5, 21, 24, 29, 75, 77], "between": [5, 25, 57, 73, 74, 77, 78], "just": [5, 21, 64, 75, 77], "table_astext": 5, "nabc": 5, "nxyz": 5, "nuvw": 5, "type": [5, 21, 24, 37, 64, 67, 68, 73, 75, 77, 78], "size": [5, 23, 26, 48, 49, 50, 51, 61, 73, 74, 75, 77, 78], "with_row": [5, 49], "small": [5, 49], "50": [5, 28, 41, 49, 59, 75, 77], "medium": [5, 49], "100": [5, 9, 39, 49, 75, 77], "big": [5, 49], "sizes_astext": 5, "nsmall": 5, "nmedium": 5, "nbig": 5, "column_for_categori": [6, 7], "select": [6, 7, 14, 41, 50, 51, 60, 61, 66, 77], "overlai": [6, 7, 22, 23, 25, 26, 40, 41, 50, 51, 73, 77], "true": [6, 7, 8, 13, 25, 26, 39, 40, 41, 48, 49, 50, 51, 53, 56, 66, 73, 75, 77], "width": [6, 7, 8, 22, 23, 25, 26, 39, 40, 41, 50, 51, 73, 75], "varg": [6, 7, 8, 9, 22, 23, 25, 26, 39, 40, 41, 42, 50, 51, 71, 78], "plot": [6, 7, 9, 22, 23, 25, 26, 28, 50, 51, 59, 77, 78], "chart": [6, 7, 22, 23, 25, 26, 41, 50, 51, 75], "one": [6, 7, 21, 22, 23, 24, 25, 26, 29, 37, 41, 50, 51, 53, 68, 73, 75, 77, 78], "produc": [6, 7, 22, 23, 41, 50, 75], "other": [6, 7, 14, 21, 24, 25, 26, 29, 41, 50, 51, 66, 73, 75, 77, 78], "design": [6, 7, 41, 50], "except": [6, 7, 75], "numer": [6, 7, 9, 41, 50, 51, 60, 78], "axi": [6, 7, 26, 28, 41, 50, 51, 59, 61, 75], "categori": [6, 7, 22, 23, 25, 26, 40, 50, 51, 75, 77], "kwarg": [6, 7, 9, 22, 23, 25, 26, 29, 41, 50, 51, 73], "bool": [6, 7, 8, 22, 23, 25, 26, 39, 41, 48, 50, 51, 75, 77], "color": [6, 7, 21, 22, 23, 24, 25, 26, 41, 50, 51, 56, 66, 73, 75], "per": [6, 7, 8, 22, 23, 39, 41, 50, 51, 60, 70, 75], "data": [6, 7, 17, 19, 20, 22, 23, 25, 26, 27, 41, 42, 46, 50, 51, 58, 65, 72, 73], "fals": [6, 7, 8, 13, 19, 22, 23, 25, 26, 39, 41, 49, 50, 51, 53, 56, 71, 73, 75, 77, 78], "separ": [6, 7, 22, 23, 25, 26, 41, 50, 51, 71, 75], "addit": [6, 7, 9, 22, 23, 25, 26, 41, 50, 51, 66, 67, 68, 69, 70, 73, 77], "get": [6, 7, 9, 22, 23, 25, 26, 41, 50, 72, 75, 76], "plt": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "see": [6, 7, 9, 22, 23, 25, 26, 41, 46, 50, 66, 75, 76, 77], "http": [6, 7, 9, 22, 23, 25, 26, 41, 42, 46, 50, 73, 75, 77], "matplotlib": [6, 7, 9, 22, 23, 25, 26, 28, 41, 50, 59, 77], "org": [6, 7, 9, 22, 23, 25, 26, 41, 50], "api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot_api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "horizont": [7, 23, 50, 75], "redirect": [7, 25, 28, 41, 50, 59], "ibarh": [7, 28, 59], "interact": [7, 25, 28, 41, 46, 50, 51, 59, 75], "enabl": [7, 25, 41, 50, 51], "interactive_plot": [7, 25, 41, 50, 51, 59], "bucket": 7, "show": [7, 25, 41, 50, 51, 77], "whether": [7, 25, 26, 41, 50, 51, 53, 71, 73, 77, 78], "figur": [7, 9, 25, 41, 50, 51], "instead": [7, 25, 26, 41, 50, 51, 64, 73, 75, 78], "graph": [7, 28, 41, 59, 75], "furnitur": 7, "chair": 7, "desk": 7, "price": [7, 14, 21, 24, 28, 41, 56, 59, 66, 75], "group": [8, 22, 23, 25, 26, 38, 40, 50, 51, 53, 77], "comput": [8, 36, 60, 75, 77], "By": [8, 13, 39, 48, 60, 75], "chosen": [8, 25, 26, 39], "from": [8, 18, 19, 20, 21, 22, 23, 27, 39, 42, 48, 52, 53, 55, 58, 60, 62, 66, 69, 70, 73, 74, 75, 77, 78], "numpi": [8, 10, 15, 17, 39, 62, 65, 77, 78], "histogram": [8, 25, 26, 39, 40, 75, 77], "appli": [8, 21, 24, 39, 53, 66, 68, 73, 78], "special": [8, 39], "ha": [8, 29, 68, 70, 75], "where": [8, 21, 24, 37, 48, 55, 57, 72, 73, 74, 77], "lower": [8, 25, 26, 39], "bound": [8, 25, 26, 61, 75], "sequenc": [8, 15, 20, 39, 62, 67, 68, 69, 70, 73, 77], "scalar": [8, 39], "defin": [8, 39, 49, 53], "equal": [8, 25, 26, 39, 43, 44, 48, 66, 74, 75], "rang": [8, 15, 25, 26, 39, 50, 51, 73, 77], "edg": [8, 25, 39], "includ": [8, 9, 25, 26, 39, 42, 50, 58, 73, 75], "rightmost": [8, 39], "allow": [8, 39, 77], "non": [8, 9, 38, 39, 60, 77], "uniform": [8, 39], "float": [8, 22, 23, 25, 39, 71, 73], "upper": [8, 39, 75], "outsid": [8, 39], "ignor": [8, 39], "densiti": [8, 25], "sampl": [8, 39, 49, 57, 77, 78], "probabl": [8, 48, 75, 78], "normal": [8, 39, 71, 77, 78], "integr": [8, 39], "over": [8, 38, 39], "note": [8, 13, 15, 21, 22, 23, 24, 25, 26, 33, 34, 53, 60, 73, 75, 76, 77], "sum": [8, 21, 24, 48, 60, 77, 78], "unless": [8, 53], "uniti": 8, "mass": 8, "vert": 9, "showmean": 9, "test1": 9, "92": [9, 75], "88": [9, 75], "72": [9, 75, 77], "71": [9, 75, 77], "99": [9, 49, 75], "95": [9, 28, 32, 38, 41, 59, 75], "83": [9, 28, 41, 59, 75], "94": [9, 75], "93": [9, 71, 77], "test2": 9, "89": [9, 32, 38, 75], "84": [9, 75], "74": [9, 75, 77, 78], "66": [9, 75, 77], "81": [9, 75, 77], "side": [9, 25, 26, 40], "table2": [9, 29], "numeric_col": 9, "alpha_col": 9, "cannot": [9, 51], "drawn": [9, 73, 77], "index_or_label": 10, "index": [10, 11, 14, 15, 19, 21, 22, 23, 25, 26, 32, 38, 45, 46, 53, 61, 66, 73, 75, 77], "look": [11, 75], "up": [11, 73, 75], "its": [11, 25, 26, 38, 53, 70, 76], "integ": [11, 15, 36, 61, 73, 75], "properti": [12, 25, 30, 35, 36, 47, 65, 71, 73], "tupl": [12, 30, 39, 47, 57, 60, 77], "dtype": [12, 17, 62, 65, 75, 77, 78], "u1": [12, 62, 77], "shallow": 13, "perform": [13, 75], "deep": [13, 73], "mean": [13, 38, 53, 60, 76, 77, 78], "construct": [13, 75, 77], "recurs": 13, "insert": 13, "found": [13, 73, 75], "table_copi": 13, "original_t": 13, "so": [13, 53, 64, 75, 77], "updat": 13, "chang": [13, 43, 44, 45, 53, 75], "refer": [13, 73, 77], "": [13, 20, 22, 23, 33, 34, 38, 43, 44, 50, 51, 53, 60, 64, 66, 71, 73, 74, 75, 76, 77], "orignal_t": 13, "due": 13, "contrast": 13, "how": [13, 25, 46, 75, 77], "occur": [13, 25, 75], "both": [13, 25, 29, 38, 75], "table_shallow_copi": 13, "becaus": [13, 75, 77], "onli": [14, 25, 26, 29, 33, 34, 37, 52, 66, 68, 73, 75], "than": [14, 56, 68, 74, 75], "header": 14, "valid": [14, 42, 48, 67, 68, 76, 77], "remov": [14, 50, 51, 53, 73, 75], "burger": 14, "cheeseburg": 14, "hamburg": 14, "veggi": 14, "calori": 14, "743": 14, "651": 14, "582": 14, "without": [15, 48, 75, 77], "row_indices_or_slic": [15, 61], "slice": [15, 61], "grade": [15, 61], "gpa": [15, 61], "7": [15, 21, 24, 39, 56, 61, 66, 75, 77], "also": [15, 25, 26, 33, 34, 44, 50, 51, 53, 60, 66, 71, 75, 77], "support": [15, 25], "like": [15, 22, 23, 47, 75, 76, 77], "zeroth": 16, "item": [16, 31], "classmethod": [17, 18, 19, 20, 28, 42, 59, 73], "arr": [17, 62, 78], "structur": [17, 62, 75, 77], "field": 17, "correspond": [17, 20, 21, 24, 25, 26, 27, 44, 58, 61, 68, 73, 75, 77], "np": [17, 38, 49, 60, 61, 73, 77, 78], "u10": 17, "i4": 17, "map": [18, 72], "deprec": [18, 25, 40, 50, 51], "df": 19, "keep_index": 19, "panda": [19, 64, 77], "util": [19, 72], "creation": [19, 76], "keep": 19, "turn": [19, 28, 59, 75], "sample_df": 19, "zip": [19, 73, 75], "data1": [19, 20, 27, 39, 54, 58, 77], "data2": [19, 20, 27, 39, 54, 58, 77], "data3": [19, 20, 27, 39, 54, 58], "column1": [19, 20, 27, 39, 44, 54, 58], "column2": [19, 20, 27, 39, 44, 54, 58], "column3": [19, 27, 39, 54, 58], "dict": [20, 27, 51, 73], "fix": [20, 73], "kei": [20, 27, 43, 58, 73, 77], "dictionari": [20, 27, 73, 77], "otherwis": [20, 25, 29], "do": [20, 48, 53, 77], "ident": [20, 71], "first": [20, 21, 24, 25, 34, 51, 54, 57, 58, 71, 73, 75, 77, 78], "column_or_label": [21, 27, 56, 66], "collect": [21, 24, 38, 75, 77], "uniqu": [21, 24, 38, 39, 75], "aggreg": [21, 24, 38], "second": [21, 23, 57, 58, 75, 77], "calcul": [21, 24, 60, 75], "accord": [21, 24, 56, 77], "set": [21, 24, 28, 50, 51, 53, 68, 73, 75, 77], "accept": [21, 24, 53], "marbl": [21, 24, 56, 66], "red": [21, 24, 43, 56, 66, 73, 75], "green": [21, 24, 43, 56, 66, 73, 75], "blue": [21, 24, 43, 56, 66, 73], "shape": [21, 24, 56, 66, 70, 78], "round": [21, 24, 56, 66, 73], "rectangular": [21, 24, 56, 66], "amount": [21, 24, 56, 66, 75], "00": [21, 24, 28, 41, 56, 59, 66, 71, 75], "75": [21, 24, 28, 39, 41, 56, 59, 60, 66, 73, 75, 77, 78], "give": [21, 75], "max": [21, 53, 60], "doesn": [21, 75], "make": [21, 25, 26, 66, 77, 78], "sens": [21, 25, 26], "27": [21, 75, 77], "13": [21, 60, 75, 77], "05": [21, 24, 75], "differ": [22, 23, 69, 70, 75, 77], "need": [22, 23, 73], "copi": [22, 23, 67, 68, 73, 75, 78], "behav": [22, 23], "more": [22, 23, 60, 68, 73, 75, 76, 77, 78], "hist": [22, 23, 26, 28, 40, 59, 77], "regard": [22, 23], "while": [22, 23, 53], "scatter": [22, 23, 28, 41, 51, 59, 77], "requir": [22, 23, 38, 64, 68], "inch": [22, 23], "barh": [23, 28, 59, 77], "coordin": [23, 73], "anoth": [23, 75], "multipl": [24, 25, 26, 29, 45, 53, 73, 75], "combin": [24, 38, 42, 75, 77], "those": [24, 75], "15": [24, 48, 57, 60, 63, 68, 75, 77], "11": [24, 60, 75, 77], "bin": [25, 26, 39, 73, 75, 77], "bin_column": [25, 26], "unit": [25, 73], "rug": 25, "side_by_sid": [25, 26, 40], "left_end": 25, "right_end": 25, "via": 25, "plotli": [25, 28, 41, 51, 59, 75], "ihist": 25, "overlaid": [25, 26], "top": [25, 26], "behavior": [25, 26, 60], "legend": [25, 26, 73], "forc": [25, 26, 75], "scale": [25, 26, 73, 77], "automat": [25, 26], "treat": [25, 26, 77], "assign": [25, 26, 73, 77], "e": [25, 29, 48, 68, 75, 78], "g": [25, 67, 75, 78], "kg": 25, "gener": [25, 26, 38, 66, 77, 78], "depend": [25, 26], "done": [25, 26, 77], "should": [25, 26, 53, 73, 75, 78], "directli": [25, 26, 53], "sever": [25, 26, 60], "Not": [25, 77], "left": [25, 78], "right": [25, 78], "shade": [25, 78], "extrem": 25, "boolean": [25, 53, 66, 73, 75, 77, 78], "distribut": [25, 39, 48, 49, 75, 77, 78], "shade_split": 25, "split": [25, 77], "determin": 25, "end": [25, 75], "fall": 25, "two": [25, 26, 57, 58, 73, 75, 77], "endpoint": 25, "entir": [25, 54], "appropri": 25, "func": [25, 26, 75, 78], "norm": [25, 39, 50], "cumul": [25, 26], "orient": [25, 26], "101": [25, 26, 75, 77], "102": [25, 26, 75, 77], "103": [25, 26], "proport": [25, 49, 75, 78], "25": [25, 60, 75, 77], "weight": [25, 26, 48, 52, 60, 73, 77], "base": [26, 38, 56, 73], "columns_or_label": 27, "rest": [27, 57, 73, 77], "data4": 27, "86": [27, 39, 54, 58, 75], "51": [27, 39, 54, 58, 75, 77], "32": [27, 39, 54, 58, 75, 77], "91": [27, 75], "column4": [27, 39, 54, 58], "global": [28, 59], "variabl": [28, 59], "iplot": [28, 41, 59], "etc": [28, 59, 71, 75], "off": [28, 59, 75], "static_plot": 28, "dai": [28, 41, 59, 77], "90": [28, 41, 59, 75, 77], "82": [28, 41, 59, 75], "project": [28, 41, 59], "line": [28, 41, 50, 59, 73, 75, 77], "other_label": 29, "assum": [29, 37, 75, 78], "previou": [29, 66], "repeat": [29, 56, 73], "relabel": [29, 77], "a_2": 29, "three": [29, 73], "move": [32, 33, 34], "titan": [32, 38], "21": [32, 38, 75, 77], "44": [32, 38, 75, 77], "56": [32, 38, 75, 77], "80": [32, 37, 38, 39, 75, 77], "45": [32, 38, 39, 75, 77], "surviv": [32, 38], "gender": [32, 38], "m": [32, 38, 71, 74], "f": [32, 38, 53, 71, 75, 77, 78], "predict": [32, 38], "what": [33, 34, 53, 73, 77], "known": [33, 34, 53], "inplac": [33, 34, 53], "oper": [33, 34, 53, 77], "state": [36, 42, 73, 77], "pth": [37, 78], "smallest": [37, 73], "least": [37, 78], "larg": 37, "zero": [38, 75], "vice": 38, "versa": 38, "across": 38, "intersect": 38, "60": [38, 39, 71, 75, 77], "3333": 38, "pivot_column": 39, "value_column": 39, "associ": [39, 58], "pivot": [39, 77], "popul": 39, "respect": [39, 58, 61], "from_record": [39, 58], "37": [39, 73, 75, 77], "42": [39, 60, 74, 75, 77], "8": [39, 42, 46, 48, 52, 57, 60, 63, 72, 73, 77], "48": [39, 75, 77], "53": [39, 75, 77], "59": [39, 75, 77], "64": [39, 60, 75, 77], "69": [39, 75, 77], "36": [39, 75, 77], "54": [39, 75, 77], "pivot_column_label": 40, "value_column_label": 40, "draw": [40, 50, 72, 73, 78], "recommend": 40, "realli": 40, "column_for_xtick": 41, "connect": [41, 75], "filepath_or_buff": 42, "read": [42, 73, 75, 76, 77], "file": [42, 63, 73, 75, 77], "web": 42, "address": 42, "handl": 42, "stringio": 42, "could": 42, "url": [42, 73, 77], "scheme": 42, "ftp": 42, "s3": 42, "www": [42, 77], "inferentialthink": [42, 77], "com": [42, 46, 73, 75, 77], "sat2014": [42, 77], "csv": [42, 63, 73, 75, 77], "particip": [42, 77], "rate": [42, 75, 77], "critic": [42, 77], "math": [42, 77], "write": [42, 53, 77], "north": [42, 77], "dakota": [42, 77], "612": [42, 77], "620": [42, 75, 77], "584": [42, 77], "1816": [42, 77], "illinoi": [42, 77], "599": [42, 75, 77], "616": [42, 75, 77], "587": [42, 77], "1802": [42, 77], "iowa": [42, 77], "605": [42, 77], "611": [42, 77], "578": [42, 77], "1794": [42, 77], "south": [42, 75, 77], "604": [42, 75, 77], "609": [42, 75, 77], "579": [42, 77], "1792": [42, 77], "minnesota": [42, 77], "598": [42, 77], "610": [42, 77], "1786": [42, 77], "michigan": [42, 77], "593": [42, 77], "581": [42, 77], "1784": [42, 77], "wisconsin": [42, 77], "596": [42, 77], "608": [42, 77], "1782": [42, 77], "missouri": [42, 77], "595": [42, 77], "597": [42, 77], "1771": [42, 77], "wyom": [42, 77], "590": [42, 77], "573": [42, 77], "1762": [42, 77], "kansa": [42, 77], "591": [42, 77], "566": [42, 77], "1753": [42, 77], "41": [42, 75, 77], "new_label": [43, 44, 75], "id": [43, 73, 75], "12345": 43, "5123": 43, "yolo": 43, "cyan": 43, "magenta": 43, "yellow": 43, "invalid": [43, 44, 73], "unmodifi": 44, "alreadi": 44, "order": [44, 52, 56, 61, 66, 68, 73, 75, 77, 78], "row_or_row_indic": 45, "made": [45, 73, 75], "2nd": [45, 75], "3rd": [45, 75], "pleas": [46, 77], "extend": [46, 75, 77], "docstr": 46, "github": [46, 73, 75], "blob": 46, "614db00e7d22e52683860d2beaa4037bec26cf87": 46, "py": 46, "l5673": 46, "l5765": 46, "view": [47, 75], "k": [48, 49, 55, 57, 58], "with_replac": [48, 75, 77], "randomli": [48, 55, 57, 75], "els": 48, "ith": 48, "resampl": [48, 77], "job": [48, 57, 63], "wage": [48, 57, 63], "w": [48, 77], "multinomi": [49, 78], "output": [49, 54, 63, 75], "random": [49, 77, 78], "seed": 49, "1000": [49, 53, 75, 77], "228": 49, "508": 49, "264": 49, "261": 49, "491": 49, "248": 49, "column_for_x": [50, 51], "fit_lin": [50, 51, 75, 77], "scatterplot": [50, 51], "best": [50, 60, 75], "fit": [50, 75], "iscatt": 50, "marker": [50, 73, 77], "coupl": 50, "dot": [50, 51], "annot": [50, 51], "rel": [50, 51], "area": [50, 51, 73, 78], "synonym": [50, 51], "retain": [50, 51], "temporarili": [50, 51], "backward": [50, 51], "compat": [50, 51], "futur": [50, 51], "releas": [50, 51, 72], "against": [50, 51], "One": [50, 76], "column_for_i": 51, "conveni": 51, "wrapper": 51, "iscatter3d": 51, "3d": 51, "pixel": [51, 73], "graph_object": 51, "update_layout": 51, "assertionerror": [51, 68], "z1": 51, "z2": 51, "keyerror": 52, "ani": [52, 61, 68, 73, 78], "flower": 52, "petal": 52, "34": [52, 74, 75, 77], "lotu": 52, "sunflow": 52, "rose": 52, "unchang": 52, "pretti": [53, 71], "print": [53, 71, 77, 78], "within": [53, 74, 77], "time": [53, 71, 75], "balanc": 53, "run": [53, 60, 63], "__repr__": 53, "upon": 53, "consol": 53, "underli": [53, 73], "remain": [53, 57, 75], "untouch": 53, "It": [53, 64, 75, 77, 78], "worth": 53, "account_info": 53, "user": 53, "gfoo": 53, "bbar": 53, "tbaz": 53, "hbat": 53, "200": [53, 73, 75], "555": 53, "125": [53, 75, 77], "430": [53, 75], "import": [53, 66, 74, 77], "currencyformatt": [53, 68, 71], "bz": 53, "beliz": 53, "dollar": 53, "def": [53, 60, 75, 77], "iceland_krona_formatt": 53, "kr": 53, "converts_valu": [53, 71], "attribut": [53, 73], "format_column": [53, 71], "In": [53, 66, 75, 77], "would": [53, 75], "convert_valu": [53, 71], "icelandkronaformatt": 53, "__init__": 53, "format_krona": 53, "convert_column": [53, 71], "perman": 53, "01": [53, 75], "55": [53, 75, 77], "65": [53, 75, 77], "drop": 53, "fraction": 53, "astyp": 53, "configur": 53, "account": 53, "them": [53, 60, 73], "charact": [53, 71], "someth": [53, 75], "custom": [53, 60, 73, 75, 77], "yourself": 53, "check": [53, 77], "save": 53, "500": [53, 68, 73], "1175": 53, "6700": 53, "val_width": 53, "len": [53, 77], "v": 53, "ljust": 53, "subset": [54, 78], "ipython": [54, 77], "core": [54, 64, 77], "descend": [56, 75, 77], "distinct": 56, "whose": [56, 58, 75], "rather": 56, "ascend": [56, 75], "num_row": [57, 77], "col": 58, "basi": 58, "represent": [58, 73], "suppli": [58, 66], "consid": [58, 75], "wherea": [58, 73], "final": 58, "unset": 59, "op": 60, "built": 60, "min": 60, "median": 60, "statist": 60, "prepend": 60, "fucntion": 60, "minimum": [60, 75], "17": [60, 72, 75, 77], "even": [60, 68], "mai": [60, 71, 77], "lead": 60, "unexpect": 60, "case": 60, "error": 60, "why": 60, "elimin": 60, "befor": 60, "overridden": 60, "weighted_averag": 60, "averag": [60, 75], "std": 60, "13333": 60, "1333": 60, "16": [60, 75, 77], "27761": 60, "67423": 60, "85235": 60, "taken": 61, "indexerror": 61, "out": [61, 75, 77], "arang": 61, "i8": 62, "filenam": [63, 75], "wai": [63, 76, 77, 78], "we": [63, 64, 75, 77], "my_tabl": 63, "recreat": [63, 77], "read_tabl": [63, 77], "current": [63, 73], "directori": 63, "some": [64, 75, 77], "here": [64, 72], "table_df": 64, "frame": 64, "col1": [65, 75], "col2": [65, 75], "value_or_pred": 66, "kept": 66, "pairwis": [66, 75], "comparison": 66, "below": [66, 74, 78], "usag": 66, "callabl": 66, "val": 66, "higher": 66, "predic": [66, 72], "equal_to": [66, 74], "abov": [66, 74], "compar": [66, 77], "alphabet": [67, 75], "permut": 67, "labels_and_valu": 68, "altern": [68, 77], "pair": [68, 73], "incorrect": 68, "iter": [68, 78], "miss": [68, 76], "player": 68, "player_id": 68, "110234": 68, "110235": 68, "woba": 68, "354": [68, 75], "236": 68, "salari": 68, "season": 68, "2016": 68, "500000": 68, "15500000": 68, "bonu": 68, "_format": 68, "000": [68, 71], "600": 68, "_": [70, 77], "tabl": [71, 72, 73, 74, 78], "entri": [71, 75], "symbol": 71, "currenc": 71, "ensur": 71, "ie": 71, "format_valu": 71, "dateformatt": 71, "h": 71, "date": [71, 72, 75], "unix": 71, "timestamp": 71, "2015": [71, 75], "08": [71, 75], "03": 71, "distributionformatt": 71, "decim": [71, 75], "percentag": [71, 75], "min_width": 71, "max_width": 71, "truncat": 71, "long": 71, "static": [71, 74, 75], "convers": 71, "overrid": 71, "pad": 71, "arbitrari": 71, "numberformatt": 71, "decimal_point": 71, "int_to_float": 71, "delimit": 71, "93000": 71, "percentformatt": 71, "dec": 72, "26": [72, 75, 77], "2023": 72, "packag": [72, 77], "written": 72, "berkelei": 72, "cours": 72, "investig": 72, "graphic": 72, "start": [72, 73, 75, 78], "tutori": 72, "access": [72, 76], "manipul": 72, "visual": [72, 73, 76], "export": [72, 76], "advanc": 72, "miscellan": 72, "folium": 73, "circl": [73, 77], "lat": 73, "lon": 73, "popup": 73, "314": 73, "1592653589793": 73, "circle_mark": 73, "stai": 73, "regardless": 73, "zoom": 73, "radiu": 73, "meter": 73, "To": [73, 77], "toggl": 73, "radius_in_met": 73, "flag": 73, "draw_on": 73, "pop": 73, "click": [73, 76], "fill": 73, "squar": [73, 75], "fill_opac": 73, "opac": 73, "leafletj": 73, "circlemark": 73, "For": [73, 74, 75, 77], "38": [73, 74, 75, 77], "122": 73, "121": 73, "3000": 73, "4000": 73, "5000": 73, "map_tabl": 73, "folium_map": 73, "featur": 73, "960": 73, "keyword": 73, "forward": 73, "key_on": 73, "palett": 73, "ylorbr": 73, "brewer": 73, "bugn": 73, "bupu": 73, "gnbu": 73, "orrd": 73, "pubu": 73, "pubugn": 73, "purd": 73, "rdpu": 73, "ylgn": 73, "ylgnbu": 73, "ylorrd": 73, "threshold_scal": 73, "d3": 73, "threshold": 73, "quantil": 73, "85": [73, 75], "nearest": [73, 75], "magnitud": 73, "ex": 73, "270": 73, "5600": 73, "6000": 73, "line_color": 73, "black": 73, "geojson": 73, "geopath": 73, "line_weight": 73, "line_opac": 73, "legend_nam": 73, "titl": 73, "render": 73, "NOT": 73, "ref": 73, "python": [73, 75], "issu": 73, "1207": 73, "featurecollect": 73, "region": [73, 77, 78], "overlain": 73, "read_geojson": 73, "path_or_json_or_string_or_url": 73, "simple_mark": 73, "purpl": 73, "orang": 73, "darkr": 73, "lightr": 73, "beig": 73, "darkblu": 73, "darkgreen": 73, "cadetblu": 73, "darkpurpl": 73, "white": 73, "pink": [73, 75], "lightblu": 73, "lightgreen": 73, "grai": 73, "lightgrai": 73, "standard": [73, 75, 78], "icon": 73, "hex": 73, "code": [73, 75, 77], "plugin": 73, "beautifyicon": 73, "marker_icon": 73, "info": [73, 78], "sign": 73, "getbootstrap": 73, "compon": 73, "clustered_mark": 73, "cluster": 73, "icon_angl": 73, "angl": 73, "popup_width": 73, "300": 73, "further": 73, "io": 73, "modul": [73, 77], "feature_id": 73, "lat_lon": 73, "describ": [73, 75], "latitud": 73, "longitud": 73, "other_attr": 73, "applic": 73, "todo": 73, "document": [73, 76], "index_map": 73, "cluster_label": 73, "colorbar_scal": 73, "cutoff": 73, "colorscal": 73, "gradient": 73, "include_color_scale_outli": 73, "outlier": 73, "radii": 73, "color_scal": 73, "radius_scal": 73, "cluster_bi": 73, "area_scal": 73, "explicitli": 73, "cl": 73, "specif": [73, 75], "well": 73, "markerclust": 73, "geo_json": 73, "substitut": 73, "flat": 73, "polygon": 73, "linear": 73, "ring": 73, "exterior": 73, "interior": 73, "hole": 73, "multipolygon": 73, "get_coordin": 73, "replace_column": 73, "remove_nan": 73, "locat": 73, "identifi": 73, "citi": [73, 75], "counti": 73, "insid": 73, "dataset": 73, "nan": [73, 75], "afterward": 73, "robust": 73, "capit": 73, "acquir": 73, "juli": 73, "2020": 73, "doc": 73, "gaslamp": 73, "media": 73, "download": 73, "geocode_dataset": 73, "geocode_st": 73, "modifi": [73, 75, 76, 77], "lowercas": 73, "pick": [74, 75], "l": [74, 75], "xl": 74, "waist": 74, "above_or_equal_to": 74, "below_or_equal_to": 74, "strictly_between": 74, "between_or_equal_to": 74, "not_abov": 74, "not_above_or_equal_to": 74, "not_below": 74, "not_below_or_equal_to": 74, "not_strictly_between": 74, "not_between": 74, "not_between_or_equal_to": 74, "not_contain": 74, "contained_in": 74, "mxl": 74, "not_contained_in": 74, "greater": [74, 75], "less": [74, 75], "superstr": 74, "part": 74, "substr": [74, 75], "neither": 74, "nor": 74, "not_equal_to": [74, 75], "notebook": [75, 77], "serv": 75, "friendli": 75, "librari": 75, "usual": 75, "29": [75, 77], "new_tabl": 75, "31": [75, 77], "trip": 75, "raw": 75, "githubusercont": 75, "textbook": [75, 77], "gh": 75, "page": [75, 76], "durat": 75, "station": 75, "termin": 75, "bike": 75, "subscrib": 75, "876419": 75, "413": 75, "civic": 75, "center": 75, "bart": 75, "7th": 75, "market": 75, "townsend": 75, "269": 75, "94518": 75, "459672": 75, "408": 75, "2014": 75, "harri": 75, "bridg": 75, "plaza": 75, "ferri": 75, "build": 75, "embarcadero": 75, "sansom": 75, "429": 75, "94111": 75, "903647": 75, "723": 75, "san": 75, "francisco": 75, "caltrain": 75, "330": 75, "10th": 75, "67": [75, 77], "631": 75, "94025": 75, "452829": 75, "409": 75, "steuart": 75, "4th": 75, "76": [75, 77], "428": 75, "94925": 75, "491023": 75, "224": 75, "santa": 75, "clara": 75, "almaden": 75, "jose": 75, "diridon": 75, "144": 75, "94117": 75, "723352": 75, "519": 75, "04": 75, "howard": 75, "63": [75, 77], "70": [75, 77], "629": 75, "94061": 75, "524499": 75, "431": 75, "43": [75, 77], "630": 75, "94706": 75, "518524": 75, "389": 75, "28": [75, 77], "77": [75, 77], "park": 75, "458": 75, "94610": 75, "710070": 75, "11460": 75, "powel": 75, "street": 75, "39": [75, 77], "24": [75, 77], "375": 75, "94107": 75, "793149": 75, "bryant": 75, "289": [75, 77], "94105": 75, "99990": 75, "n1": 75, "v1": 75, "n2": 75, "v2": 75, "mani": 75, "33": [75, 77], "cooki": 75, "sugar": 75, "chocol": 75, "chip": 75, "velvet": 75, "oatmeal": 75, "raisin": 75, "peanut": 75, "butter": 75, "quantiti": 75, "delici": 75, "ye": [75, 77], "35": [75, 77], "column_name_or_index": 75, "lt": 75, "u14": 75, "100000": 75, "suppos": 75, "similarli": 75, "rememb": 75, "99995": 75, "46": [75, 77], "47": [75, 77], "old_label": 75, "49": [75, 77], "52": [75, 77], "57": [75, 77], "filter": 75, "avail": [75, 77], "58": [75, 77], "62": [75, 77], "eual_to": 75, "row_index": 75, "68": [75, 77], "actor": 75, "total": 75, "gross": 75, "movi": 75, "harrison": 75, "ford": 75, "4871": 75, "118": 75, "star": 75, "war": 75, "awaken": 75, "936": 75, "samuel": 75, "jackson": 75, "4772": 75, "aveng": 75, "623": 75, "morgan": 75, "freeman": 75, "4468": 75, "61": [75, 77], "73": [75, 77], "dark": 75, "knight": 75, "534": 75, "tom": 75, "hank": 75, "4340": 75, "98": 75, "toi": 75, "stori": 75, "415": 75, "robert": 75, "downei": 75, "jr": 75, "3947": 75, "eddi": 75, "murphi": 75, "3810": 75, "shrek": 75, "441": 75, "cruis": 75, "3587": 75, "world": [75, 76], "234": 75, "johnni": 75, "depp": 75, "3368": 75, "dead": 75, "man": 75, "chest": 75, "423": 75, "michael": 75, "cain": 75, "3351": 75, "scarlett": 75, "johansson": 75, "3341": 75, "x_column": 75, "y_column": 75, "vertic": 75, "find": 75, "movies_by_year": 75, "year": 75, "11128": 75, "702": 75, "10360": 75, "american": 75, "sniper": 75, "2013": 75, "10923": 75, "688": 75, "catch": 75, "fire": 75, "broken": 75, "down": 75, "unspecifi": 75, "78": [75, 77], "79": [75, 77], "ones": [75, 77], "version": 75, "193": 75, "194": 75, "23": [75, 77], "quotient": 75, "average_gross": 75, "total_gross": 75, "num_movi": 75, "82195122": 75, "17101449": 75, "25081967": 75, "65454545": 75, "47735849": 75, "27368421": 75, "64444444": 75, "85777778": 75, "78448276": 75, "3027027": 75, "68421053": 75, "9244898": 75, "15666667": 75, "8372093": 75, "451": 75, "84285714": 75, "62580645": 75, "131": 75, "2125": 75, "478": 75, "67435897": 75, "00379747": 75, "16764706": 75, "70952381": 75, "67826087": 75, "86470588": 75, "40540541": 75, "38888889": 75, "165": 75, "63529412": 75, "316": 75, "86153846": 75, "12619048": 75, "89428571": 75, "425": 75, "157": 75, "75882353": 75, "28913043": 75, "0225": 75, "15625": 75, "154": 75, "96470588": 75, "83103448": 75, "72564103": 75, "25384615": 75, "308": 75, "82777778": 75, "26666667": 75, "65348837": 75, "732": 75, "119": 75, "06190476": 75, "5925": 75, "106": 75, "86086957": 75, "96": 75, "folsom": 75, "2302": 75, "2610": 75, "3904": 75, "5th": 75, "2190": 75, "adob": 75, "arena": 75, "sap": 75, "176": 75, "beal": 75, "2377": 75, "broadwai": 75, "st": 75, "batteri": 75, "2157": 75, "california": 75, "av": 75, "127": 75, "castro": 75, "el": 75, "camino": 75, "real": 75, "339": 75, "512": 75, "887": 75, "654": 75, "565": 75, "755": 75, "819": 75, "509": 75, "2522": 75, "1999": 75, "679": 75, "602": 75, "827": 75, "753": 75, "4403": 75, "1221": 75, "7426": 75, "6114": 75, "4795": 75, "temporari": 75, "transbai": 75, "4212": 75, "3925": 75, "3900": 75, "3872": 75, "3370": 75, "3218": 75, "87": 75, "22": [75, 77], "clai": 75, "commerci": 75, "montgomeri": 75, "davi": 75, "1616": 75, "cell": 75, "more_con": 75, "flavor": 75, "strawberri": 75, "bubblegum": 75, "light": 75, "brown": 75, "tbl1": 75, "tbl2": 75, "cone": 75, "vanilla": 75, "kind": 75, "mint": 75, "97": 75, "rerun": 75, "notic": 75, "certain": 75, "theoret": 75, "sampled_with_replac": 75, "8hiishifun": 75, "hi": [75, 76], "example_str": 75, "fun": 75, "104": 75, "another_str": 75, "secret": 75, "messag": 75, "105": 75, "fun_arrai": 75, "high": 75, "great": [75, 78], "est": 75, "highest": 75, "greatest": 75, "merg": 75, "some_str": 75, "somelistofstr": 75, "old_str": 75, "new_str": 75, "occurr": 75, "107": 75, "berkeley_str": 75, "saw": 75, "friend": 75, "squirrel": 75, "peopl": 75, "flyer": 75, "sproul": 75, "108": [75, 77], "frisbe": 75, "110": 75, "chain": 75, "picnic": 75, "glade": 75, "111": 75, "example_arrai": 75, "112": 75, "113": [75, 77], "114": 75, "115": [75, 77], "absolut": 75, "new_arr": 75, "after": 75, "124": 75, "14159": 75, "142": 75, "130": 75, "val1": 75, "val2": 75, "132": [75, 77], "new_arrai": 75, "134": 75, "133": 75, "deviat": [75, 78], "150": 75, "648699324175862": 75, "input": [75, 77, 78], "x_1": 75, "x_0": 75, "x_2": 75, "x_3": 75, "135": [75, 77], "136": [75, 77], "root": 75, "137": 75, "138": [75, 77], "stop": 75, "step": [75, 77], "increment": 75, "exclus": 75, "139": 75, "140": [75, 77], "143": [75, 77], "146": 75, "147": 75, "149": 75, "152": 75, "nonzero": 75, "valuea": 75, "153": 75, "another_arrai": 75, "159": 75, "160": 75, "161": 75, "percent": 75, "162": 75, "long_arrai": 75, "163": 75, "164": 75, "negat": 75, "preced": 75, "not_": 75, "leav": 75, "166": 75, "824979": 75, "02": 75, "japantown": 75, "hall": 75, "660": 75, "nil": 75, "439946": 75, "yerba": 75, "buena": 75, "art": 75, "452": 75, "788261": 75, "post": 75, "union": 75, "575": 75, "94108": 75, "560479": 75, "van": 75, "ness": 75, "653797": 75, "546": 75, "94102": 75, "887134": 75, "mechan": 75, "313": 75, "94103": 75, "482225": 75, "spear": 75, "209": 75, "94133": 75, "681697": 75, "19": [75, 77], "368": 75, "95120": 75, "912821": 75, "09": 75, "94085": 75, "strictli": 75, "167": 75, "589964": 75, "15097": 75, "golden": 75, "gate": 75, "polk": 75, "29225": 75, "831509": 75, "1057": 75, "94114": 75, "442750": 75, "6084": 75, "474454": 75, "608714": 75, "19799": 75, "07": 75, "univers": 75, "emerson": 75, "686": 75, "711961": 75, "1026": 75, "189": 75, "833071": 75, "2314": 75, "washington": 75, "kearni": 75, "94806": 75, "570731": 75, "1218": 75, "mlk": 75, "jame": 75, "299": [75, 77], "95033": 75, "853698": 75, "1048": 75, "636": 75, "91436": 75, "787510": 75, "3670": 75, "mountain": 75, "713": 75, "94041": 75, "11576": 75, "168": 75, "11597": 75, "170": 75, "482797": 75, "95112": 75, "483052": 75, "306": 75, "569620": 75, "326": 75, "502332": 75, "613": 75, "94602": 75, "604012": 75, "601": 75, "704918": 75, "394": 75, "513458": 75, "569": 75, "696725": 75, "516": 75, "94109": 75, "829817": 75, "292": 75, "94538": 75, "745895": 75, "06": 75, "380": 75, "94947": 75, "403": 75, "171": 75, "808199": 75, "537": 75, "greather": 75, "interv": 75, "172": 75, "437830": 75, "151": 75, "grant": 75, "avenu": 75, "columbu": 75, "94104": 75, "436255": 75, "195": 75, "585884": 75, "576": 75, "548322": 75, "191": 75, "94705": 75, "594999": 75, "185": 75, "antonio": 75, "shop": 75, "94040": 75, "468534": 75, "443": 75, "873710": 75, "169": 75, "532": 75, "853087": 75, "418": 75, "863019": 75, "504": 75, "883134": 75, "173": 75, "363": 75, "5083": 75, "903735": 75, "453": 75, "94501": 75, "5180": 75, "string_or_arrai": 75, "877160": 75, "527": 75, "768619": 75, "840": 75, "94903": 75, "701211": 75, "252": 75, "405": 75, "487432": 75, "561": 75, "342": 75, "610970": 75, "808": 75, "310": 75, "753668": 75, "196": 75, "533": 75, "94973": 75, "466551": 75, "222": 75, "2578": 75, "178": [75, 77], "180": 75, "681771": 75, "895": 75, "416": 75, "78805": 75, "181": 75, "5056": 75, "sample_s": [75, 78], "model_proport": 75, "182": 75, "190": 75, "log": [75, 78], "17585792": 75, "58835469": 75, "summari": 76, "about": 76, "signatur": 76, "howev": 76, "bracket": [76, 77], "That": 76, "first_arg": 76, "second_arg": 76, "some_other_arg": 76, "fourth_arg": 76, "some_t": 76, "But": 76, "syntaxerror": 76, "syntax": 76, "confus": 76, "itself": [76, 78], "detail": 76, "straightforward": 76, "extens": 76, "mutat": 76, "transform": 76, "brief": 77, "introduct": 77, "complet": 77, "guid": 77, "load": 77, "tab": 77, "member": 77, "scienc": 77, "lab": 77, "mirror": 77, "close": 77, "exact": 77, "hidden": 77, "agg": 77, "inlin": 77, "style": 77, "fivethirtyeight": 77, "particular": 77, "involv": 77, "scratch": 77, "often": 77, "excel": 77, "spreadsheet": 77, "cat": 77, "And": 77, "possibl": 77, "discourag": 77, "preserv": 77, "notat": 77, "shorthand": 77, "common": 77, "vowel": 77, "renam": 77, "condition": 77, "third": 77, "actual": 77, "sort": 77, "reduc": 77, "other_t": 77, "mar_statu": 77, "marri": 77, "partner": 77, "empl_statu": 77, "work": 77, "paid": 77, "ll": 77, "normal_data": 77, "loc": 77, "16957": 77, "75866": 77, "6255": 77, "569511": 77, "47506": 77, "82086": 77, "200926": 77, "79459": 77, "04412": 77, "94366": 77, "190606": 77, "32426": 77, "982727": 77, "802981": 77, "10581": 77, "60784": 77, "27348": 77, "9046": 77, "66252": 77, "54207": 77, "nicer": 77, "categor": 77, "to_df": 77, "prevent": 77, "to_csv": 77, "chapter": 77, "signific": 77, "birth": 77, "smoker": 77, "bootstrap": 77, "test": 77, "tabledemo": 77, "repo": 77, "babi": 77, "174": 77, "mother": 77, "newborn": 77, "ounc": 77, "gestat": 77, "womb": 77, "There": 77, "matern": 77, "pregnanc": 77, "let": 77, "peek": 77, "120": 77, "284": 77, "282": 77, "128": 77, "279": 77, "286": 77, "244": 77, "245": 77, "351": 77, "1164": 77, "smoker_and_wt": 77, "715": 77, "459": 77, "birthweight": 77, "grab": 77, "don": 77, "smoke": 77, "nonsmoking_mean": 77, "smoking_mean": 77, "observed_diff": 77, "2661425720249184": 77, "num_nonsmok": 77, "bootstrap_onc": 77, "nonsmok": 77, "bootstrap_diff": 77, "repetit": 77, "bootstrapped_diff_mean": 77, "6929689": 77, "27442753": 77, "33656322": 77, "14858693": 77, "35160047": 77, "3568597": 77, "23675975": 77, "78301263": 77, "24442007": 77, "02866981": 77, "num_diffs_great": 77, "ab": 77, "p_valu": 77, "main": 77, "default_map": 77, "as_html": 77, "open": 77, "store": 77, "is_non_string_iter": 78, "As": 78, "variad": 78, "varad": 78, "u3": 78, "float64": 78, "minim": 78, "smooth": 78, "optim": 78, "scipi": 78, "multi": 78, "percentil": 78, "curri": 78, "plot_cdf_area": 78, "rbound": 78, "lbound": 78, "sd": 78, "curv": 78, "paramet": 78, "boundari": 78, "neg": 78, "infin": 78, "plot_normal_cdf": 78, "proportions_from_distribut": 78, "column_nam": 78, "divid": 78, "throw": 78, "sample_proport": 78, "outcom": 78, "similar": 78, "table_appli": 78, "your": 78}, "objects": {"datascience": [[71, 0, 0, "-", "formats"], [73, 0, 0, "-", "maps"], [74, 0, 0, "-", "predicates"], [78, 0, 0, "-", "util"]], "datascience.formats": [[71, 1, 1, "", "CurrencyFormatter"], [71, 1, 1, "", "DateFormatter"], [71, 1, 1, "", "DistributionFormatter"], [71, 1, 1, "", "Formatter"], [71, 1, 1, "", "NumberFormatter"], [71, 1, 1, "", "PercentFormatter"]], "datascience.formats.CurrencyFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DateFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DistributionFormatter": [[71, 2, 1, "", "convert_column"]], "datascience.formats.Formatter": [[71, 2, 1, "", "convert_column"], [71, 2, 1, "", "convert_value"], [71, 3, 1, "", "converts_values"], [71, 4, 1, "", "etc"], [71, 2, 1, "", "format_column"], [71, 2, 1, "", "format_value"], [71, 4, 1, "", "max_width"], [71, 4, 1, "", "min_width"]], "datascience.formats.NumberFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.PercentFormatter": [[71, 2, 1, "", "format_value"]], "datascience.maps": [[73, 1, 1, "", "Circle"], [73, 1, 1, "", "Map"], [73, 1, 1, "", "Marker"], [73, 1, 1, "", "Region"], [73, 5, 1, "", "get_coordinates"]], "datascience.maps.Circle": [[73, 2, 1, "", "draw_on"]], "datascience.maps.Map": [[73, 2, 1, "", "color"], [73, 2, 1, "", "copy"], [73, 3, 1, "", "features"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 2, 1, "", "overlay"], [73, 2, 1, "", "read_geojson"]], "datascience.maps.Marker": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 2, 1, "", "map"], [73, 2, 1, "", "map_table"]], "datascience.maps.Region": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 3, 1, "", "polygons"], [73, 3, 1, "", "properties"], [73, 3, 1, "", "type"]], "datascience.predicates": [[74, 1, 1, "", "are"]], "datascience.predicates.are": [[74, 2, 1, "", "above"], [74, 2, 1, "", "above_or_equal_to"], [74, 2, 1, "", "below"], [74, 2, 1, "", "below_or_equal_to"], [74, 2, 1, "", "between"], [74, 2, 1, "", "between_or_equal_to"], [74, 2, 1, "", "contained_in"], [74, 2, 1, "", "containing"], [74, 2, 1, "", "equal_to"], [74, 2, 1, "", "not_above"], [74, 2, 1, "", "not_above_or_equal_to"], [74, 2, 1, "", "not_below"], [74, 2, 1, "", "not_below_or_equal_to"], [74, 2, 1, "", "not_between"], [74, 2, 1, "", "not_between_or_equal_to"], [74, 2, 1, "", "not_contained_in"], [74, 2, 1, "", "not_containing"], [74, 2, 1, "", "not_equal_to"], [74, 2, 1, "", "not_strictly_between"], [74, 2, 1, "", "strictly_between"]], "datascience.tables.Table": [[0, 2, 1, "", "__init__"], [1, 2, 1, "", "append"], [2, 2, 1, "", "append_column"], [3, 2, 1, "", "apply"], [4, 2, 1, "", "as_html"], [5, 2, 1, "", "as_text"], [6, 2, 1, "", "bar"], [7, 2, 1, "", "barh"], [8, 2, 1, "", "bin"], [9, 2, 1, "", "boxplot"], [10, 2, 1, "", "column"], [11, 2, 1, "", "column_index"], [12, 3, 1, "", "columns"], [13, 2, 1, "", "copy"], [14, 2, 1, "", "drop"], [15, 2, 1, "", "exclude"], [16, 2, 1, "", "first"], [17, 2, 1, "", "from_array"], [18, 2, 1, "", "from_columns_dict"], [19, 2, 1, "", "from_df"], [20, 2, 1, "", "from_records"], [21, 2, 1, "", "group"], [22, 2, 1, "", "group_bar"], [23, 2, 1, "", "group_barh"], [24, 2, 1, "", "groups"], [25, 2, 1, "", "hist"], [26, 2, 1, "", "hist_of_counts"], [27, 2, 1, "", "index_by"], [28, 2, 1, "", "interactive_plots"], [29, 2, 1, "", "join"], [30, 3, 1, "", "labels"], [31, 2, 1, "", "last"], [32, 2, 1, "", "move_column"], [33, 2, 1, "", "move_to_end"], [34, 2, 1, "", "move_to_start"], [35, 3, 1, "", "num_columns"], [36, 3, 1, "", "num_rows"], [37, 2, 1, "", "percentile"], [38, 2, 1, "", "pivot"], [39, 2, 1, "", "pivot_bin"], [40, 2, 1, "", "pivot_hist"], [41, 2, 1, "", "plot"], [42, 2, 1, "", "read_table"], [43, 2, 1, "", "relabel"], [44, 2, 1, "", "relabeled"], [45, 2, 1, "", "remove"], [46, 2, 1, "", "row"], [47, 3, 1, "", "rows"], [48, 2, 1, "", "sample"], [49, 2, 1, "", "sample_from_distribution"], [50, 2, 1, "", "scatter"], [51, 2, 1, "", "scatter3d"], [52, 2, 1, "", "select"], [53, 2, 1, "", "set_format"], [54, 2, 1, "", "show"], [55, 2, 1, "", "shuffle"], [56, 2, 1, "", "sort"], [57, 2, 1, "", "split"], [58, 2, 1, "", "stack"], [59, 2, 1, "", "static_plots"], [60, 2, 1, "", "stats"], [61, 2, 1, "", "take"], [62, 2, 1, "", "to_array"], [63, 2, 1, "", "to_csv"], [64, 2, 1, "", "to_df"], [65, 3, 1, "", "values"], [66, 2, 1, "", "where"], [67, 2, 1, "", "with_column"], [68, 2, 1, "", "with_columns"], [69, 2, 1, "", "with_row"], [70, 2, 1, "", "with_rows"]], "datascience.util": [[78, 5, 1, "", "is_non_string_iterable"], [78, 5, 1, "", "make_array"], [78, 5, 1, "", "minimize"], [78, 5, 1, "", "percentile"], [78, 5, 1, "", "plot_cdf_area"], [78, 5, 1, "", "plot_normal_cdf"], [78, 5, 1, "", "proportions_from_distribution"], [78, 5, 1, "", "sample_proportions"], [78, 5, 1, "", "table_apply"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:attribute", "5": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "titleterms": {"datasci": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "tabl": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 75, 76, 77], "__init__": 0, "append": [1, 75], "append_column": 2, "appli": [3, 75], "as_html": 4, "as_text": 5, "bar": 6, "barh": [7, 75], "bin": 8, "boxplot": 9, "column": [10, 12, 75], "column_index": 11, "copi": 13, "drop": [14, 75], "exclud": 15, "first": 16, "from_arrai": 17, "from_columns_dict": 18, "from_df": 19, "from_record": 20, "group": [21, 24, 75], "group_bar": 22, "group_barh": 23, "hist": [25, 75], "hist_of_count": 26, "index_bi": 27, "interactive_plot": [28, 75], "join": [29, 75], "label": [30, 75], "last": 31, "move_column": 32, "move_to_end": 33, "move_to_start": 34, "num_column": [35, 75], "num_row": [36, 75], "percentil": [37, 75], "pivot": [38, 75], "pivot_bin": 39, "pivot_hist": 40, "plot": [41, 75], "read_tabl": [42, 75], "relabel": [43, 44, 75], "remov": 45, "row": [46, 47], "sampl": [48, 75], "sample_from_distribut": 49, "scatter": [50, 75], "scatter3d": 51, "select": [52, 75], "set_format": 53, "show": [54, 75], "shuffl": 55, "sort": [56, 75], "split": [57, 75], "stack": 58, "static_plot": [59, 75], "stat": 60, "take": [61, 75], "to_arrai": 62, "to_csv": 63, "to_df": 64, "valu": [65, 77], "where": [66, 75], "with_column": [67, 68, 75], "with_row": [69, 70], "format": 71, "welcom": 72, "": 72, "document": 72, "refer": [72, 75], "map": [73, 77], "predic": [74, 75], "data": [75, 77], "8": 75, "function": [75, 78], "method": 75, "tbl": 75, "visual": [75, 77], "advanc": 75, "string": 75, "str": 75, "replac": 75, "arrai": 75, "max": 75, "min": 75, "sum": 75, "ab": 75, "round": 75, "num": 75, "len": 75, "make_arrai": 75, "np": 75, "mean": 75, "std": 75, "diff": 75, "sqrt": 75, "arang": 75, "item": 75, "random": 75, "choic": 75, "count_nonzero": 75, "ar": 75, "equal_to": 75, "abov": 75, "above_or_equal_to": 75, "below": 75, "below_or_equal_to": 75, "between": 75, "between_or_equal_to": 75, "contained_in": 75, "contain": 75, "strictly_between": 75, "miscellan": 75, "sample_proport": 75, "minim": 75, "start": 77, "here": 77, "tutori": 77, "content": 77, "get": 77, "creat": 77, "access": 77, "manipul": 77, "export": 77, "an": 77, "exampl": 77, "draw": 77, "util": 78}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"datascience.tables.Table.__init__": [[0, "datascience-tables-table-init"]], "datascience.tables.Table.append": [[1, "datascience-tables-table-append"]], "datascience.tables.Table.append_column": [[2, "datascience-tables-table-append-column"]], "datascience.tables.Table.apply": [[3, "datascience-tables-table-apply"]], "datascience.tables.Table.as_html": [[4, "datascience-tables-table-as-html"]], "datascience.tables.Table.as_text": [[5, "datascience-tables-table-as-text"]], "datascience.tables.Table.bar": [[6, "datascience-tables-table-bar"]], "datascience.tables.Table.barh": [[7, "datascience-tables-table-barh"]], "datascience.tables.Table.bin": [[8, "datascience-tables-table-bin"]], "datascience.tables.Table.boxplot": [[9, "datascience-tables-table-boxplot"]], "datascience.tables.Table.column": [[10, "datascience-tables-table-column"]], "datascience.tables.Table.column_index": [[11, "datascience-tables-table-column-index"]], "datascience.tables.Table.columns": [[12, "datascience-tables-table-columns"]], "datascience.tables.Table.copy": [[13, "datascience-tables-table-copy"]], "datascience.tables.Table.drop": [[14, "datascience-tables-table-drop"]], "datascience.tables.Table.exclude": [[15, "datascience-tables-table-exclude"]], "datascience.tables.Table.first": [[16, "datascience-tables-table-first"]], "datascience.tables.Table.from_array": [[17, "datascience-tables-table-from-array"]], "datascience.tables.Table.from_columns_dict": [[18, "datascience-tables-table-from-columns-dict"]], "datascience.tables.Table.from_df": [[19, "datascience-tables-table-from-df"]], "datascience.tables.Table.from_records": [[20, "datascience-tables-table-from-records"]], "datascience.tables.Table.group": [[21, "datascience-tables-table-group"]], "datascience.tables.Table.group_bar": [[22, "datascience-tables-table-group-bar"]], "datascience.tables.Table.group_barh": [[23, "datascience-tables-table-group-barh"]], "datascience.tables.Table.groups": [[24, "datascience-tables-table-groups"]], "datascience.tables.Table.hist": [[25, "datascience-tables-table-hist"]], "datascience.tables.Table.hist_of_counts": [[26, "datascience-tables-table-hist-of-counts"]], "datascience.tables.Table.index_by": [[27, "datascience-tables-table-index-by"]], "datascience.tables.Table.interactive_plots": [[28, "datascience-tables-table-interactive-plots"]], "datascience.tables.Table.join": [[29, "datascience-tables-table-join"]], "datascience.tables.Table.labels": [[30, "datascience-tables-table-labels"]], "datascience.tables.Table.last": [[31, "datascience-tables-table-last"]], "datascience.tables.Table.move_column": [[32, "datascience-tables-table-move-column"]], "datascience.tables.Table.move_to_end": [[33, "datascience-tables-table-move-to-end"]], "datascience.tables.Table.move_to_start": [[34, "datascience-tables-table-move-to-start"]], "datascience.tables.Table.num_columns": [[35, "datascience-tables-table-num-columns"]], "datascience.tables.Table.num_rows": [[36, "datascience-tables-table-num-rows"]], "datascience.tables.Table.percentile": [[37, "datascience-tables-table-percentile"]], "datascience.tables.Table.pivot": [[38, "datascience-tables-table-pivot"]], "datascience.tables.Table.pivot_bin": [[39, "datascience-tables-table-pivot-bin"]], "datascience.tables.Table.pivot_hist": [[40, "datascience-tables-table-pivot-hist"]], "datascience.tables.Table.plot": [[41, "datascience-tables-table-plot"]], "datascience.tables.Table.read_table": [[42, "datascience-tables-table-read-table"]], "datascience.tables.Table.relabel": [[43, "datascience-tables-table-relabel"]], "datascience.tables.Table.relabeled": [[44, "datascience-tables-table-relabeled"]], "datascience.tables.Table.remove": [[45, "datascience-tables-table-remove"]], "datascience.tables.Table.row": [[46, "datascience-tables-table-row"]], "datascience.tables.Table.rows": [[47, "datascience-tables-table-rows"]], "datascience.tables.Table.sample": [[48, "datascience-tables-table-sample"]], "datascience.tables.Table.sample_from_distribution": [[49, "datascience-tables-table-sample-from-distribution"]], "datascience.tables.Table.scatter": [[50, "datascience-tables-table-scatter"]], "datascience.tables.Table.scatter3d": [[51, "datascience-tables-table-scatter3d"]], "datascience.tables.Table.select": [[52, "datascience-tables-table-select"]], "datascience.tables.Table.set_format": [[53, "datascience-tables-table-set-format"]], "datascience.tables.Table.show": [[54, "datascience-tables-table-show"]], "datascience.tables.Table.shuffle": [[55, "datascience-tables-table-shuffle"]], "datascience.tables.Table.sort": [[56, "datascience-tables-table-sort"]], "datascience.tables.Table.split": [[57, "datascience-tables-table-split"]], "datascience.tables.Table.stack": [[58, "datascience-tables-table-stack"]], "datascience.tables.Table.static_plots": [[59, "datascience-tables-table-static-plots"]], "datascience.tables.Table.stats": [[60, "datascience-tables-table-stats"]], "datascience.tables.Table.take": [[61, "datascience-tables-table-take"]], "datascience.tables.Table.to_array": [[62, "datascience-tables-table-to-array"]], "datascience.tables.Table.to_csv": [[63, "datascience-tables-table-to-csv"]], "datascience.tables.Table.to_df": [[64, "datascience-tables-table-to-df"]], "datascience.tables.Table.values": [[65, "datascience-tables-table-values"]], "datascience.tables.Table.where": [[66, "datascience-tables-table-where"]], "datascience.tables.Table.with_column": [[67, "datascience-tables-table-with-column"]], "datascience.tables.Table.with_columns": [[68, "datascience-tables-table-with-columns"]], "datascience.tables.Table.with_row": [[69, "datascience-tables-table-with-row"]], "datascience.tables.Table.with_rows": [[70, "datascience-tables-table-with-rows"]], "Formats (datascience.formats)": [[71, "module-datascience.formats"]], "Welcome to datascience\u2019s documentation!": [[72, "welcome-to-datascience-s-documentation"]], "Reference": [[72, "reference"]], "Maps (datascience.maps)": [[73, "module-datascience.maps"]], "Predicates (datascience.predicates)": [[74, "module-datascience.predicates"]], "Data 8 datascience Reference": [[75, "Data-8-datascience-Reference"]], "Table Functions and Methods": [[75, "Table-Functions-and-Methods"]], "Table()": [[75, "Table()"]], "Table.read_table()": [[75, "Table.read_table()"]], "tbl.with_column": [[75, "tbl.with_column"]], "tbl.column()": [[75, "tbl.column()"]], "tbl.num_rows": [[75, "tbl.num_rows"]], "tbl.num_columns": [[75, "tbl.num_columns"]], "tbl.labels": [[75, "tbl.labels"]], "tbl.select()": [[75, "tbl.select()"]], "tbl.drop()": [[75, "tbl.drop()"]], "tbl.relabel()": [[75, "tbl.relabel()"]], "tbl.show()": [[75, "tbl.show()"]], "tbl.sort()": [[75, "tbl.sort()"]], "tbl.where()": [[75, "tbl.where()"]], "tbl.take()": [[75, "tbl.take()"]], "Table Visualizations": [[75, "Table-Visualizations"]], "tbl.scatter()": [[75, "tbl.scatter()"]], "tbl.plot()": [[75, "tbl.plot()"]], "tbl.barh()": [[75, "tbl.barh()"]], "tbl.hist()": [[75, "tbl.hist()"]], "Table.interactive_plots()": [[75, "Table.interactive_plots()"]], "Table.static_plots()": [[75, "Table.static_plots()"]], "Advanced Table Functions": [[75, "Advanced-Table-Functions"]], "tbl.apply()": [[75, "tbl.apply()"]], "tbl.group()": [[75, "tbl.group()"]], "tbl.pivot()": [[75, "tbl.pivot()"]], "tbl.join()": [[75, "tbl.join()"]], "tbl.sample()": [[75, "tbl.sample()"]], "String Methods": [[75, "String-Methods"]], "str.split()": [[75, "str.split()"]], "str.join()": [[75, "str.join()"]], "str.replace()": [[75, "str.replace()"]], "Array Functions and Methods": [[75, "Array-Functions-and-Methods"]], "max()": [[75, "max()"]], "min()": [[75, "min()"]], "sum()": [[75, "sum()"]], "abs()": [[75, "abs()"]], "round(num)": [[75, "round(num)"]], "len()": [[75, "len()"]], "make_array()": [[75, "make_array()"]], "np.mean": [[75, "np.mean"]], "np.std()": [[75, "np.std()"]], "np.diff()": [[75, "np.diff()"]], "np.sqrt()": [[75, "np.sqrt()"]], "np.arange()": [[75, "np.arange()"]], "array.item()": [[75, "array.item()"]], "np.random.choice": [[75, "np.random.choice"]], "np.count_nonzero()": [[75, "np.count_nonzero()"]], "np.append()": [[75, "np.append()"]], "percentile()": [[75, "percentile()"]], "Table.where Predicates": [[75, "Table.where-Predicates"]], "are.equal_to()": [[75, "are.equal_to()"]], "are.above()": [[75, "are.above()"]], "are.above_or_equal_to()": [[75, "are.above_or_equal_to()"]], "are.below()": [[75, "are.below()"]], "are.below_or_equal_to()": [[75, "are.below_or_equal_to()"]], "are.between()": [[75, "are.between()"]], "are.between_or_equal_to()": [[75, "are.between_or_equal_to()"]], "are.contained_in()": [[75, "are.contained_in()"]], "are.containing()": [[75, "are.containing()"]], "are.strictly_between()": [[75, "are.strictly_between()"]], "Miscellaneous Functions": [[75, "Miscellaneous-Functions"]], "sample_proportions()": [[75, "sample_proportions()"]], "minimize()": [[75, "minimize()"]], "Tables (datascience.tables)": [[76, "tables-datascience-tables"]], "Start Here: datascience Tutorial": [[77, "start-here-datascience-tutorial"]], "Table of Contents": [[77, "table-of-contents"]], "Getting Started": [[77, "getting-started"]], "Creating a Table": [[77, "creating-a-table"]], "Accessing Values": [[77, "accessing-values"]], "Manipulating Data": [[77, "manipulating-data"]], "Visualizing Data": [[77, "visualizing-data"]], "Exporting": [[77, "exporting"]], "An Example": [[77, "an-example"]], "Drawing Maps": [[77, "drawing-maps"]], "Utility Functions (datascience.util)": [[78, "module-datascience.util"]]}, "indexentries": {"__init__() (datascience.tables.table method)": [[0, "datascience.tables.Table.__init__"]], "append() (datascience.tables.table method)": [[1, "datascience.tables.Table.append"]], "append_column() (datascience.tables.table method)": [[2, "datascience.tables.Table.append_column"]], "apply() (datascience.tables.table method)": [[3, "datascience.tables.Table.apply"]], "as_html() (datascience.tables.table method)": [[4, "datascience.tables.Table.as_html"]], "as_text() (datascience.tables.table method)": [[5, "datascience.tables.Table.as_text"]], "bar() (datascience.tables.table method)": [[6, "datascience.tables.Table.bar"]], "barh() (datascience.tables.table method)": [[7, "datascience.tables.Table.barh"]], "bin() (datascience.tables.table method)": [[8, "datascience.tables.Table.bin"]], "boxplot() (datascience.tables.table method)": [[9, "datascience.tables.Table.boxplot"]], "column() (datascience.tables.table method)": [[10, "datascience.tables.Table.column"]], "column_index() (datascience.tables.table method)": [[11, "datascience.tables.Table.column_index"]], "columns (datascience.tables.table property)": [[12, "datascience.tables.Table.columns"]], "copy() (datascience.tables.table method)": [[13, "datascience.tables.Table.copy"]], "drop() (datascience.tables.table method)": [[14, "datascience.tables.Table.drop"]], "exclude() (datascience.tables.table method)": [[15, "datascience.tables.Table.exclude"]], "first() (datascience.tables.table method)": [[16, "datascience.tables.Table.first"]], "from_array() (datascience.tables.table class method)": [[17, "datascience.tables.Table.from_array"]], "from_columns_dict() (datascience.tables.table class method)": [[18, "datascience.tables.Table.from_columns_dict"]], "from_df() (datascience.tables.table class method)": [[19, "datascience.tables.Table.from_df"]], "from_records() (datascience.tables.table class method)": [[20, "datascience.tables.Table.from_records"]], "group() (datascience.tables.table method)": [[21, "datascience.tables.Table.group"]], "group_bar() (datascience.tables.table method)": [[22, "datascience.tables.Table.group_bar"]], "group_barh() (datascience.tables.table method)": [[23, "datascience.tables.Table.group_barh"]], "groups() (datascience.tables.table method)": [[24, "datascience.tables.Table.groups"]], "hist() (datascience.tables.table method)": [[25, "datascience.tables.Table.hist"]], "hist_of_counts() (datascience.tables.table method)": [[26, "datascience.tables.Table.hist_of_counts"]], "index_by() (datascience.tables.table method)": [[27, "datascience.tables.Table.index_by"]], "interactive_plots() (datascience.tables.table class method)": [[28, "datascience.tables.Table.interactive_plots"]], "join() (datascience.tables.table method)": [[29, "datascience.tables.Table.join"]], "labels (datascience.tables.table property)": [[30, "datascience.tables.Table.labels"]], "last() (datascience.tables.table method)": [[31, "datascience.tables.Table.last"]], "move_column() (datascience.tables.table method)": [[32, "datascience.tables.Table.move_column"]], "move_to_end() (datascience.tables.table method)": [[33, "datascience.tables.Table.move_to_end"]], "move_to_start() (datascience.tables.table method)": [[34, "datascience.tables.Table.move_to_start"]], "num_columns (datascience.tables.table property)": [[35, "datascience.tables.Table.num_columns"]], "num_rows (datascience.tables.table property)": [[36, "datascience.tables.Table.num_rows"]], "percentile() (datascience.tables.table method)": [[37, "datascience.tables.Table.percentile"]], "pivot() (datascience.tables.table method)": [[38, "datascience.tables.Table.pivot"]], "pivot_bin() (datascience.tables.table method)": [[39, "datascience.tables.Table.pivot_bin"]], "pivot_hist() (datascience.tables.table method)": [[40, "datascience.tables.Table.pivot_hist"]], "plot() (datascience.tables.table method)": [[41, "datascience.tables.Table.plot"]], "read_table() (datascience.tables.table class method)": [[42, "datascience.tables.Table.read_table"]], "relabel() (datascience.tables.table method)": [[43, "datascience.tables.Table.relabel"]], "relabeled() (datascience.tables.table method)": [[44, "datascience.tables.Table.relabeled"]], "remove() (datascience.tables.table method)": [[45, "datascience.tables.Table.remove"]], "row() (datascience.tables.table method)": [[46, "datascience.tables.Table.row"]], "rows (datascience.tables.table property)": [[47, "datascience.tables.Table.rows"]], "sample() (datascience.tables.table method)": [[48, "datascience.tables.Table.sample"]], "sample_from_distribution() (datascience.tables.table method)": [[49, "datascience.tables.Table.sample_from_distribution"]], "scatter() (datascience.tables.table method)": [[50, "datascience.tables.Table.scatter"]], "scatter3d() (datascience.tables.table method)": [[51, "datascience.tables.Table.scatter3d"]], "select() (datascience.tables.table method)": [[52, "datascience.tables.Table.select"]], "set_format() (datascience.tables.table method)": [[53, "datascience.tables.Table.set_format"]], "show() (datascience.tables.table method)": [[54, "datascience.tables.Table.show"]], "shuffle() (datascience.tables.table method)": [[55, "datascience.tables.Table.shuffle"]], "sort() (datascience.tables.table method)": [[56, "datascience.tables.Table.sort"]], "split() (datascience.tables.table method)": [[57, "datascience.tables.Table.split"]], "stack() (datascience.tables.table method)": [[58, "datascience.tables.Table.stack"]], "static_plots() (datascience.tables.table class method)": [[59, "datascience.tables.Table.static_plots"]], "stats() (datascience.tables.table method)": [[60, "datascience.tables.Table.stats"]], "take() (datascience.tables.table method)": [[61, "datascience.tables.Table.take"]], "to_array() (datascience.tables.table method)": [[62, "datascience.tables.Table.to_array"]], "to_csv() (datascience.tables.table method)": [[63, "datascience.tables.Table.to_csv"]], "to_df() (datascience.tables.table method)": [[64, "datascience.tables.Table.to_df"]], "values (datascience.tables.table property)": [[65, "datascience.tables.Table.values"]], "where() (datascience.tables.table method)": [[66, "datascience.tables.Table.where"]], "with_column() (datascience.tables.table method)": [[67, "datascience.tables.Table.with_column"]], "with_columns() (datascience.tables.table method)": [[68, "datascience.tables.Table.with_columns"]], "with_row() (datascience.tables.table method)": [[69, "datascience.tables.Table.with_row"]], "with_rows() (datascience.tables.table method)": [[70, "datascience.tables.Table.with_rows"]], "currencyformatter (class in datascience.formats)": [[71, "datascience.formats.CurrencyFormatter"]], "dateformatter (class in datascience.formats)": [[71, "datascience.formats.DateFormatter"]], "distributionformatter (class in datascience.formats)": [[71, "datascience.formats.DistributionFormatter"]], "formatter (class in datascience.formats)": [[71, "datascience.formats.Formatter"]], "numberformatter (class in datascience.formats)": [[71, "datascience.formats.NumberFormatter"]], "percentformatter (class in datascience.formats)": [[71, "datascience.formats.PercentFormatter"]], "convert_column() (datascience.formats.distributionformatter method)": [[71, "datascience.formats.DistributionFormatter.convert_column"]], "convert_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.convert_column"]], "convert_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.convert_value"]], "convert_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.convert_value"]], "convert_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.convert_value"]], "convert_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.convert_value"]], "converts_values (datascience.formats.formatter property)": [[71, "datascience.formats.Formatter.converts_values"]], "datascience.formats": [[71, "module-datascience.formats"]], "etc (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.etc"]], "format_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.format_column"]], "format_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.format_value"]], "format_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.format_value"]], "format_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.format_value"]], "format_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.format_value"]], "format_value() (datascience.formats.percentformatter method)": [[71, "datascience.formats.PercentFormatter.format_value"]], "max_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.max_width"]], "min_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.min_width"]], "module": [[71, "module-datascience.formats"], [73, "module-datascience.maps"], [74, "module-datascience.predicates"], [78, "module-datascience.util"]], "circle (class in datascience.maps)": [[73, "datascience.maps.Circle"]], "map (class in datascience.maps)": [[73, "datascience.maps.Map"]], "marker (class in datascience.maps)": [[73, "datascience.maps.Marker"]], "region (class in datascience.maps)": [[73, "datascience.maps.Region"]], "color() (datascience.maps.map method)": [[73, "datascience.maps.Map.color"]], "copy() (datascience.maps.map method)": [[73, "datascience.maps.Map.copy"]], "copy() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.copy"]], "copy() (datascience.maps.region method)": [[73, "datascience.maps.Region.copy"]], "datascience.maps": [[73, "module-datascience.maps"]], "draw_on() (datascience.maps.circle method)": [[73, "datascience.maps.Circle.draw_on"]], "draw_on() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.draw_on"]], "draw_on() (datascience.maps.region method)": [[73, "datascience.maps.Region.draw_on"]], "features (datascience.maps.map property)": [[73, "datascience.maps.Map.features"]], "format() (datascience.maps.map method)": [[73, "datascience.maps.Map.format"]], "format() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.format"]], "format() (datascience.maps.region method)": [[73, "datascience.maps.Region.format"]], "geojson() (datascience.maps.map method)": [[73, "datascience.maps.Map.geojson"]], "geojson() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.geojson"]], "geojson() (datascience.maps.region method)": [[73, "datascience.maps.Region.geojson"]], "get_coordinates() (in module datascience.maps)": [[73, "datascience.maps.get_coordinates"]], "lat_lons (datascience.maps.marker property)": [[73, "datascience.maps.Marker.lat_lons"]], "lat_lons (datascience.maps.region property)": [[73, "datascience.maps.Region.lat_lons"]], "map() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map"]], "map_table() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map_table"]], "overlay() (datascience.maps.map method)": [[73, "datascience.maps.Map.overlay"]], "polygons (datascience.maps.region property)": [[73, "datascience.maps.Region.polygons"]], "properties (datascience.maps.region property)": [[73, "datascience.maps.Region.properties"]], "read_geojson() (datascience.maps.map class method)": [[73, "datascience.maps.Map.read_geojson"]], "type (datascience.maps.region property)": [[73, "datascience.maps.Region.type"]], "above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above"]], "above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above_or_equal_to"]], "are (class in datascience.predicates)": [[74, "datascience.predicates.are"]], "below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below"]], "below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below_or_equal_to"]], "between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between"]], "between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between_or_equal_to"]], "contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.contained_in"]], "containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.containing"]], "datascience.predicates": [[74, "module-datascience.predicates"]], "equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.equal_to"]], "not_above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above"]], "not_above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above_or_equal_to"]], "not_below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below"]], "not_below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below_or_equal_to"]], "not_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between"]], "not_between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between_or_equal_to"]], "not_contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_contained_in"]], "not_containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_containing"]], "not_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_equal_to"]], "not_strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_strictly_between"]], "strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.strictly_between"]], "datascience.util": [[78, "module-datascience.util"]], "is_non_string_iterable() (in module datascience.util)": [[78, "datascience.util.is_non_string_iterable"]], "make_array() (in module datascience.util)": [[78, "datascience.util.make_array"]], "minimize() (in module datascience.util)": [[78, "datascience.util.minimize"]], "percentile() (in module datascience.util)": [[78, "datascience.util.percentile"]], "plot_cdf_area() (in module datascience.util)": [[78, "datascience.util.plot_cdf_area"]], "plot_normal_cdf() (in module datascience.util)": [[78, "datascience.util.plot_normal_cdf"]], "proportions_from_distribution() (in module datascience.util)": [[78, "datascience.util.proportions_from_distribution"]], "sample_proportions() (in module datascience.util)": [[78, "datascience.util.sample_proportions"]], "table_apply() (in module datascience.util)": [[78, "datascience.util.table_apply"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["_autosummary/datascience.tables.Table.__init__", "_autosummary/datascience.tables.Table.append", "_autosummary/datascience.tables.Table.append_column", "_autosummary/datascience.tables.Table.apply", "_autosummary/datascience.tables.Table.as_html", "_autosummary/datascience.tables.Table.as_text", "_autosummary/datascience.tables.Table.bar", "_autosummary/datascience.tables.Table.barh", "_autosummary/datascience.tables.Table.bin", "_autosummary/datascience.tables.Table.boxplot", "_autosummary/datascience.tables.Table.column", "_autosummary/datascience.tables.Table.column_index", "_autosummary/datascience.tables.Table.columns", "_autosummary/datascience.tables.Table.copy", "_autosummary/datascience.tables.Table.drop", "_autosummary/datascience.tables.Table.exclude", "_autosummary/datascience.tables.Table.first", "_autosummary/datascience.tables.Table.from_array", "_autosummary/datascience.tables.Table.from_columns_dict", "_autosummary/datascience.tables.Table.from_df", "_autosummary/datascience.tables.Table.from_records", "_autosummary/datascience.tables.Table.group", "_autosummary/datascience.tables.Table.group_bar", "_autosummary/datascience.tables.Table.group_barh", "_autosummary/datascience.tables.Table.groups", "_autosummary/datascience.tables.Table.hist", "_autosummary/datascience.tables.Table.hist_of_counts", "_autosummary/datascience.tables.Table.index_by", "_autosummary/datascience.tables.Table.interactive_plots", "_autosummary/datascience.tables.Table.join", "_autosummary/datascience.tables.Table.labels", "_autosummary/datascience.tables.Table.last", "_autosummary/datascience.tables.Table.move_column", "_autosummary/datascience.tables.Table.move_to_end", "_autosummary/datascience.tables.Table.move_to_start", "_autosummary/datascience.tables.Table.num_columns", "_autosummary/datascience.tables.Table.num_rows", "_autosummary/datascience.tables.Table.percentile", "_autosummary/datascience.tables.Table.pivot", "_autosummary/datascience.tables.Table.pivot_bin", "_autosummary/datascience.tables.Table.pivot_hist", "_autosummary/datascience.tables.Table.plot", "_autosummary/datascience.tables.Table.read_table", "_autosummary/datascience.tables.Table.relabel", "_autosummary/datascience.tables.Table.relabeled", "_autosummary/datascience.tables.Table.remove", "_autosummary/datascience.tables.Table.row", "_autosummary/datascience.tables.Table.rows", "_autosummary/datascience.tables.Table.sample", "_autosummary/datascience.tables.Table.sample_from_distribution", "_autosummary/datascience.tables.Table.scatter", "_autosummary/datascience.tables.Table.scatter3d", "_autosummary/datascience.tables.Table.select", "_autosummary/datascience.tables.Table.set_format", "_autosummary/datascience.tables.Table.show", "_autosummary/datascience.tables.Table.shuffle", "_autosummary/datascience.tables.Table.sort", "_autosummary/datascience.tables.Table.split", "_autosummary/datascience.tables.Table.stack", "_autosummary/datascience.tables.Table.static_plots", "_autosummary/datascience.tables.Table.stats", "_autosummary/datascience.tables.Table.take", "_autosummary/datascience.tables.Table.to_array", "_autosummary/datascience.tables.Table.to_csv", "_autosummary/datascience.tables.Table.to_df", "_autosummary/datascience.tables.Table.values", "_autosummary/datascience.tables.Table.where", "_autosummary/datascience.tables.Table.with_column", "_autosummary/datascience.tables.Table.with_columns", "_autosummary/datascience.tables.Table.with_row", "_autosummary/datascience.tables.Table.with_rows", "formats", "index", "maps", "predicates", "reference-nb/datascience-reference", "tables", "tutorial", "util"], "filenames": ["_autosummary/datascience.tables.Table.__init__.rst", "_autosummary/datascience.tables.Table.append.rst", "_autosummary/datascience.tables.Table.append_column.rst", "_autosummary/datascience.tables.Table.apply.rst", "_autosummary/datascience.tables.Table.as_html.rst", "_autosummary/datascience.tables.Table.as_text.rst", "_autosummary/datascience.tables.Table.bar.rst", "_autosummary/datascience.tables.Table.barh.rst", "_autosummary/datascience.tables.Table.bin.rst", "_autosummary/datascience.tables.Table.boxplot.rst", "_autosummary/datascience.tables.Table.column.rst", "_autosummary/datascience.tables.Table.column_index.rst", "_autosummary/datascience.tables.Table.columns.rst", "_autosummary/datascience.tables.Table.copy.rst", "_autosummary/datascience.tables.Table.drop.rst", "_autosummary/datascience.tables.Table.exclude.rst", "_autosummary/datascience.tables.Table.first.rst", "_autosummary/datascience.tables.Table.from_array.rst", "_autosummary/datascience.tables.Table.from_columns_dict.rst", "_autosummary/datascience.tables.Table.from_df.rst", "_autosummary/datascience.tables.Table.from_records.rst", "_autosummary/datascience.tables.Table.group.rst", "_autosummary/datascience.tables.Table.group_bar.rst", "_autosummary/datascience.tables.Table.group_barh.rst", "_autosummary/datascience.tables.Table.groups.rst", "_autosummary/datascience.tables.Table.hist.rst", "_autosummary/datascience.tables.Table.hist_of_counts.rst", "_autosummary/datascience.tables.Table.index_by.rst", "_autosummary/datascience.tables.Table.interactive_plots.rst", "_autosummary/datascience.tables.Table.join.rst", "_autosummary/datascience.tables.Table.labels.rst", "_autosummary/datascience.tables.Table.last.rst", "_autosummary/datascience.tables.Table.move_column.rst", "_autosummary/datascience.tables.Table.move_to_end.rst", "_autosummary/datascience.tables.Table.move_to_start.rst", "_autosummary/datascience.tables.Table.num_columns.rst", "_autosummary/datascience.tables.Table.num_rows.rst", "_autosummary/datascience.tables.Table.percentile.rst", "_autosummary/datascience.tables.Table.pivot.rst", "_autosummary/datascience.tables.Table.pivot_bin.rst", "_autosummary/datascience.tables.Table.pivot_hist.rst", "_autosummary/datascience.tables.Table.plot.rst", "_autosummary/datascience.tables.Table.read_table.rst", "_autosummary/datascience.tables.Table.relabel.rst", "_autosummary/datascience.tables.Table.relabeled.rst", "_autosummary/datascience.tables.Table.remove.rst", "_autosummary/datascience.tables.Table.row.rst", "_autosummary/datascience.tables.Table.rows.rst", "_autosummary/datascience.tables.Table.sample.rst", "_autosummary/datascience.tables.Table.sample_from_distribution.rst", "_autosummary/datascience.tables.Table.scatter.rst", "_autosummary/datascience.tables.Table.scatter3d.rst", "_autosummary/datascience.tables.Table.select.rst", "_autosummary/datascience.tables.Table.set_format.rst", "_autosummary/datascience.tables.Table.show.rst", "_autosummary/datascience.tables.Table.shuffle.rst", "_autosummary/datascience.tables.Table.sort.rst", "_autosummary/datascience.tables.Table.split.rst", "_autosummary/datascience.tables.Table.stack.rst", "_autosummary/datascience.tables.Table.static_plots.rst", "_autosummary/datascience.tables.Table.stats.rst", "_autosummary/datascience.tables.Table.take.rst", "_autosummary/datascience.tables.Table.to_array.rst", "_autosummary/datascience.tables.Table.to_csv.rst", "_autosummary/datascience.tables.Table.to_df.rst", "_autosummary/datascience.tables.Table.values.rst", "_autosummary/datascience.tables.Table.where.rst", "_autosummary/datascience.tables.Table.with_column.rst", "_autosummary/datascience.tables.Table.with_columns.rst", "_autosummary/datascience.tables.Table.with_row.rst", "_autosummary/datascience.tables.Table.with_rows.rst", "formats.rst", "index.rst", "maps.rst", "predicates.rst", "reference-nb/datascience-reference.ipynb", "tables.rst", "tutorial.rst", "util.rst"], "titles": ["datascience.tables.Table.__init__", "datascience.tables.Table.append", "datascience.tables.Table.append_column", "datascience.tables.Table.apply", "datascience.tables.Table.as_html", "datascience.tables.Table.as_text", "datascience.tables.Table.bar", "datascience.tables.Table.barh", "datascience.tables.Table.bin", "datascience.tables.Table.boxplot", "datascience.tables.Table.column", "datascience.tables.Table.column_index", "datascience.tables.Table.columns", "datascience.tables.Table.copy", "datascience.tables.Table.drop", "datascience.tables.Table.exclude", "datascience.tables.Table.first", "datascience.tables.Table.from_array", "datascience.tables.Table.from_columns_dict", "datascience.tables.Table.from_df", "datascience.tables.Table.from_records", "datascience.tables.Table.group", "datascience.tables.Table.group_bar", "datascience.tables.Table.group_barh", "datascience.tables.Table.groups", "datascience.tables.Table.hist", "datascience.tables.Table.hist_of_counts", "datascience.tables.Table.index_by", "datascience.tables.Table.interactive_plots", "datascience.tables.Table.join", "datascience.tables.Table.labels", "datascience.tables.Table.last", "datascience.tables.Table.move_column", "datascience.tables.Table.move_to_end", "datascience.tables.Table.move_to_start", "datascience.tables.Table.num_columns", "datascience.tables.Table.num_rows", "datascience.tables.Table.percentile", "datascience.tables.Table.pivot", "datascience.tables.Table.pivot_bin", "datascience.tables.Table.pivot_hist", "datascience.tables.Table.plot", "datascience.tables.Table.read_table", "datascience.tables.Table.relabel", "datascience.tables.Table.relabeled", "datascience.tables.Table.remove", "datascience.tables.Table.row", "datascience.tables.Table.rows", "datascience.tables.Table.sample", "datascience.tables.Table.sample_from_distribution", "datascience.tables.Table.scatter", "datascience.tables.Table.scatter3d", "datascience.tables.Table.select", "datascience.tables.Table.set_format", "datascience.tables.Table.show", "datascience.tables.Table.shuffle", "datascience.tables.Table.sort", "datascience.tables.Table.split", "datascience.tables.Table.stack", "datascience.tables.Table.static_plots", "datascience.tables.Table.stats", "datascience.tables.Table.take", "datascience.tables.Table.to_array", "datascience.tables.Table.to_csv", "datascience.tables.Table.to_df", "datascience.tables.Table.values", "datascience.tables.Table.where", "datascience.tables.Table.with_column", "datascience.tables.Table.with_columns", "datascience.tables.Table.with_row", "datascience.tables.Table.with_rows", "Formats (datascience.formats)", "Welcome to datascience\u2019s documentation!", "Maps (datascience.maps)", "Predicates (datascience.predicates)", "Data 8 datascience Reference", "Tables (datascience.tables)", "Start Here: datascience Tutorial", "Utility Functions (datascience.util)"], "terms": {"label": [0, 2, 3, 6, 7, 8, 10, 11, 14, 16, 18, 21, 24, 27, 29, 31, 32, 37, 38, 41, 43, 44, 50, 51, 52, 53, 58, 66, 67, 68, 71, 73, 77, 78], "none": [0, 2, 6, 7, 9, 21, 24, 25, 26, 29, 38, 39, 41, 48, 50, 51, 58, 62, 63, 64, 66, 67, 71, 73, 78], "formatt": [0, 2, 53, 67, 68, 71], "format": [0, 4, 5, 53, 68, 72, 73], "object": [0, 13, 29, 47, 54, 65, 73, 75, 77], "sourc": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 78], "creat": [0, 6, 7, 18, 20, 22, 23, 25, 29, 38, 41, 50, 51, 63, 72, 75, 76, 78], "an": [0, 1, 3, 8, 10, 14, 20, 33, 34, 39, 48, 53, 56, 62, 64, 66, 67, 68, 69, 71, 72, 73, 75, 78], "empti": [0, 8, 20, 21, 24, 29, 66, 75, 77], "column": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 49, 50, 51, 52, 53, 56, 58, 60, 61, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78], "tile": [0, 10, 44, 65, 69, 70], "make_arrai": [0, 1, 2, 3, 7, 9, 10, 13, 14, 15, 21, 24, 25, 26, 27, 28, 29, 32, 33, 34, 37, 38, 41, 43, 44, 45, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 78], "letter": [0, 2, 3, 10, 11, 12, 15, 16, 30, 31, 36, 44, 47, 61, 62, 65, 67, 69, 70, 77], "count": [0, 2, 3, 5, 7, 8, 10, 11, 12, 16, 21, 22, 23, 24, 25, 26, 30, 31, 36, 37, 38, 39, 44, 47, 49, 62, 65, 67, 69, 70, 75, 77, 78], "point": [0, 2, 3, 11, 12, 16, 22, 23, 25, 26, 30, 31, 36, 37, 43, 47, 50, 62, 69, 70, 73, 77], "arg": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 27, 29, 31, 32, 38, 39, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "list": [0, 2, 10, 14, 15, 20, 24, 25, 27, 38, 45, 47, 58, 61, 67, 68, 73, 75, 76, 77, 78], "string": [0, 2, 4, 5, 14, 21, 25, 42, 67, 68, 71, 72, 73, 74], "The": [0, 1, 2, 3, 4, 5, 8, 9, 10, 14, 15, 21, 22, 23, 24, 25, 26, 27, 33, 34, 37, 39, 42, 43, 44, 45, 49, 51, 52, 53, 57, 58, 61, 62, 63, 64, 67, 68, 72, 73, 74, 75, 77, 78], "instanc": [0, 10, 14, 15, 48, 52, 53, 55, 56, 57, 61, 78], "valu": [0, 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21, 22, 23, 24, 25, 26, 27, 29, 31, 36, 37, 38, 39, 41, 49, 50, 51, 53, 54, 56, 58, 60, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78], "row_or_t": 1, "row": [1, 2, 3, 4, 5, 15, 21, 24, 25, 26, 27, 29, 36, 37, 38, 39, 42, 45, 48, 49, 54, 55, 56, 57, 61, 62, 66, 67, 68, 69, 70, 73, 74, 75, 77], "all": [1, 8, 21, 24, 25, 26, 29, 39, 41, 47, 50, 51, 53, 55, 58, 65, 68, 73, 75, 77, 78], "place": [1, 25, 43, 44, 45, 60, 64, 75, 76], "must": [1, 2, 3, 6, 7, 9, 14, 26, 41, 43, 44, 48, 50, 51, 53, 57, 58, 66, 67, 68, 70, 73, 75, 76, 78], "have": [1, 2, 20, 48, 53, 65, 67, 68, 71, 73, 75, 76, 78], "self": [1, 29, 41, 50, 51, 53, 65], "follow": [1, 4, 5, 8, 13, 24, 33, 34, 39, 45, 53, 62, 73, 74, 75, 76, 77], "exampl": [1, 4, 5, 11, 12, 13, 16, 17, 19, 20, 27, 30, 31, 33, 34, 36, 39, 42, 45, 47, 53, 54, 58, 62, 64, 65, 66, 72, 73, 74, 75], "record": [1, 20], "with_column": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 73, 74, 77], "A": [1, 6, 7, 9, 13, 15, 17, 20, 21, 24, 25, 26, 27, 32, 33, 34, 41, 45, 48, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 66, 68, 69, 73, 74, 75, 77, 78], "1": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 48, 50, 51, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 73, 75, 76, 77, 78], "b": [1, 2, 3, 9, 11, 12, 13, 15, 16, 17, 19, 25, 26, 27, 29, 30, 31, 33, 34, 36, 39, 45, 47, 48, 54, 57, 58, 60, 61, 62, 63, 77], "foo": [1, 13, 33, 34, 45, 60, 76, 78], "c": [1, 2, 3, 9, 10, 11, 12, 16, 19, 27, 29, 30, 31, 33, 34, 36, 39, 44, 45, 47, 48, 54, 57, 58, 60, 62, 63, 65, 67, 69, 70, 77], "2": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "bar": [1, 7, 13, 22, 23, 25, 26, 33, 34, 40, 45, 60, 75, 78], "3": [1, 2, 3, 9, 11, 12, 13, 15, 16, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 50, 51, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 69, 70, 75, 77, 78], "4": [1, 2, 9, 10, 15, 21, 24, 28, 29, 33, 34, 36, 39, 40, 41, 42, 44, 45, 50, 51, 56, 59, 60, 61, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78], "baz": [1, 33, 34, 45, 60], "bat": [1, 33, 34, 45], "d": [1, 9, 10, 29, 33, 34, 44, 45, 48, 57, 63, 65, 67, 69, 70, 71, 72, 75], "append": [2, 13], "replac": [2, 43, 44, 48, 49, 67, 68, 73], "__setitem__": 2, "i": [2, 3, 4, 5, 6, 7, 8, 10, 13, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 38, 39, 41, 43, 45, 48, 50, 51, 53, 54, 57, 58, 60, 61, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78], "alias": 2, "thi": [2, 9, 13, 22, 23, 25, 26, 28, 33, 34, 50, 51, 53, 58, 59, 60, 65, 68, 71, 73, 75, 76, 77, 78], "method": [2, 4, 5, 22, 23, 53, 64, 71, 72, 73, 76, 77, 78], "new_col": 2, "equival": [2, 10, 28, 29, 59, 66, 68, 75], "str": [2, 3, 5, 6, 7, 8, 10, 11, 16, 22, 23, 31, 32, 38, 41, 43, 44, 50, 51, 52, 53, 63, 66, 67, 68, 73], "new": [2, 13, 15, 19, 25, 29, 32, 37, 38, 39, 44, 48, 49, 52, 53, 55, 58, 61, 66, 67, 68, 73, 75, 76, 77, 78], "singl": [2, 32, 38, 43, 53, 66, 67, 68, 75], "arrai": [2, 3, 10, 12, 17, 21, 26, 29, 41, 43, 44, 48, 53, 61, 62, 65, 66, 67, 68, 70, 72, 77, 78], "If": [2, 3, 8, 20, 21, 24, 25, 26, 29, 39, 45, 51, 53, 54, 58, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "everi": [2, 6, 7, 9, 41, 50, 51, 66, 67, 68, 75], "contain": [2, 3, 6, 7, 8, 9, 13, 21, 24, 27, 29, 37, 39, 41, 47, 52, 56, 57, 62, 66, 72, 74, 77, 78], "which": [2, 4, 5, 22, 23, 27, 48, 58, 60, 75, 77], "same": [2, 9, 20, 25, 26, 37, 44, 48, 49, 51, 53, 63, 65, 67, 68, 71, 73, 75, 77, 78], "length": [2, 43, 44, 48, 53, 61, 67, 68, 69, 70, 75, 78], "add": [2, 25, 26, 73, 75, 77, 78], "being": [2, 4, 53, 68, 73, 75], "No": 2, "ad": [2, 50, 68, 75, 77], "default": [2, 5, 8, 13, 25, 26, 29, 38, 39, 48, 53, 60, 67, 73, 75, 77, 78], "return": [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 77, 78], "origin": [2, 8, 13, 21, 24, 25, 33, 34, 37, 43, 44, 48, 52, 53, 55, 58, 67, 68, 75, 76, 77], "rais": [2, 3, 7, 9, 10, 38, 41, 43, 44, 48, 50, 51, 52, 57, 61, 67, 68, 69, 70], "valueerror": [2, 3, 7, 9, 10, 41, 43, 44, 48, 50, 51, 57, 67, 68, 69, 70, 78], "doe": [2, 13, 21, 24, 44, 48, 53, 67, 68, 74, 76, 78], "number": [2, 3, 4, 5, 8, 15, 17, 22, 23, 25, 26, 35, 36, 37, 39, 44, 45, 48, 49, 52, 54, 57, 67, 68, 71, 75, 77, 78], "z": [2, 3, 11, 12, 16, 30, 31, 36, 47, 50, 62, 74, 77], "9": [2, 3, 4, 5, 11, 12, 16, 21, 24, 25, 26, 27, 29, 30, 31, 36, 37, 39, 42, 47, 50, 51, 56, 60, 62, 64, 66, 73, 75, 77, 78], "10": [2, 3, 7, 8, 11, 12, 16, 25, 26, 29, 30, 31, 36, 37, 39, 47, 48, 50, 51, 52, 57, 60, 61, 62, 63, 75, 77], "new_col1": 2, "20": [2, 4, 5, 7, 39, 48, 50, 57, 60, 63, 64, 66, 68, 75, 77], "30": [2, 7, 21, 24, 39, 56, 66, 74, 75, 77], "40": [2, 21, 24, 32, 38, 56, 75, 77], "new_col2": 2, "hello": [2, 76], "123": [2, 43, 75], "traceback": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "most": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68, 77], "recent": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "call": [2, 3, 9, 19, 28, 38, 43, 44, 48, 51, 53, 59, 61, 62, 63, 67, 68, 74, 75, 76, 78], "last": [2, 3, 9, 33, 38, 43, 44, 48, 61, 67, 68, 73, 75, 77], "int": [2, 3, 4, 5, 8, 10, 22, 23, 25, 26, 32, 38, 39, 45, 48, 51, 52, 53, 57, 66, 67, 68, 71, 73, 78], "wa": [2, 53, 67, 68, 72, 73, 75, 77], "given": [2, 3, 8, 14, 22, 23, 39, 52, 67, 68, 74, 78], "bad_col": [2, 67], "mismatch": [2, 67, 68], "fn": 3, "column_or_column": [3, 14, 52, 53, 75], "each": [3, 6, 7, 8, 12, 21, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 48, 50, 51, 53, 60, 69, 70, 71, 73, 75, 76, 78], "element": [3, 44, 75, 78], "provid": [3, 8, 21, 24, 38, 39, 50, 51, 63, 73, 75, 78], "function": [3, 8, 21, 24, 38, 53, 54, 58, 60, 66, 68, 71, 72, 73, 74, 77], "argument": [3, 4, 5, 6, 7, 8, 9, 19, 21, 22, 23, 24, 25, 26, 27, 39, 41, 42, 43, 50, 51, 53, 58, 66, 73, 75, 76, 78], "either": [3, 25, 26, 52, 66, 73, 78], "indic": [3, 8, 14, 15, 24, 38, 52, 53, 61, 73, 75], "match": [3, 25, 26, 29, 38, 66, 73], "expect": [3, 78], "column_label": [3, 22, 23, 29, 33, 34, 43], "exist": [3, 14, 38, 44, 67, 68, 75], "typeerror": [3, 38, 43], "insuffici": 3, "pass": [3, 4, 6, 7, 9, 22, 23, 25, 26, 38, 41, 50, 51, 53, 54, 58, 68, 73, 75, 77, 78], "consist": [3, 58], "result": [3, 8, 21, 24, 29, 39, 62, 65, 73, 75, 77, 78], "specifi": [3, 7, 11, 22, 23, 24, 25, 26, 27, 32, 38, 39, 43, 44, 48, 54, 67, 73, 75, 76, 78], "t": [3, 7, 11, 12, 14, 15, 16, 17, 19, 20, 21, 25, 26, 27, 30, 31, 36, 39, 47, 54, 58, 62, 65, 73, 74, 75, 77], "lambda": 3, "x": [3, 6, 28, 41, 50, 51, 59, 60, 75, 77], "0": [3, 4, 5, 8, 11, 14, 15, 19, 25, 28, 32, 38, 39, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 61, 64, 66, 68, 71, 72, 73, 75, 77, 78], "y": [3, 7, 26, 50, 51, 71, 74, 75, 77], "6": [3, 4, 5, 7, 14, 21, 24, 27, 29, 39, 40, 42, 50, 51, 52, 54, 56, 58, 60, 61, 64, 66, 68, 72, 73, 75, 77], "take": [3, 21, 53, 58, 67, 68, 73, 77, 78], "posit": [3, 50, 73], "were": [3, 75], "whole": [3, 25], "ar": [3, 4, 5, 7, 8, 13, 22, 23, 24, 25, 26, 27, 38, 39, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 65, 66, 73, 74, 76, 77], "18": [3, 53, 60, 75, 77], "max_row": [4, 5, 54], "html": [4, 6, 7, 9, 22, 23, 25, 26, 41, 50, 54, 73, 77], "maximum": [4, 5, 54, 60, 75], "present": [4, 5, 75], "convert": [4, 5, 17, 19, 53, 62, 64, 71, 77], "option": [4, 5, 25, 26, 50, 66, 73, 76, 77], "repres": [4, 26, 71, 73, 77, 78], "form": [4, 5, 39, 75, 78], "can": [4, 6, 7, 8, 9, 22, 23, 25, 26, 28, 39, 41, 50, 53, 59, 60, 63, 64, 66, 73, 74, 75, 76, 77], "us": [4, 6, 7, 20, 25, 26, 29, 38, 40, 41, 50, 51, 53, 56, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 77, 78], "websit": 4, "few": [4, 5, 25, 26, 78], "These": [4, 9, 25, 26, 75], "seem": 4, "difficult": 4, "u": [4, 77], "observ": 4, "understand": 4, "sinc": [4, 75], "thei": [4, 25, 26, 49, 73], "when": [4, 10, 13, 25, 26, 66, 68, 73], "you": [4, 40, 53, 73, 75, 76, 77], "want": [4, 40, 73, 75, 77], "displai": [4, 6, 7, 22, 23, 41, 50, 51, 54, 72, 73, 75, 76, 77], "webpag": 4, "simpl": [4, 38, 77, 78], "name": [4, 5, 8, 14, 17, 20, 22, 23, 24, 25, 26, 27, 39, 43, 50, 52, 53, 58, 60, 63, 64, 67, 68, 73, 74, 75, 76, 77, 78], "abc": [4, 5, 64], "xyz": [4, 5, 64], "uvw": [4, 5, 64], "ag": [4, 5, 32, 38, 64, 77], "12": [4, 5, 21, 24, 56, 64, 66, 75, 77], "14": [4, 5, 64, 72, 75, 77], "height": [4, 5, 6, 22, 23, 25, 26, 40, 41, 50, 51, 64, 73, 77], "5": [4, 5, 9, 14, 25, 26, 27, 28, 29, 39, 41, 42, 48, 50, 51, 52, 54, 58, 59, 60, 64, 66, 73, 75, 77, 78], "table_as_html": 4, "border": 4, "class": [4, 5, 53, 64, 71, 73, 74, 77], "datafram": [4, 19, 64, 77], "n": [4, 5, 8, 68, 70, 75], "thead": 4, "tr": 4, "th": 4, "tbodi": 4, "td": 4, "table_as_html_2": 4, "p": [4, 37, 48, 78], "omit": [4, 5, 39, 42, 56, 75, 77], "sep": 5, "text": [5, 50, 51, 73, 77], "seper": 5, "appear": [5, 21, 24, 29, 75, 77], "between": [5, 25, 57, 73, 74, 77, 78], "just": [5, 21, 64, 75, 77], "table_astext": 5, "nabc": 5, "nxyz": 5, "nuvw": 5, "type": [5, 21, 24, 37, 64, 67, 68, 73, 75, 77, 78], "size": [5, 23, 26, 48, 49, 50, 51, 61, 73, 74, 75, 77, 78], "with_row": [5, 49], "small": [5, 49], "50": [5, 28, 41, 49, 59, 75, 77], "medium": [5, 49], "100": [5, 9, 39, 49, 75, 77], "big": [5, 49], "sizes_astext": 5, "nsmall": 5, "nmedium": 5, "nbig": 5, "column_for_categori": [6, 7], "select": [6, 7, 14, 41, 50, 51, 60, 61, 66, 77], "overlai": [6, 7, 22, 23, 25, 26, 40, 41, 50, 51, 73, 77], "true": [6, 7, 8, 13, 25, 26, 39, 40, 41, 48, 49, 50, 51, 53, 56, 66, 73, 75, 77], "width": [6, 7, 8, 22, 23, 25, 26, 39, 40, 41, 50, 51, 73, 75], "varg": [6, 7, 8, 9, 22, 23, 25, 26, 39, 40, 41, 42, 50, 51, 71, 78], "plot": [6, 7, 9, 22, 23, 25, 26, 28, 50, 51, 59, 77, 78], "chart": [6, 7, 22, 23, 25, 26, 41, 50, 51, 75], "one": [6, 7, 21, 22, 23, 24, 25, 26, 29, 37, 41, 50, 51, 53, 68, 73, 75, 77, 78], "produc": [6, 7, 22, 23, 41, 50, 75], "other": [6, 7, 14, 21, 24, 25, 26, 29, 41, 50, 51, 66, 73, 75, 77, 78], "design": [6, 7, 41, 50], "except": [6, 7, 75], "numer": [6, 7, 9, 41, 50, 51, 60, 78], "axi": [6, 7, 26, 28, 41, 50, 51, 59, 61, 75], "categori": [6, 7, 22, 23, 25, 26, 40, 50, 51, 75, 77], "kwarg": [6, 7, 9, 22, 23, 25, 26, 29, 41, 50, 51, 73], "bool": [6, 7, 8, 22, 23, 25, 26, 39, 41, 48, 50, 51, 75, 77], "color": [6, 7, 21, 22, 23, 24, 25, 26, 41, 50, 51, 56, 66, 73, 75], "per": [6, 7, 8, 22, 23, 39, 41, 50, 51, 60, 70, 75], "data": [6, 7, 17, 19, 20, 22, 23, 25, 26, 27, 41, 42, 46, 50, 51, 58, 65, 72, 73], "fals": [6, 7, 8, 13, 19, 22, 23, 25, 26, 39, 41, 49, 50, 51, 53, 56, 71, 73, 75, 77, 78], "separ": [6, 7, 22, 23, 25, 26, 41, 50, 51, 71, 75], "addit": [6, 7, 9, 22, 23, 25, 26, 41, 50, 51, 66, 67, 68, 69, 70, 73, 77], "get": [6, 7, 9, 22, 23, 25, 26, 41, 50, 72, 75, 76], "plt": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "see": [6, 7, 9, 22, 23, 25, 26, 41, 46, 50, 66, 75, 76, 77], "http": [6, 7, 9, 22, 23, 25, 26, 41, 42, 46, 50, 73, 75, 77], "matplotlib": [6, 7, 9, 22, 23, 25, 26, 28, 41, 50, 59, 77], "org": [6, 7, 9, 22, 23, 25, 26, 41, 50], "api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot_api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "horizont": [7, 23, 50, 75], "redirect": [7, 25, 28, 41, 50, 59], "ibarh": [7, 28, 59], "interact": [7, 25, 28, 41, 46, 50, 51, 59, 75], "enabl": [7, 25, 41, 50, 51], "interactive_plot": [7, 25, 41, 50, 51, 59], "bucket": 7, "show": [7, 25, 41, 50, 51, 77], "whether": [7, 25, 26, 41, 50, 51, 53, 71, 73, 77, 78], "figur": [7, 9, 25, 41, 50, 51], "instead": [7, 25, 26, 41, 50, 51, 64, 73, 75, 78], "graph": [7, 28, 41, 59, 75], "furnitur": 7, "chair": 7, "desk": 7, "price": [7, 14, 21, 24, 28, 41, 56, 59, 66, 75], "group": [8, 22, 23, 25, 26, 38, 40, 50, 51, 53, 77], "comput": [8, 36, 60, 75, 77], "By": [8, 13, 39, 48, 60, 75], "chosen": [8, 25, 26, 39], "from": [8, 18, 19, 20, 21, 22, 23, 27, 39, 42, 48, 52, 53, 55, 58, 60, 62, 66, 69, 70, 73, 74, 75, 77, 78], "numpi": [8, 10, 15, 17, 39, 62, 65, 77, 78], "histogram": [8, 25, 26, 39, 40, 75, 77], "appli": [8, 21, 24, 39, 53, 66, 68, 73, 78], "special": [8, 39], "ha": [8, 29, 68, 70, 75], "where": [8, 21, 24, 37, 48, 55, 57, 72, 73, 74, 77], "lower": [8, 25, 26, 39], "bound": [8, 25, 26, 61, 75], "sequenc": [8, 15, 20, 39, 62, 67, 68, 69, 70, 73, 77], "scalar": [8, 39], "defin": [8, 39, 49, 53], "equal": [8, 25, 26, 39, 43, 44, 48, 66, 74, 75], "rang": [8, 15, 25, 26, 39, 50, 51, 73, 77], "edg": [8, 25, 39], "includ": [8, 9, 25, 26, 39, 42, 50, 58, 73, 75], "rightmost": [8, 39], "allow": [8, 39, 77], "non": [8, 9, 38, 39, 60, 77], "uniform": [8, 39], "float": [8, 22, 23, 25, 39, 71, 73], "upper": [8, 39, 75], "outsid": [8, 39], "ignor": [8, 39], "densiti": [8, 25], "sampl": [8, 39, 49, 57, 77, 78], "probabl": [8, 48, 75, 78], "normal": [8, 39, 71, 77, 78], "integr": [8, 39], "over": [8, 38, 39], "note": [8, 13, 15, 21, 22, 23, 24, 25, 26, 33, 34, 53, 60, 73, 75, 76, 77], "sum": [8, 21, 24, 48, 60, 77, 78], "unless": [8, 53], "uniti": 8, "mass": 8, "vert": 9, "showmean": 9, "test1": 9, "92": [9, 75], "88": [9, 75], "72": [9, 75, 77], "71": [9, 75, 77], "99": [9, 49, 75], "95": [9, 28, 32, 38, 41, 59, 75], "83": [9, 28, 41, 59, 75], "94": [9, 75], "93": [9, 71, 77], "test2": 9, "89": [9, 32, 38, 75], "84": [9, 75], "74": [9, 75, 77, 78], "66": [9, 75, 77], "81": [9, 75, 77], "side": [9, 25, 26, 40], "table2": [9, 29], "numeric_col": 9, "alpha_col": 9, "cannot": [9, 51], "drawn": [9, 73, 77], "index_or_label": 10, "index": [10, 11, 14, 15, 19, 21, 22, 23, 25, 26, 32, 38, 45, 46, 53, 61, 66, 73, 75, 77], "look": [11, 75], "up": [11, 73, 75], "its": [11, 25, 26, 38, 53, 70, 76], "integ": [11, 15, 36, 61, 73, 75], "properti": [12, 25, 30, 35, 36, 47, 65, 71, 73], "tupl": [12, 30, 39, 47, 57, 60, 77], "dtype": [12, 17, 62, 65, 75, 77, 78], "u1": [12, 62, 77], "shallow": 13, "perform": [13, 75], "deep": [13, 73], "mean": [13, 38, 53, 60, 76, 77, 78], "construct": [13, 75, 77], "recurs": 13, "insert": 13, "found": [13, 73, 75], "table_copi": 13, "original_t": 13, "so": [13, 53, 64, 75, 77], "updat": 13, "chang": [13, 43, 44, 45, 53, 75], "refer": [13, 73, 77], "": [13, 20, 22, 23, 33, 34, 38, 43, 44, 50, 51, 53, 60, 64, 66, 71, 73, 74, 75, 76, 77], "orignal_t": 13, "due": 13, "contrast": 13, "how": [13, 25, 46, 75, 77], "occur": [13, 25, 75], "both": [13, 25, 29, 38, 75], "table_shallow_copi": 13, "becaus": [13, 75, 77], "onli": [14, 25, 26, 29, 33, 34, 37, 52, 66, 68, 73, 75], "than": [14, 56, 68, 74, 75], "header": 14, "valid": [14, 42, 48, 67, 68, 76, 77], "remov": [14, 50, 51, 53, 73, 75], "burger": 14, "cheeseburg": 14, "hamburg": 14, "veggi": 14, "calori": 14, "743": 14, "651": 14, "582": 14, "without": [15, 48, 75, 77], "row_indices_or_slic": [15, 61], "slice": [15, 61], "grade": [15, 61], "gpa": [15, 61], "7": [15, 21, 24, 39, 56, 61, 66, 75, 77], "also": [15, 25, 26, 33, 34, 44, 50, 51, 53, 60, 66, 71, 75, 77], "support": [15, 25], "like": [15, 22, 23, 47, 75, 76, 77], "zeroth": 16, "item": [16, 31], "classmethod": [17, 18, 19, 20, 28, 42, 59, 73], "arr": [17, 62, 78], "structur": [17, 62, 75, 77], "field": 17, "correspond": [17, 20, 21, 24, 25, 26, 27, 44, 58, 61, 68, 73, 75, 77], "np": [17, 38, 49, 60, 61, 73, 77, 78], "u10": 17, "i4": 17, "map": [18, 72], "deprec": [18, 25, 40, 50, 51], "df": 19, "keep_index": 19, "panda": [19, 64, 77], "util": [19, 72], "creation": [19, 76], "keep": 19, "turn": [19, 28, 59, 75], "sample_df": 19, "zip": [19, 73, 75], "data1": [19, 20, 27, 39, 54, 58, 77], "data2": [19, 20, 27, 39, 54, 58, 77], "data3": [19, 20, 27, 39, 54, 58], "column1": [19, 20, 27, 39, 44, 54, 58], "column2": [19, 20, 27, 39, 44, 54, 58], "column3": [19, 27, 39, 54, 58], "dict": [20, 27, 51, 73], "fix": [20, 73], "kei": [20, 27, 43, 58, 73, 77], "dictionari": [20, 27, 73, 77], "otherwis": [20, 25, 29], "do": [20, 48, 53, 77], "ident": [20, 71], "first": [20, 21, 24, 25, 34, 51, 54, 57, 58, 71, 73, 75, 77, 78], "column_or_label": [21, 27, 56, 66], "collect": [21, 24, 38, 75, 77], "uniqu": [21, 24, 38, 39, 75], "aggreg": [21, 24, 38], "second": [21, 23, 57, 58, 75, 77], "calcul": [21, 24, 60, 75], "accord": [21, 24, 56, 77], "set": [21, 24, 28, 50, 51, 53, 68, 73, 75, 77], "accept": [21, 24, 53], "marbl": [21, 24, 56, 66], "red": [21, 24, 43, 56, 66, 73, 75], "green": [21, 24, 43, 56, 66, 73, 75], "blue": [21, 24, 43, 56, 66, 73], "shape": [21, 24, 56, 66, 70, 78], "round": [21, 24, 56, 66, 73], "rectangular": [21, 24, 56, 66], "amount": [21, 24, 56, 66, 75], "00": [21, 24, 28, 41, 56, 59, 66, 71, 75], "75": [21, 24, 28, 39, 41, 56, 59, 60, 66, 73, 75, 77, 78], "give": [21, 75], "max": [21, 53, 60], "doesn": [21, 75], "make": [21, 25, 26, 66, 77, 78], "sens": [21, 25, 26], "27": [21, 75, 77], "13": [21, 60, 75, 77], "05": [21, 24, 75], "differ": [22, 23, 69, 70, 75, 77], "need": [22, 23, 73], "copi": [22, 23, 67, 68, 73, 75, 78], "behav": [22, 23], "more": [22, 23, 60, 68, 73, 75, 76, 77, 78], "hist": [22, 23, 26, 28, 40, 59, 77], "regard": [22, 23], "while": [22, 23, 53], "scatter": [22, 23, 28, 41, 51, 59, 77], "requir": [22, 23, 38, 64, 68], "inch": [22, 23], "barh": [23, 28, 59, 77], "coordin": [23, 73], "anoth": [23, 75], "multipl": [24, 25, 26, 29, 45, 53, 73, 75], "combin": [24, 38, 42, 75, 77], "those": [24, 75], "15": [24, 48, 57, 60, 63, 68, 75, 77], "11": [24, 60, 75, 77], "bin": [25, 26, 39, 73, 75, 77], "bin_column": [25, 26], "unit": [25, 73], "rug": 25, "side_by_sid": [25, 26, 40], "left_end": 25, "right_end": 25, "via": 25, "plotli": [25, 28, 41, 51, 59, 75], "ihist": 25, "overlaid": [25, 26], "top": [25, 26], "behavior": [25, 26, 60], "legend": [25, 26, 73], "forc": [25, 26, 75], "scale": [25, 26, 73, 77], "automat": [25, 26], "treat": [25, 26, 77], "assign": [25, 26, 73, 77], "e": [25, 29, 48, 68, 75, 78], "g": [25, 67, 75, 78], "kg": 25, "gener": [25, 26, 38, 66, 77, 78], "depend": [25, 26], "done": [25, 26, 77], "should": [25, 26, 53, 73, 75, 78], "directli": [25, 26, 53], "sever": [25, 26, 60], "Not": [25, 77], "left": [25, 78], "right": [25, 78], "shade": [25, 78], "extrem": 25, "boolean": [25, 53, 66, 73, 75, 77, 78], "distribut": [25, 39, 48, 49, 75, 77, 78], "shade_split": 25, "split": [25, 77], "determin": 25, "end": [25, 75], "fall": 25, "two": [25, 26, 57, 58, 73, 75, 77], "endpoint": 25, "entir": [25, 54], "appropri": 25, "func": [25, 26, 75, 78], "norm": [25, 39, 50], "cumul": [25, 26], "orient": [25, 26], "101": [25, 26, 75, 77], "102": [25, 26, 75, 77], "103": [25, 26], "proport": [25, 49, 75, 78], "25": [25, 60, 75, 77], "weight": [25, 26, 48, 52, 60, 73, 77], "base": [26, 38, 56, 73], "columns_or_label": 27, "rest": [27, 57, 73, 77], "data4": 27, "86": [27, 39, 54, 58, 75], "51": [27, 39, 54, 58, 75, 77], "32": [27, 39, 54, 58, 75, 77], "91": [27, 75], "column4": [27, 39, 54, 58], "global": [28, 59], "variabl": [28, 59], "iplot": [28, 41, 59], "etc": [28, 59, 71, 75], "off": [28, 59, 75], "static_plot": 28, "dai": [28, 41, 59, 77], "90": [28, 41, 59, 75, 77], "82": [28, 41, 59, 75], "project": [28, 41, 59], "line": [28, 41, 50, 59, 73, 75, 77], "other_label": 29, "assum": [29, 37, 75, 78], "previou": [29, 66], "repeat": [29, 56, 73], "relabel": [29, 77], "a_2": 29, "three": [29, 73], "move": [32, 33, 34], "titan": [32, 38], "21": [32, 38, 75, 77], "44": [32, 38, 75, 77], "56": [32, 38, 75, 77], "80": [32, 37, 38, 39, 75, 77], "45": [32, 38, 39, 75, 77], "surviv": [32, 38], "gender": [32, 38], "m": [32, 38, 71, 74], "f": [32, 38, 53, 71, 75, 77, 78], "predict": [32, 38], "what": [33, 34, 53, 73, 77], "known": [33, 34, 53], "inplac": [33, 34, 53], "oper": [33, 34, 53, 77], "state": [36, 42, 73, 77], "pth": [37, 78], "smallest": [37, 73], "least": [37, 78], "larg": 37, "zero": [38, 75], "vice": 38, "versa": 38, "across": 38, "intersect": 38, "60": [38, 39, 71, 75, 77], "3333": 38, "pivot_column": 39, "value_column": 39, "associ": [39, 58], "pivot": [39, 77], "popul": 39, "respect": [39, 58, 61], "from_record": [39, 58], "37": [39, 73, 75, 77], "42": [39, 60, 74, 75, 77], "8": [39, 42, 46, 48, 52, 57, 60, 63, 72, 73, 77], "48": [39, 75, 77], "53": [39, 75, 77], "59": [39, 75, 77], "64": [39, 60, 75, 77], "69": [39, 75, 77], "36": [39, 75, 77], "54": [39, 75, 77], "pivot_column_label": 40, "value_column_label": 40, "draw": [40, 50, 72, 73, 78], "recommend": 40, "realli": 40, "column_for_xtick": 41, "connect": [41, 75], "filepath_or_buff": 42, "read": [42, 73, 75, 76, 77], "file": [42, 63, 73, 75, 77], "web": 42, "address": 42, "handl": 42, "stringio": 42, "could": 42, "url": [42, 73, 77], "scheme": 42, "ftp": 42, "s3": 42, "www": [42, 77], "inferentialthink": [42, 77], "com": [42, 46, 73, 75, 77], "sat2014": [42, 77], "csv": [42, 63, 73, 75, 77], "particip": [42, 77], "rate": [42, 75, 77], "critic": [42, 77], "math": [42, 77], "write": [42, 53, 77], "north": [42, 77], "dakota": [42, 77], "612": [42, 77], "620": [42, 75, 77], "584": [42, 77], "1816": [42, 77], "illinoi": [42, 77], "599": [42, 75, 77], "616": [42, 75, 77], "587": [42, 77], "1802": [42, 77], "iowa": [42, 77], "605": [42, 77], "611": [42, 77], "578": [42, 77], "1794": [42, 77], "south": [42, 75, 77], "604": [42, 75, 77], "609": [42, 75, 77], "579": [42, 77], "1792": [42, 77], "minnesota": [42, 77], "598": [42, 77], "610": [42, 77], "1786": [42, 77], "michigan": [42, 77], "593": [42, 77], "581": [42, 77], "1784": [42, 77], "wisconsin": [42, 77], "596": [42, 77], "608": [42, 77], "1782": [42, 77], "missouri": [42, 77], "595": [42, 77], "597": [42, 77], "1771": [42, 77], "wyom": [42, 77], "590": [42, 77], "573": [42, 77], "1762": [42, 77], "kansa": [42, 77], "591": [42, 77], "566": [42, 77], "1753": [42, 77], "41": [42, 75, 77], "new_label": [43, 44, 75], "id": [43, 73, 75], "12345": 43, "5123": 43, "yolo": 43, "cyan": 43, "magenta": 43, "yellow": 43, "invalid": [43, 44, 73], "unmodifi": 44, "alreadi": 44, "order": [44, 52, 56, 61, 66, 68, 73, 75, 77, 78], "row_or_row_indic": 45, "made": [45, 73, 75], "2nd": [45, 75], "3rd": [45, 75], "pleas": [46, 77], "extend": [46, 75, 77], "docstr": 46, "github": [46, 73, 75], "blob": 46, "614db00e7d22e52683860d2beaa4037bec26cf87": 46, "py": 46, "l5673": 46, "l5765": 46, "view": [47, 75], "k": [48, 49, 55, 57, 58], "with_replac": [48, 75, 77], "randomli": [48, 55, 57, 75], "els": 48, "ith": 48, "resampl": [48, 77], "job": [48, 57, 63], "wage": [48, 57, 63], "w": [48, 77], "multinomi": [49, 78], "output": [49, 54, 63, 75], "random": [49, 77, 78], "seed": 49, "1000": [49, 53, 75, 77], "228": 49, "508": 49, "264": 49, "261": 49, "491": 49, "248": 49, "column_for_x": [50, 51], "fit_lin": [50, 51, 75, 77], "scatterplot": [50, 51], "best": [50, 60, 75], "fit": [50, 75], "iscatt": 50, "marker": [50, 73, 77], "coupl": 50, "dot": [50, 51], "annot": [50, 51], "rel": [50, 51], "area": [50, 51, 73, 78], "synonym": [50, 51], "retain": [50, 51], "temporarili": [50, 51], "backward": [50, 51], "compat": [50, 51], "futur": [50, 51], "releas": [50, 51, 72], "against": [50, 51], "One": [50, 76], "column_for_i": 51, "conveni": 51, "wrapper": 51, "iscatter3d": 51, "3d": 51, "pixel": [51, 73], "graph_object": 51, "update_layout": 51, "assertionerror": [51, 68], "z1": 51, "z2": 51, "keyerror": 52, "ani": [52, 61, 68, 73, 78], "flower": 52, "petal": 52, "34": [52, 74, 75, 77], "lotu": 52, "sunflow": 52, "rose": 52, "unchang": 52, "pretti": [53, 71], "print": [53, 71, 77, 78], "within": [53, 74, 77], "time": [53, 71, 75], "balanc": 53, "run": [53, 60, 63], "__repr__": 53, "upon": 53, "consol": 53, "underli": [53, 73], "remain": [53, 57, 75], "untouch": 53, "It": [53, 64, 75, 77, 78], "worth": 53, "account_info": 53, "user": 53, "gfoo": 53, "bbar": 53, "tbaz": 53, "hbat": 53, "200": [53, 73, 75], "555": 53, "125": [53, 75, 77], "430": [53, 75], "import": [53, 66, 74, 77], "currencyformatt": [53, 68, 71], "bz": 53, "beliz": 53, "dollar": 53, "def": [53, 60, 75, 77], "iceland_krona_formatt": 53, "kr": 53, "converts_valu": [53, 71], "attribut": [53, 73], "format_column": [53, 71], "In": [53, 66, 75, 77], "would": [53, 75], "convert_valu": [53, 71], "icelandkronaformatt": 53, "__init__": 53, "format_krona": 53, "convert_column": [53, 71], "perman": 53, "01": [53, 75], "55": [53, 75, 77], "65": [53, 75, 77], "drop": 53, "fraction": 53, "astyp": 53, "configur": 53, "account": 53, "them": [53, 60, 73], "charact": [53, 71], "someth": [53, 75], "custom": [53, 60, 73, 75, 77], "yourself": 53, "check": [53, 77], "save": 53, "500": [53, 68, 73], "1175": 53, "6700": 53, "val_width": 53, "len": [53, 77], "v": 53, "ljust": 53, "subset": [54, 78], "ipython": [54, 77], "core": [54, 64, 77], "descend": [56, 75, 77], "distinct": 56, "whose": [56, 58, 75], "rather": 56, "ascend": [56, 75], "num_row": [57, 77], "col": 58, "basi": 58, "represent": [58, 73], "suppli": [58, 66], "consid": [58, 75], "wherea": [58, 73], "final": 58, "unset": 59, "op": 60, "built": 60, "min": 60, "median": 60, "statist": 60, "prepend": 60, "fucntion": 60, "minimum": [60, 75], "17": [60, 72, 75, 77], "even": [60, 68], "mai": [60, 71, 77], "lead": 60, "unexpect": 60, "case": 60, "error": 60, "why": 60, "elimin": 60, "befor": 60, "overridden": 60, "weighted_averag": 60, "averag": [60, 75], "std": 60, "13333": 60, "1333": 60, "16": [60, 75, 77], "27761": 60, "67423": 60, "85235": 60, "taken": 61, "indexerror": 61, "out": [61, 75, 77], "arang": 61, "i8": 62, "filenam": [63, 75], "wai": [63, 76, 77, 78], "we": [63, 64, 75, 77], "my_tabl": 63, "recreat": [63, 77], "read_tabl": [63, 77], "current": [63, 73], "directori": 63, "some": [64, 75, 77], "here": [64, 72], "table_df": 64, "frame": 64, "col1": [65, 75], "col2": [65, 75], "value_or_pred": 66, "kept": 66, "pairwis": [66, 75], "comparison": 66, "below": [66, 74, 78], "usag": 66, "callabl": 66, "val": 66, "higher": 66, "predic": [66, 72], "equal_to": [66, 74], "abov": [66, 74], "compar": [66, 77], "alphabet": [67, 75], "permut": 67, "labels_and_valu": 68, "altern": [68, 77], "pair": [68, 73], "incorrect": 68, "iter": [68, 78], "miss": [68, 76], "player": 68, "player_id": 68, "110234": 68, "110235": 68, "woba": 68, "354": [68, 75], "236": 68, "salari": 68, "season": 68, "2016": 68, "500000": 68, "15500000": 68, "bonu": 68, "_format": 68, "000": [68, 71], "600": 68, "_": [70, 77], "tabl": [71, 72, 73, 74, 78], "entri": [71, 75], "symbol": 71, "currenc": 71, "ensur": 71, "ie": 71, "format_valu": 71, "dateformatt": 71, "h": 71, "date": [71, 72, 75], "unix": 71, "timestamp": 71, "2015": [71, 75], "08": [71, 75], "03": 71, "distributionformatt": 71, "decim": [71, 75], "percentag": [71, 75], "min_width": 71, "max_width": 71, "truncat": 71, "long": 71, "static": [71, 74, 75], "convers": 71, "overrid": 71, "pad": 71, "arbitrari": 71, "numberformatt": 71, "decimal_point": 71, "int_to_float": 71, "delimit": 71, "93000": 71, "percentformatt": 71, "mar": 72, "2024": 72, "packag": [72, 77], "written": 72, "berkelei": 72, "cours": 72, "investig": 72, "graphic": 72, "start": [72, 73, 75, 78], "tutori": 72, "access": [72, 76], "manipul": 72, "visual": [72, 73, 76], "export": [72, 76], "advanc": 72, "miscellan": 72, "folium": 73, "circl": [73, 77], "lat": 73, "lon": 73, "popup": 73, "314": 73, "1592653589793": 73, "circle_mark": 73, "stai": 73, "regardless": 73, "zoom": 73, "radiu": 73, "meter": 73, "To": [73, 77], "toggl": 73, "radius_in_met": 73, "flag": 73, "draw_on": 73, "pop": 73, "click": [73, 76], "fill": 73, "squar": [73, 75], "fill_opac": 73, "opac": 73, "leafletj": 73, "circlemark": 73, "For": [73, 74, 75, 77], "38": [73, 74, 75, 77], "122": 73, "121": 73, "3000": 73, "4000": 73, "5000": 73, "map_tabl": 73, "folium_map": 73, "featur": 73, "960": 73, "keyword": 73, "forward": 73, "key_on": 73, "palett": 73, "ylorbr": 73, "brewer": 73, "bugn": 73, "bupu": 73, "gnbu": 73, "orrd": 73, "pubu": 73, "pubugn": 73, "purd": 73, "rdpu": 73, "ylgn": 73, "ylgnbu": 73, "ylorrd": 73, "threshold_scal": 73, "d3": 73, "threshold": 73, "quantil": 73, "85": [73, 75], "nearest": [73, 75], "magnitud": 73, "ex": 73, "270": 73, "5600": 73, "6000": 73, "line_color": 73, "black": 73, "geojson": 73, "geopath": 73, "line_weight": 73, "line_opac": 73, "legend_nam": 73, "titl": 73, "render": 73, "NOT": 73, "ref": 73, "python": [73, 75], "issu": 73, "1207": 73, "featurecollect": 73, "region": [73, 77, 78], "overlain": 73, "read_geojson": 73, "path_or_json_or_string_or_url": 73, "simple_mark": 73, "purpl": 73, "orang": 73, "darkr": 73, "lightr": 73, "beig": 73, "darkblu": 73, "darkgreen": 73, "cadetblu": 73, "darkpurpl": 73, "white": 73, "pink": [73, 75], "lightblu": 73, "lightgreen": 73, "grai": 73, "lightgrai": 73, "standard": [73, 75, 78], "icon": 73, "hex": 73, "code": [73, 75, 77], "plugin": 73, "beautifyicon": 73, "marker_icon": 73, "info": [73, 78], "sign": 73, "getbootstrap": 73, "compon": 73, "clustered_mark": 73, "cluster": 73, "icon_angl": 73, "angl": 73, "popup_width": 73, "300": 73, "further": 73, "io": 73, "modul": [73, 77], "feature_id": 73, "lat_lon": 73, "describ": [73, 75], "latitud": 73, "longitud": 73, "other_attr": 73, "applic": 73, "todo": 73, "document": [73, 76], "index_map": 73, "cluster_label": 73, "colorbar_scal": 73, "cutoff": 73, "colorscal": 73, "gradient": 73, "include_color_scale_outli": 73, "outlier": 73, "radii": 73, "color_scal": 73, "radius_scal": 73, "cluster_bi": 73, "area_scal": 73, "explicitli": 73, "cl": 73, "specif": [73, 75], "well": 73, "markerclust": 73, "geo_json": 73, "substitut": 73, "flat": 73, "polygon": 73, "linear": 73, "ring": 73, "exterior": 73, "interior": 73, "hole": 73, "multipolygon": 73, "get_coordin": 73, "replace_column": 73, "remove_nan": 73, "locat": 73, "identifi": 73, "citi": [73, 75], "counti": 73, "insid": 73, "dataset": 73, "nan": [73, 75], "afterward": 73, "robust": 73, "capit": 73, "acquir": 73, "juli": 73, "2020": 73, "doc": 73, "gaslamp": 73, "media": 73, "download": 73, "geocode_dataset": 73, "geocode_st": 73, "modifi": [73, 75, 76, 77], "lowercas": 73, "pick": [74, 75], "l": [74, 75], "xl": 74, "waist": 74, "above_or_equal_to": 74, "below_or_equal_to": 74, "strictly_between": 74, "between_or_equal_to": 74, "not_abov": 74, "not_above_or_equal_to": 74, "not_below": 74, "not_below_or_equal_to": 74, "not_strictly_between": 74, "not_between": 74, "not_between_or_equal_to": 74, "not_contain": 74, "contained_in": 74, "mxl": 74, "not_contained_in": 74, "greater": [74, 75], "less": [74, 75], "superstr": 74, "part": 74, "substr": [74, 75], "neither": 74, "nor": 74, "not_equal_to": [74, 75], "notebook": [75, 77], "serv": 75, "friendli": 75, "librari": 75, "usual": 75, "29": [75, 77], "new_tabl": 75, "31": [75, 77], "trip": 75, "raw": 75, "githubusercont": 75, "textbook": [75, 77], "gh": 75, "page": [75, 76], "durat": 75, "station": 75, "termin": 75, "bike": 75, "subscrib": 75, "876419": 75, "413": 75, "civic": 75, "center": 75, "bart": 75, "7th": 75, "market": 75, "townsend": 75, "269": 75, "94518": 75, "459672": 75, "408": 75, "2014": 75, "harri": 75, "bridg": 75, "plaza": 75, "ferri": 75, "build": 75, "embarcadero": 75, "sansom": 75, "429": 75, "94111": 75, "903647": 75, "723": 75, "26": [75, 77], "san": 75, "francisco": 75, "caltrain": 75, "330": 75, "10th": 75, "67": [75, 77], "631": 75, "94025": 75, "452829": 75, "409": 75, "steuart": 75, "4th": 75, "76": [75, 77], "428": 75, "94925": 75, "491023": 75, "224": 75, "santa": 75, "clara": 75, "almaden": 75, "jose": 75, "diridon": 75, "144": 75, "94117": 75, "723352": 75, "519": 75, "04": 75, "howard": 75, "63": [75, 77], "70": [75, 77], "629": 75, "94061": 75, "524499": 75, "431": 75, "43": [75, 77], "630": 75, "94706": 75, "518524": 75, "389": 75, "28": [75, 77], "77": [75, 77], "park": 75, "458": 75, "94610": 75, "710070": 75, "11460": 75, "powel": 75, "street": 75, "39": [75, 77], "24": [75, 77], "375": 75, "94107": 75, "793149": 75, "bryant": 75, "289": [75, 77], "94105": 75, "99990": 75, "n1": 75, "v1": 75, "n2": 75, "v2": 75, "mani": 75, "33": [75, 77], "cooki": 75, "sugar": 75, "chocol": 75, "chip": 75, "velvet": 75, "oatmeal": 75, "raisin": 75, "peanut": 75, "butter": 75, "quantiti": 75, "delici": 75, "ye": [75, 77], "35": [75, 77], "column_name_or_index": 75, "lt": 75, "u14": 75, "100000": 75, "suppos": 75, "similarli": 75, "rememb": 75, "99995": 75, "46": [75, 77], "47": [75, 77], "old_label": 75, "49": [75, 77], "52": [75, 77], "57": [75, 77], "filter": 75, "avail": [75, 77], "58": [75, 77], "62": [75, 77], "eual_to": 75, "row_index": 75, "68": [75, 77], "actor": 75, "total": 75, "gross": 75, "movi": 75, "harrison": 75, "ford": 75, "4871": 75, "118": 75, "star": 75, "war": 75, "awaken": 75, "936": 75, "samuel": 75, "jackson": 75, "4772": 75, "aveng": 75, "623": 75, "morgan": 75, "freeman": 75, "4468": 75, "61": [75, 77], "73": [75, 77], "dark": 75, "knight": 75, "534": 75, "tom": 75, "hank": 75, "4340": 75, "98": 75, "toi": 75, "stori": 75, "415": 75, "robert": 75, "downei": 75, "jr": 75, "3947": 75, "eddi": 75, "murphi": 75, "3810": 75, "shrek": 75, "441": 75, "cruis": 75, "3587": 75, "world": [75, 76], "234": 75, "johnni": 75, "depp": 75, "3368": 75, "dead": 75, "man": 75, "chest": 75, "423": 75, "michael": 75, "cain": 75, "3351": 75, "scarlett": 75, "johansson": 75, "3341": 75, "x_column": 75, "y_column": 75, "vertic": 75, "find": 75, "movies_by_year": 75, "year": 75, "11128": 75, "702": 75, "10360": 75, "american": 75, "sniper": 75, "2013": 75, "10923": 75, "688": 75, "catch": 75, "fire": 75, "broken": 75, "down": 75, "unspecifi": 75, "78": [75, 77], "79": [75, 77], "ones": [75, 77], "version": 75, "193": 75, "194": 75, "23": [75, 77], "quotient": 75, "average_gross": 75, "total_gross": 75, "num_movi": 75, "82195122": 75, "17101449": 75, "25081967": 75, "65454545": 75, "47735849": 75, "27368421": 75, "64444444": 75, "85777778": 75, "78448276": 75, "3027027": 75, "68421053": 75, "9244898": 75, "15666667": 75, "8372093": 75, "451": 75, "84285714": 75, "62580645": 75, "131": 75, "2125": 75, "478": 75, "67435897": 75, "00379747": 75, "16764706": 75, "70952381": 75, "67826087": 75, "86470588": 75, "40540541": 75, "38888889": 75, "165": 75, "63529412": 75, "316": 75, "86153846": 75, "12619048": 75, "89428571": 75, "425": 75, "157": 75, "75882353": 75, "28913043": 75, "0225": 75, "15625": 75, "154": 75, "96470588": 75, "83103448": 75, "72564103": 75, "25384615": 75, "308": 75, "82777778": 75, "26666667": 75, "65348837": 75, "732": 75, "119": 75, "06190476": 75, "5925": 75, "106": 75, "86086957": 75, "96": 75, "folsom": 75, "2302": 75, "2610": 75, "3904": 75, "5th": 75, "2190": 75, "adob": 75, "arena": 75, "sap": 75, "176": 75, "beal": 75, "2377": 75, "broadwai": 75, "st": 75, "batteri": 75, "2157": 75, "california": 75, "av": 75, "127": 75, "castro": 75, "el": 75, "camino": 75, "real": 75, "339": 75, "512": 75, "887": 75, "654": 75, "565": 75, "755": 75, "819": 75, "509": 75, "2522": 75, "1999": 75, "679": 75, "602": 75, "827": 75, "753": 75, "4403": 75, "1221": 75, "7426": 75, "6114": 75, "4795": 75, "temporari": 75, "transbai": 75, "4212": 75, "3925": 75, "3900": 75, "3872": 75, "3370": 75, "3218": 75, "87": 75, "22": [75, 77], "clai": 75, "commerci": 75, "montgomeri": 75, "davi": 75, "1616": 75, "cell": 75, "more_con": 75, "flavor": 75, "strawberri": 75, "bubblegum": 75, "light": 75, "brown": 75, "tbl1": 75, "tbl2": 75, "cone": 75, "vanilla": 75, "kind": 75, "mint": 75, "97": 75, "rerun": 75, "notic": 75, "certain": 75, "theoret": 75, "sampled_with_replac": 75, "8hiishifun": 75, "hi": [75, 76], "example_str": 75, "fun": 75, "104": 75, "another_str": 75, "secret": 75, "messag": 75, "105": 75, "fun_arrai": 75, "high": 75, "great": [75, 78], "est": 75, "highest": 75, "greatest": 75, "merg": 75, "some_str": 75, "somelistofstr": 75, "old_str": 75, "new_str": 75, "occurr": 75, "107": 75, "berkeley_str": 75, "saw": 75, "friend": 75, "squirrel": 75, "peopl": 75, "flyer": 75, "sproul": 75, "108": [75, 77], "frisbe": 75, "110": 75, "chain": 75, "picnic": 75, "glade": 75, "111": 75, "example_arrai": 75, "112": 75, "113": [75, 77], "114": 75, "115": [75, 77], "absolut": 75, "new_arr": 75, "after": 75, "124": 75, "14159": 75, "142": 75, "130": 75, "val1": 75, "val2": 75, "132": [75, 77], "new_arrai": 75, "134": 75, "133": 75, "deviat": [75, 78], "150": 75, "648699324175862": 75, "input": [75, 77, 78], "x_1": 75, "x_0": 75, "x_2": 75, "x_3": 75, "135": [75, 77], "136": [75, 77], "root": 75, "137": 75, "138": [75, 77], "stop": 75, "step": [75, 77], "increment": 75, "exclus": 75, "139": 75, "140": [75, 77], "143": [75, 77], "146": 75, "147": 75, "149": 75, "152": 75, "nonzero": 75, "valuea": 75, "153": 75, "another_arrai": 75, "159": 75, "160": 75, "161": 75, "percent": 75, "162": 75, "long_arrai": 75, "163": 75, "164": 75, "negat": 75, "preced": 75, "not_": 75, "leav": 75, "166": 75, "824979": 75, "02": 75, "japantown": 75, "hall": 75, "660": 75, "nil": 75, "439946": 75, "yerba": 75, "buena": 75, "art": 75, "452": 75, "788261": 75, "post": 75, "union": 75, "575": 75, "94108": 75, "560479": 75, "van": 75, "ness": 75, "653797": 75, "546": 75, "94102": 75, "887134": 75, "mechan": 75, "313": 75, "94103": 75, "482225": 75, "spear": 75, "209": 75, "94133": 75, "681697": 75, "19": [75, 77], "368": 75, "95120": 75, "912821": 75, "09": 75, "94085": 75, "strictli": 75, "167": 75, "589964": 75, "15097": 75, "golden": 75, "gate": 75, "polk": 75, "29225": 75, "831509": 75, "1057": 75, "94114": 75, "442750": 75, "6084": 75, "474454": 75, "608714": 75, "19799": 75, "07": 75, "univers": 75, "emerson": 75, "686": 75, "711961": 75, "1026": 75, "189": 75, "833071": 75, "2314": 75, "washington": 75, "kearni": 75, "94806": 75, "570731": 75, "1218": 75, "mlk": 75, "jame": 75, "299": [75, 77], "95033": 75, "853698": 75, "1048": 75, "636": 75, "91436": 75, "787510": 75, "3670": 75, "mountain": 75, "713": 75, "94041": 75, "11576": 75, "168": 75, "11597": 75, "170": 75, "482797": 75, "95112": 75, "483052": 75, "306": 75, "569620": 75, "326": 75, "502332": 75, "613": 75, "94602": 75, "604012": 75, "601": 75, "704918": 75, "394": 75, "513458": 75, "569": 75, "696725": 75, "516": 75, "94109": 75, "829817": 75, "292": 75, "94538": 75, "745895": 75, "06": 75, "380": 75, "94947": 75, "403": 75, "171": 75, "808199": 75, "537": 75, "greather": 75, "interv": 75, "172": 75, "437830": 75, "151": 75, "grant": 75, "avenu": 75, "columbu": 75, "94104": 75, "436255": 75, "195": 75, "585884": 75, "576": 75, "548322": 75, "191": 75, "94705": 75, "594999": 75, "185": 75, "antonio": 75, "shop": 75, "94040": 75, "468534": 75, "443": 75, "873710": 75, "169": 75, "532": 75, "853087": 75, "418": 75, "863019": 75, "504": 75, "883134": 75, "173": 75, "363": 75, "5083": 75, "903735": 75, "453": 75, "94501": 75, "5180": 75, "string_or_arrai": 75, "877160": 75, "527": 75, "768619": 75, "840": 75, "94903": 75, "701211": 75, "252": 75, "405": 75, "487432": 75, "561": 75, "342": 75, "610970": 75, "808": 75, "310": 75, "753668": 75, "196": 75, "533": 75, "94973": 75, "466551": 75, "222": 75, "2578": 75, "178": [75, 77], "180": 75, "681771": 75, "895": 75, "416": 75, "78805": 75, "181": 75, "5056": 75, "sample_s": [75, 78], "model_proport": 75, "182": 75, "190": 75, "log": [75, 78], "17585792": 75, "58835469": 75, "summari": 76, "about": 76, "signatur": 76, "howev": 76, "bracket": [76, 77], "That": 76, "first_arg": 76, "second_arg": 76, "some_other_arg": 76, "fourth_arg": 76, "some_t": 76, "But": 76, "syntaxerror": 76, "syntax": 76, "confus": 76, "itself": [76, 78], "detail": 76, "straightforward": 76, "extens": 76, "mutat": 76, "transform": 76, "brief": 77, "introduct": 77, "complet": 77, "guid": 77, "load": 77, "tab": 77, "member": 77, "scienc": 77, "lab": 77, "mirror": 77, "close": 77, "exact": 77, "hidden": 77, "agg": 77, "inlin": 77, "style": 77, "fivethirtyeight": 77, "particular": 77, "involv": 77, "scratch": 77, "often": 77, "excel": 77, "spreadsheet": 77, "cat": 77, "And": 77, "possibl": 77, "discourag": 77, "preserv": 77, "notat": 77, "shorthand": 77, "common": 77, "vowel": 77, "renam": 77, "condition": 77, "third": 77, "actual": 77, "sort": 77, "reduc": 77, "other_t": 77, "mar_statu": 77, "marri": 77, "partner": 77, "empl_statu": 77, "work": 77, "paid": 77, "ll": 77, "normal_data": 77, "loc": 77, "20011": 77, "81614": 77, "94625": 77, "98461": 77, "23617": 77, "33198": 77, "163808": 77, "7598": 77, "13657": 77, "68041": 77, "09672": 77, "5486": 77, "5919": 77, "09641": 77, "28616": 77, "60395": 77, "61927": 77, "99552": 77, "92661": 77, "06488": 77, "nicer": 77, "categor": 77, "to_df": 77, "prevent": 77, "to_csv": 77, "chapter": 77, "signific": 77, "birth": 77, "smoker": 77, "bootstrap": 77, "test": 77, "tabledemo": 77, "repo": 77, "babi": 77, "174": 77, "mother": 77, "newborn": 77, "ounc": 77, "gestat": 77, "womb": 77, "There": 77, "matern": 77, "pregnanc": 77, "let": 77, "peek": 77, "120": 77, "284": 77, "282": 77, "128": 77, "279": 77, "286": 77, "244": 77, "245": 77, "351": 77, "1164": 77, "smoker_and_wt": 77, "715": 77, "459": 77, "birthweight": 77, "grab": 77, "don": 77, "smoke": 77, "nonsmoking_mean": 77, "smoking_mean": 77, "observed_diff": 77, "2661425720249184": 77, "num_nonsmok": 77, "bootstrap_onc": 77, "nonsmok": 77, "bootstrap_diff": 77, "repetit": 77, "bootstrapped_diff_mean": 77, "77816171": 77, "23773786": 77, "50497738": 77, "95732895": 77, "18618462": 77, "90481588": 77, "09267639": 77, "90782028": 77, "84637019": 77, "3219617": 77, "num_diffs_great": 77, "ab": 77, "p_valu": 77, "main": 77, "default_map": 77, "as_html": 77, "open": 77, "store": 77, "is_non_string_iter": 78, "As": 78, "variad": 78, "varad": 78, "u3": 78, "float64": 78, "minim": 78, "smooth": 78, "optim": 78, "scipi": 78, "multi": 78, "percentil": 78, "curri": 78, "plot_cdf_area": 78, "rbound": 78, "lbound": 78, "sd": 78, "curv": 78, "paramet": 78, "boundari": 78, "neg": 78, "infin": 78, "plot_normal_cdf": 78, "proportions_from_distribut": 78, "column_nam": 78, "divid": 78, "throw": 78, "sample_proport": 78, "outcom": 78, "similar": 78, "table_appli": 78, "your": 78}, "objects": {"datascience": [[71, 0, 0, "-", "formats"], [73, 0, 0, "-", "maps"], [74, 0, 0, "-", "predicates"], [78, 0, 0, "-", "util"]], "datascience.formats": [[71, 1, 1, "", "CurrencyFormatter"], [71, 1, 1, "", "DateFormatter"], [71, 1, 1, "", "DistributionFormatter"], [71, 1, 1, "", "Formatter"], [71, 1, 1, "", "NumberFormatter"], [71, 1, 1, "", "PercentFormatter"]], "datascience.formats.CurrencyFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DateFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DistributionFormatter": [[71, 2, 1, "", "convert_column"]], "datascience.formats.Formatter": [[71, 2, 1, "", "convert_column"], [71, 2, 1, "", "convert_value"], [71, 3, 1, "", "converts_values"], [71, 4, 1, "", "etc"], [71, 2, 1, "", "format_column"], [71, 2, 1, "", "format_value"], [71, 4, 1, "", "max_width"], [71, 4, 1, "", "min_width"]], "datascience.formats.NumberFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.PercentFormatter": [[71, 2, 1, "", "format_value"]], "datascience.maps": [[73, 1, 1, "", "Circle"], [73, 1, 1, "", "Map"], [73, 1, 1, "", "Marker"], [73, 1, 1, "", "Region"], [73, 5, 1, "", "get_coordinates"]], "datascience.maps.Circle": [[73, 2, 1, "", "draw_on"]], "datascience.maps.Map": [[73, 2, 1, "", "color"], [73, 2, 1, "", "copy"], [73, 3, 1, "", "features"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 2, 1, "", "overlay"], [73, 2, 1, "", "read_geojson"]], "datascience.maps.Marker": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 2, 1, "", "map"], [73, 2, 1, "", "map_table"]], "datascience.maps.Region": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 3, 1, "", "polygons"], [73, 3, 1, "", "properties"], [73, 3, 1, "", "type"]], "datascience.predicates": [[74, 1, 1, "", "are"]], "datascience.predicates.are": [[74, 2, 1, "", "above"], [74, 2, 1, "", "above_or_equal_to"], [74, 2, 1, "", "below"], [74, 2, 1, "", "below_or_equal_to"], [74, 2, 1, "", "between"], [74, 2, 1, "", "between_or_equal_to"], [74, 2, 1, "", "contained_in"], [74, 2, 1, "", "containing"], [74, 2, 1, "", "equal_to"], [74, 2, 1, "", "not_above"], [74, 2, 1, "", "not_above_or_equal_to"], [74, 2, 1, "", "not_below"], [74, 2, 1, "", "not_below_or_equal_to"], [74, 2, 1, "", "not_between"], [74, 2, 1, "", "not_between_or_equal_to"], [74, 2, 1, "", "not_contained_in"], [74, 2, 1, "", "not_containing"], [74, 2, 1, "", "not_equal_to"], [74, 2, 1, "", "not_strictly_between"], [74, 2, 1, "", "strictly_between"]], "datascience.tables.Table": [[0, 2, 1, "", "__init__"], [1, 2, 1, "", "append"], [2, 2, 1, "", "append_column"], [3, 2, 1, "", "apply"], [4, 2, 1, "", "as_html"], [5, 2, 1, "", "as_text"], [6, 2, 1, "", "bar"], [7, 2, 1, "", "barh"], [8, 2, 1, "", "bin"], [9, 2, 1, "", "boxplot"], [10, 2, 1, "", "column"], [11, 2, 1, "", "column_index"], [12, 3, 1, "", "columns"], [13, 2, 1, "", "copy"], [14, 2, 1, "", "drop"], [15, 2, 1, "", "exclude"], [16, 2, 1, "", "first"], [17, 2, 1, "", "from_array"], [18, 2, 1, "", "from_columns_dict"], [19, 2, 1, "", "from_df"], [20, 2, 1, "", "from_records"], [21, 2, 1, "", "group"], [22, 2, 1, "", "group_bar"], [23, 2, 1, "", "group_barh"], [24, 2, 1, "", "groups"], [25, 2, 1, "", "hist"], [26, 2, 1, "", "hist_of_counts"], [27, 2, 1, "", "index_by"], [28, 2, 1, "", "interactive_plots"], [29, 2, 1, "", "join"], [30, 3, 1, "", "labels"], [31, 2, 1, "", "last"], [32, 2, 1, "", "move_column"], [33, 2, 1, "", "move_to_end"], [34, 2, 1, "", "move_to_start"], [35, 3, 1, "", "num_columns"], [36, 3, 1, "", "num_rows"], [37, 2, 1, "", "percentile"], [38, 2, 1, "", "pivot"], [39, 2, 1, "", "pivot_bin"], [40, 2, 1, "", "pivot_hist"], [41, 2, 1, "", "plot"], [42, 2, 1, "", "read_table"], [43, 2, 1, "", "relabel"], [44, 2, 1, "", "relabeled"], [45, 2, 1, "", "remove"], [46, 2, 1, "", "row"], [47, 3, 1, "", "rows"], [48, 2, 1, "", "sample"], [49, 2, 1, "", "sample_from_distribution"], [50, 2, 1, "", "scatter"], [51, 2, 1, "", "scatter3d"], [52, 2, 1, "", "select"], [53, 2, 1, "", "set_format"], [54, 2, 1, "", "show"], [55, 2, 1, "", "shuffle"], [56, 2, 1, "", "sort"], [57, 2, 1, "", "split"], [58, 2, 1, "", "stack"], [59, 2, 1, "", "static_plots"], [60, 2, 1, "", "stats"], [61, 2, 1, "", "take"], [62, 2, 1, "", "to_array"], [63, 2, 1, "", "to_csv"], [64, 2, 1, "", "to_df"], [65, 3, 1, "", "values"], [66, 2, 1, "", "where"], [67, 2, 1, "", "with_column"], [68, 2, 1, "", "with_columns"], [69, 2, 1, "", "with_row"], [70, 2, 1, "", "with_rows"]], "datascience.util": [[78, 5, 1, "", "is_non_string_iterable"], [78, 5, 1, "", "make_array"], [78, 5, 1, "", "minimize"], [78, 5, 1, "", "percentile"], [78, 5, 1, "", "plot_cdf_area"], [78, 5, 1, "", "plot_normal_cdf"], [78, 5, 1, "", "proportions_from_distribution"], [78, 5, 1, "", "sample_proportions"], [78, 5, 1, "", "table_apply"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:attribute", "5": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "titleterms": {"datasci": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "tabl": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 75, 76, 77], "__init__": 0, "append": [1, 75], "append_column": 2, "appli": [3, 75], "as_html": 4, "as_text": 5, "bar": 6, "barh": [7, 75], "bin": 8, "boxplot": 9, "column": [10, 12, 75], "column_index": 11, "copi": 13, "drop": [14, 75], "exclud": 15, "first": 16, "from_arrai": 17, "from_columns_dict": 18, "from_df": 19, "from_record": 20, "group": [21, 24, 75], "group_bar": 22, "group_barh": 23, "hist": [25, 75], "hist_of_count": 26, "index_bi": 27, "interactive_plot": [28, 75], "join": [29, 75], "label": [30, 75], "last": 31, "move_column": 32, "move_to_end": 33, "move_to_start": 34, "num_column": [35, 75], "num_row": [36, 75], "percentil": [37, 75], "pivot": [38, 75], "pivot_bin": 39, "pivot_hist": 40, "plot": [41, 75], "read_tabl": [42, 75], "relabel": [43, 44, 75], "remov": 45, "row": [46, 47], "sampl": [48, 75], "sample_from_distribut": 49, "scatter": [50, 75], "scatter3d": 51, "select": [52, 75], "set_format": 53, "show": [54, 75], "shuffl": 55, "sort": [56, 75], "split": [57, 75], "stack": 58, "static_plot": [59, 75], "stat": 60, "take": [61, 75], "to_arrai": 62, "to_csv": 63, "to_df": 64, "valu": [65, 77], "where": [66, 75], "with_column": [67, 68, 75], "with_row": [69, 70], "format": 71, "welcom": 72, "": 72, "document": 72, "refer": [72, 75], "map": [73, 77], "predic": [74, 75], "data": [75, 77], "8": 75, "function": [75, 78], "method": 75, "tbl": 75, "visual": [75, 77], "advanc": 75, "string": 75, "str": 75, "replac": 75, "arrai": 75, "max": 75, "min": 75, "sum": 75, "ab": 75, "round": 75, "num": 75, "len": 75, "make_arrai": 75, "np": 75, "mean": 75, "std": 75, "diff": 75, "sqrt": 75, "arang": 75, "item": 75, "random": 75, "choic": 75, "count_nonzero": 75, "ar": 75, "equal_to": 75, "abov": 75, "above_or_equal_to": 75, "below": 75, "below_or_equal_to": 75, "between": 75, "between_or_equal_to": 75, "contained_in": 75, "contain": 75, "strictly_between": 75, "miscellan": 75, "sample_proport": 75, "minim": 75, "start": 77, "here": 77, "tutori": 77, "content": 77, "get": 77, "creat": 77, "access": 77, "manipul": 77, "export": 77, "an": 77, "exampl": 77, "draw": 77, "util": 78}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"datascience.tables.Table.__init__": [[0, "datascience-tables-table-init"]], "datascience.tables.Table.append": [[1, "datascience-tables-table-append"]], "datascience.tables.Table.append_column": [[2, "datascience-tables-table-append-column"]], "datascience.tables.Table.apply": [[3, "datascience-tables-table-apply"]], "datascience.tables.Table.as_html": [[4, "datascience-tables-table-as-html"]], "datascience.tables.Table.as_text": [[5, "datascience-tables-table-as-text"]], "datascience.tables.Table.bar": [[6, "datascience-tables-table-bar"]], "datascience.tables.Table.barh": [[7, "datascience-tables-table-barh"]], "datascience.tables.Table.bin": [[8, "datascience-tables-table-bin"]], "datascience.tables.Table.boxplot": [[9, "datascience-tables-table-boxplot"]], "datascience.tables.Table.column": [[10, "datascience-tables-table-column"]], "datascience.tables.Table.column_index": [[11, "datascience-tables-table-column-index"]], "datascience.tables.Table.columns": [[12, "datascience-tables-table-columns"]], "datascience.tables.Table.copy": [[13, "datascience-tables-table-copy"]], "datascience.tables.Table.drop": [[14, "datascience-tables-table-drop"]], "datascience.tables.Table.exclude": [[15, "datascience-tables-table-exclude"]], "datascience.tables.Table.first": [[16, "datascience-tables-table-first"]], "datascience.tables.Table.from_array": [[17, "datascience-tables-table-from-array"]], "datascience.tables.Table.from_columns_dict": [[18, "datascience-tables-table-from-columns-dict"]], "datascience.tables.Table.from_df": [[19, "datascience-tables-table-from-df"]], "datascience.tables.Table.from_records": [[20, "datascience-tables-table-from-records"]], "datascience.tables.Table.group": [[21, "datascience-tables-table-group"]], "datascience.tables.Table.group_bar": [[22, "datascience-tables-table-group-bar"]], "datascience.tables.Table.group_barh": [[23, "datascience-tables-table-group-barh"]], "datascience.tables.Table.groups": [[24, "datascience-tables-table-groups"]], "datascience.tables.Table.hist": [[25, "datascience-tables-table-hist"]], "datascience.tables.Table.hist_of_counts": [[26, "datascience-tables-table-hist-of-counts"]], "datascience.tables.Table.index_by": [[27, "datascience-tables-table-index-by"]], "datascience.tables.Table.interactive_plots": [[28, "datascience-tables-table-interactive-plots"]], "datascience.tables.Table.join": [[29, "datascience-tables-table-join"]], "datascience.tables.Table.labels": [[30, "datascience-tables-table-labels"]], "datascience.tables.Table.last": [[31, "datascience-tables-table-last"]], "datascience.tables.Table.move_column": [[32, "datascience-tables-table-move-column"]], "datascience.tables.Table.move_to_end": [[33, "datascience-tables-table-move-to-end"]], "datascience.tables.Table.move_to_start": [[34, "datascience-tables-table-move-to-start"]], "datascience.tables.Table.num_columns": [[35, "datascience-tables-table-num-columns"]], "datascience.tables.Table.num_rows": [[36, "datascience-tables-table-num-rows"]], "datascience.tables.Table.percentile": [[37, "datascience-tables-table-percentile"]], "datascience.tables.Table.pivot": [[38, "datascience-tables-table-pivot"]], "datascience.tables.Table.pivot_bin": [[39, "datascience-tables-table-pivot-bin"]], "datascience.tables.Table.pivot_hist": [[40, "datascience-tables-table-pivot-hist"]], "datascience.tables.Table.plot": [[41, "datascience-tables-table-plot"]], "datascience.tables.Table.read_table": [[42, "datascience-tables-table-read-table"]], "datascience.tables.Table.relabel": [[43, "datascience-tables-table-relabel"]], "datascience.tables.Table.relabeled": [[44, "datascience-tables-table-relabeled"]], "datascience.tables.Table.remove": [[45, "datascience-tables-table-remove"]], "datascience.tables.Table.row": [[46, "datascience-tables-table-row"]], "datascience.tables.Table.rows": [[47, "datascience-tables-table-rows"]], "datascience.tables.Table.sample": [[48, "datascience-tables-table-sample"]], "datascience.tables.Table.sample_from_distribution": [[49, "datascience-tables-table-sample-from-distribution"]], "datascience.tables.Table.scatter": [[50, "datascience-tables-table-scatter"]], "datascience.tables.Table.scatter3d": [[51, "datascience-tables-table-scatter3d"]], "datascience.tables.Table.select": [[52, "datascience-tables-table-select"]], "datascience.tables.Table.set_format": [[53, "datascience-tables-table-set-format"]], "datascience.tables.Table.show": [[54, "datascience-tables-table-show"]], "datascience.tables.Table.shuffle": [[55, "datascience-tables-table-shuffle"]], "datascience.tables.Table.sort": [[56, "datascience-tables-table-sort"]], "datascience.tables.Table.split": [[57, "datascience-tables-table-split"]], "datascience.tables.Table.stack": [[58, "datascience-tables-table-stack"]], "datascience.tables.Table.static_plots": [[59, "datascience-tables-table-static-plots"]], "datascience.tables.Table.stats": [[60, "datascience-tables-table-stats"]], "datascience.tables.Table.take": [[61, "datascience-tables-table-take"]], "datascience.tables.Table.to_array": [[62, "datascience-tables-table-to-array"]], "datascience.tables.Table.to_csv": [[63, "datascience-tables-table-to-csv"]], "datascience.tables.Table.to_df": [[64, "datascience-tables-table-to-df"]], "datascience.tables.Table.values": [[65, "datascience-tables-table-values"]], "datascience.tables.Table.where": [[66, "datascience-tables-table-where"]], "datascience.tables.Table.with_column": [[67, "datascience-tables-table-with-column"]], "datascience.tables.Table.with_columns": [[68, "datascience-tables-table-with-columns"]], "datascience.tables.Table.with_row": [[69, "datascience-tables-table-with-row"]], "datascience.tables.Table.with_rows": [[70, "datascience-tables-table-with-rows"]], "Formats (datascience.formats)": [[71, "module-datascience.formats"]], "Welcome to datascience\u2019s documentation!": [[72, "welcome-to-datascience-s-documentation"]], "Reference": [[72, "reference"]], "Maps (datascience.maps)": [[73, "module-datascience.maps"]], "Predicates (datascience.predicates)": [[74, "module-datascience.predicates"]], "Data 8 datascience Reference": [[75, "Data-8-datascience-Reference"]], "Table Functions and Methods": [[75, "Table-Functions-and-Methods"]], "Table()": [[75, "Table()"]], "Table.read_table()": [[75, "Table.read_table()"]], "tbl.with_column": [[75, "tbl.with_column"]], "tbl.column()": [[75, "tbl.column()"]], "tbl.num_rows": [[75, "tbl.num_rows"]], "tbl.num_columns": [[75, "tbl.num_columns"]], "tbl.labels": [[75, "tbl.labels"]], "tbl.select()": [[75, "tbl.select()"]], "tbl.drop()": [[75, "tbl.drop()"]], "tbl.relabel()": [[75, "tbl.relabel()"]], "tbl.show()": [[75, "tbl.show()"]], "tbl.sort()": [[75, "tbl.sort()"]], "tbl.where()": [[75, "tbl.where()"]], "tbl.take()": [[75, "tbl.take()"]], "Table Visualizations": [[75, "Table-Visualizations"]], "tbl.scatter()": [[75, "tbl.scatter()"]], "tbl.plot()": [[75, "tbl.plot()"]], "tbl.barh()": [[75, "tbl.barh()"]], "tbl.hist()": [[75, "tbl.hist()"]], "Table.interactive_plots()": [[75, "Table.interactive_plots()"]], "Table.static_plots()": [[75, "Table.static_plots()"]], "Advanced Table Functions": [[75, "Advanced-Table-Functions"]], "tbl.apply()": [[75, "tbl.apply()"]], "tbl.group()": [[75, "tbl.group()"]], "tbl.pivot()": [[75, "tbl.pivot()"]], "tbl.join()": [[75, "tbl.join()"]], "tbl.sample()": [[75, "tbl.sample()"]], "String Methods": [[75, "String-Methods"]], "str.split()": [[75, "str.split()"]], "str.join()": [[75, "str.join()"]], "str.replace()": [[75, "str.replace()"]], "Array Functions and Methods": [[75, "Array-Functions-and-Methods"]], "max()": [[75, "max()"]], "min()": [[75, "min()"]], "sum()": [[75, "sum()"]], "abs()": [[75, "abs()"]], "round(num)": [[75, "round(num)"]], "len()": [[75, "len()"]], "make_array()": [[75, "make_array()"]], "np.mean": [[75, "np.mean"]], "np.std()": [[75, "np.std()"]], "np.diff()": [[75, "np.diff()"]], "np.sqrt()": [[75, "np.sqrt()"]], "np.arange()": [[75, "np.arange()"]], "array.item()": [[75, "array.item()"]], "np.random.choice": [[75, "np.random.choice"]], "np.count_nonzero()": [[75, "np.count_nonzero()"]], "np.append()": [[75, "np.append()"]], "percentile()": [[75, "percentile()"]], "Table.where Predicates": [[75, "Table.where-Predicates"]], "are.equal_to()": [[75, "are.equal_to()"]], "are.above()": [[75, "are.above()"]], "are.above_or_equal_to()": [[75, "are.above_or_equal_to()"]], "are.below()": [[75, "are.below()"]], "are.below_or_equal_to()": [[75, "are.below_or_equal_to()"]], "are.between()": [[75, "are.between()"]], "are.between_or_equal_to()": [[75, "are.between_or_equal_to()"]], "are.contained_in()": [[75, "are.contained_in()"]], "are.containing()": [[75, "are.containing()"]], "are.strictly_between()": [[75, "are.strictly_between()"]], "Miscellaneous Functions": [[75, "Miscellaneous-Functions"]], "sample_proportions()": [[75, "sample_proportions()"]], "minimize()": [[75, "minimize()"]], "Tables (datascience.tables)": [[76, "tables-datascience-tables"]], "Start Here: datascience Tutorial": [[77, "start-here-datascience-tutorial"]], "Table of Contents": [[77, "table-of-contents"]], "Getting Started": [[77, "getting-started"]], "Creating a Table": [[77, "creating-a-table"]], "Accessing Values": [[77, "accessing-values"]], "Manipulating Data": [[77, "manipulating-data"]], "Visualizing Data": [[77, "visualizing-data"]], "Exporting": [[77, "exporting"]], "An Example": [[77, "an-example"]], "Drawing Maps": [[77, "drawing-maps"]], "Utility Functions (datascience.util)": [[78, "module-datascience.util"]]}, "indexentries": {"__init__() (datascience.tables.table method)": [[0, "datascience.tables.Table.__init__"]], "append() (datascience.tables.table method)": [[1, "datascience.tables.Table.append"]], "append_column() (datascience.tables.table method)": [[2, "datascience.tables.Table.append_column"]], "apply() (datascience.tables.table method)": [[3, "datascience.tables.Table.apply"]], "as_html() (datascience.tables.table method)": [[4, "datascience.tables.Table.as_html"]], "as_text() (datascience.tables.table method)": [[5, "datascience.tables.Table.as_text"]], "bar() (datascience.tables.table method)": [[6, "datascience.tables.Table.bar"]], "barh() (datascience.tables.table method)": [[7, "datascience.tables.Table.barh"]], "bin() (datascience.tables.table method)": [[8, "datascience.tables.Table.bin"]], "boxplot() (datascience.tables.table method)": [[9, "datascience.tables.Table.boxplot"]], "column() (datascience.tables.table method)": [[10, "datascience.tables.Table.column"]], "column_index() (datascience.tables.table method)": [[11, "datascience.tables.Table.column_index"]], "columns (datascience.tables.table property)": [[12, "datascience.tables.Table.columns"]], "copy() (datascience.tables.table method)": [[13, "datascience.tables.Table.copy"]], "drop() (datascience.tables.table method)": [[14, "datascience.tables.Table.drop"]], "exclude() (datascience.tables.table method)": [[15, "datascience.tables.Table.exclude"]], "first() (datascience.tables.table method)": [[16, "datascience.tables.Table.first"]], "from_array() (datascience.tables.table class method)": [[17, "datascience.tables.Table.from_array"]], "from_columns_dict() (datascience.tables.table class method)": [[18, "datascience.tables.Table.from_columns_dict"]], "from_df() (datascience.tables.table class method)": [[19, "datascience.tables.Table.from_df"]], "from_records() (datascience.tables.table class method)": [[20, "datascience.tables.Table.from_records"]], "group() (datascience.tables.table method)": [[21, "datascience.tables.Table.group"]], "group_bar() (datascience.tables.table method)": [[22, "datascience.tables.Table.group_bar"]], "group_barh() (datascience.tables.table method)": [[23, "datascience.tables.Table.group_barh"]], "groups() (datascience.tables.table method)": [[24, "datascience.tables.Table.groups"]], "hist() (datascience.tables.table method)": [[25, "datascience.tables.Table.hist"]], "hist_of_counts() (datascience.tables.table method)": [[26, "datascience.tables.Table.hist_of_counts"]], "index_by() (datascience.tables.table method)": [[27, "datascience.tables.Table.index_by"]], "interactive_plots() (datascience.tables.table class method)": [[28, "datascience.tables.Table.interactive_plots"]], "join() (datascience.tables.table method)": [[29, "datascience.tables.Table.join"]], "labels (datascience.tables.table property)": [[30, "datascience.tables.Table.labels"]], "last() (datascience.tables.table method)": [[31, "datascience.tables.Table.last"]], "move_column() (datascience.tables.table method)": [[32, "datascience.tables.Table.move_column"]], "move_to_end() (datascience.tables.table method)": [[33, "datascience.tables.Table.move_to_end"]], "move_to_start() (datascience.tables.table method)": [[34, "datascience.tables.Table.move_to_start"]], "num_columns (datascience.tables.table property)": [[35, "datascience.tables.Table.num_columns"]], "num_rows (datascience.tables.table property)": [[36, "datascience.tables.Table.num_rows"]], "percentile() (datascience.tables.table method)": [[37, "datascience.tables.Table.percentile"]], "pivot() (datascience.tables.table method)": [[38, "datascience.tables.Table.pivot"]], "pivot_bin() (datascience.tables.table method)": [[39, "datascience.tables.Table.pivot_bin"]], "pivot_hist() (datascience.tables.table method)": [[40, "datascience.tables.Table.pivot_hist"]], "plot() (datascience.tables.table method)": [[41, "datascience.tables.Table.plot"]], "read_table() (datascience.tables.table class method)": [[42, "datascience.tables.Table.read_table"]], "relabel() (datascience.tables.table method)": [[43, "datascience.tables.Table.relabel"]], "relabeled() (datascience.tables.table method)": [[44, "datascience.tables.Table.relabeled"]], "remove() (datascience.tables.table method)": [[45, "datascience.tables.Table.remove"]], "row() (datascience.tables.table method)": [[46, "datascience.tables.Table.row"]], "rows (datascience.tables.table property)": [[47, "datascience.tables.Table.rows"]], "sample() (datascience.tables.table method)": [[48, "datascience.tables.Table.sample"]], "sample_from_distribution() (datascience.tables.table method)": [[49, "datascience.tables.Table.sample_from_distribution"]], "scatter() (datascience.tables.table method)": [[50, "datascience.tables.Table.scatter"]], "scatter3d() (datascience.tables.table method)": [[51, "datascience.tables.Table.scatter3d"]], "select() (datascience.tables.table method)": [[52, "datascience.tables.Table.select"]], "set_format() (datascience.tables.table method)": [[53, "datascience.tables.Table.set_format"]], "show() (datascience.tables.table method)": [[54, "datascience.tables.Table.show"]], "shuffle() (datascience.tables.table method)": [[55, "datascience.tables.Table.shuffle"]], "sort() (datascience.tables.table method)": [[56, "datascience.tables.Table.sort"]], "split() (datascience.tables.table method)": [[57, "datascience.tables.Table.split"]], "stack() (datascience.tables.table method)": [[58, "datascience.tables.Table.stack"]], "static_plots() (datascience.tables.table class method)": [[59, "datascience.tables.Table.static_plots"]], "stats() (datascience.tables.table method)": [[60, "datascience.tables.Table.stats"]], "take() (datascience.tables.table method)": [[61, "datascience.tables.Table.take"]], "to_array() (datascience.tables.table method)": [[62, "datascience.tables.Table.to_array"]], "to_csv() (datascience.tables.table method)": [[63, "datascience.tables.Table.to_csv"]], "to_df() (datascience.tables.table method)": [[64, "datascience.tables.Table.to_df"]], "values (datascience.tables.table property)": [[65, "datascience.tables.Table.values"]], "where() (datascience.tables.table method)": [[66, "datascience.tables.Table.where"]], "with_column() (datascience.tables.table method)": [[67, "datascience.tables.Table.with_column"]], "with_columns() (datascience.tables.table method)": [[68, "datascience.tables.Table.with_columns"]], "with_row() (datascience.tables.table method)": [[69, "datascience.tables.Table.with_row"]], "with_rows() (datascience.tables.table method)": [[70, "datascience.tables.Table.with_rows"]], "currencyformatter (class in datascience.formats)": [[71, "datascience.formats.CurrencyFormatter"]], "dateformatter (class in datascience.formats)": [[71, "datascience.formats.DateFormatter"]], "distributionformatter (class in datascience.formats)": [[71, "datascience.formats.DistributionFormatter"]], "formatter (class in datascience.formats)": [[71, "datascience.formats.Formatter"]], "numberformatter (class in datascience.formats)": [[71, "datascience.formats.NumberFormatter"]], "percentformatter (class in datascience.formats)": [[71, "datascience.formats.PercentFormatter"]], "convert_column() (datascience.formats.distributionformatter method)": [[71, "datascience.formats.DistributionFormatter.convert_column"]], "convert_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.convert_column"]], "convert_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.convert_value"]], "convert_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.convert_value"]], "convert_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.convert_value"]], "convert_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.convert_value"]], "converts_values (datascience.formats.formatter property)": [[71, "datascience.formats.Formatter.converts_values"]], "datascience.formats": [[71, "module-datascience.formats"]], "etc (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.etc"]], "format_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.format_column"]], "format_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.format_value"]], "format_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.format_value"]], "format_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.format_value"]], "format_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.format_value"]], "format_value() (datascience.formats.percentformatter method)": [[71, "datascience.formats.PercentFormatter.format_value"]], "max_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.max_width"]], "min_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.min_width"]], "module": [[71, "module-datascience.formats"], [73, "module-datascience.maps"], [74, "module-datascience.predicates"], [78, "module-datascience.util"]], "circle (class in datascience.maps)": [[73, "datascience.maps.Circle"]], "map (class in datascience.maps)": [[73, "datascience.maps.Map"]], "marker (class in datascience.maps)": [[73, "datascience.maps.Marker"]], "region (class in datascience.maps)": [[73, "datascience.maps.Region"]], "color() (datascience.maps.map method)": [[73, "datascience.maps.Map.color"]], "copy() (datascience.maps.map method)": [[73, "datascience.maps.Map.copy"]], "copy() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.copy"]], "copy() (datascience.maps.region method)": [[73, "datascience.maps.Region.copy"]], "datascience.maps": [[73, "module-datascience.maps"]], "draw_on() (datascience.maps.circle method)": [[73, "datascience.maps.Circle.draw_on"]], "draw_on() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.draw_on"]], "draw_on() (datascience.maps.region method)": [[73, "datascience.maps.Region.draw_on"]], "features (datascience.maps.map property)": [[73, "datascience.maps.Map.features"]], "format() (datascience.maps.map method)": [[73, "datascience.maps.Map.format"]], "format() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.format"]], "format() (datascience.maps.region method)": [[73, "datascience.maps.Region.format"]], "geojson() (datascience.maps.map method)": [[73, "datascience.maps.Map.geojson"]], "geojson() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.geojson"]], "geojson() (datascience.maps.region method)": [[73, "datascience.maps.Region.geojson"]], "get_coordinates() (in module datascience.maps)": [[73, "datascience.maps.get_coordinates"]], "lat_lons (datascience.maps.marker property)": [[73, "datascience.maps.Marker.lat_lons"]], "lat_lons (datascience.maps.region property)": [[73, "datascience.maps.Region.lat_lons"]], "map() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map"]], "map_table() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map_table"]], "overlay() (datascience.maps.map method)": [[73, "datascience.maps.Map.overlay"]], "polygons (datascience.maps.region property)": [[73, "datascience.maps.Region.polygons"]], "properties (datascience.maps.region property)": [[73, "datascience.maps.Region.properties"]], "read_geojson() (datascience.maps.map class method)": [[73, "datascience.maps.Map.read_geojson"]], "type (datascience.maps.region property)": [[73, "datascience.maps.Region.type"]], "above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above"]], "above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above_or_equal_to"]], "are (class in datascience.predicates)": [[74, "datascience.predicates.are"]], "below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below"]], "below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below_or_equal_to"]], "between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between"]], "between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between_or_equal_to"]], "contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.contained_in"]], "containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.containing"]], "datascience.predicates": [[74, "module-datascience.predicates"]], "equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.equal_to"]], "not_above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above"]], "not_above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above_or_equal_to"]], "not_below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below"]], "not_below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below_or_equal_to"]], "not_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between"]], "not_between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between_or_equal_to"]], "not_contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_contained_in"]], "not_containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_containing"]], "not_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_equal_to"]], "not_strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_strictly_between"]], "strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.strictly_between"]], "datascience.util": [[78, "module-datascience.util"]], "is_non_string_iterable() (in module datascience.util)": [[78, "datascience.util.is_non_string_iterable"]], "make_array() (in module datascience.util)": [[78, "datascience.util.make_array"]], "minimize() (in module datascience.util)": [[78, "datascience.util.minimize"]], "percentile() (in module datascience.util)": [[78, "datascience.util.percentile"]], "plot_cdf_area() (in module datascience.util)": [[78, "datascience.util.plot_cdf_area"]], "plot_normal_cdf() (in module datascience.util)": [[78, "datascience.util.plot_normal_cdf"]], "proportions_from_distribution() (in module datascience.util)": [[78, "datascience.util.proportions_from_distribution"]], "sample_proportions() (in module datascience.util)": [[78, "datascience.util.sample_proportions"]], "table_apply() (in module datascience.util)": [[78, "datascience.util.table_apply"]]}}) \ No newline at end of file diff --git a/tutorial.html b/tutorial.html index 15b690772..2a2922a43 100644 --- a/tutorial.html +++ b/tutorial.html @@ -449,16 +449,16 @@

Visualizing Data< In [47]: normal_data Out[47]: data1 | data2 -3.16957 | 3.75866 -2.6255 | -0.569511 -0.47506 | 2.82086 -0.200926 | 8.79459 -3.04412 | 6.94366 -0.190606 | 5.32426 -0.982727 | 0.802981 --1.10581 | 2.60784 -5.27348 | 10.9046 -2.66252 | 8.54207 +-1.20011 | 2.81614 +1.94625 | 1.98461 +-2.23617 | 4.33198 +0.163808 | 4.7598 +2.13657 | 6.68041 +-1.09672 | 5.5486 +0.5919 | 6.09641 +2.28616 | 5.60395 +2.61927 | 1.99552 +4.92661 | 8.06488 ... (90 rows omitted) @@ -511,16 +511,16 @@

Exporting

*Q--k8r_pMTDmg!@mP`tM5cDkfdG^P)%|b%r*yWqcqZ`hY+5t; zFs)2Cq~J-$GwsDiSI~4aWN(c{>g7woeY4=$*CBOzG7;ip7xFTezGus?|5v)-L zHy0T$<|PQ-N%cT`aB4Q3dlpvYLCamDUbLYcjttE&#ib)1@Me>?tTgkx-Ah_BtlncsdB~lZsJ8@ZX-eF*Gmo$ zhL*PucuWATp6yqGk4x5!+4VB_b;B-qo^|;|m&$W6Gj2{&fRZ;rx86L?&5qWzD&GY& ziUD^+ur@_V0Sj|=uociH$(8{AB1`mrjKJmHZD`$;2jhY`YbkphK+wAClR@F=6EHF< zjC&&dtDlI^yo!(Asr7>e{Y-U{Ol6TV_PigFT^77MuCb{0*-+L=VDdg5w<0n0EUDko z2ueRj3dfqYgpc?u2VQQ>Lvra5!olzQtsZnUNdO0r@9@TJjU3Hn$#mj42FCJ#k~+H0 z4LYo)g)Fb>R;@hJwWLrg@?z)846~;&Cp8S!>tkUP+Ww}m!$t~(0=Nen#fowu!FPEF zf}oXBV{|Kzg9QK@CpAB$UTlRTbG(sB8F0aCU7j-OfH+V@gtZxwWM*495pct0aGyjo z{7t>PA_4W%tNK__?P3Ukgs<;!^eM+($4-$L{(f0uaa)Z+13pi#vTj2tqhGvisNLzIi$s-$U}8$4 z?4ZHf&;-)-DK8~<6fv*4k)R*FOpeKgU!`qfN02E`sm>j@@3z-mPnyLYyj`(tEhThL#jVYFx z)RNWa5bGl1yS#XdqVKN7UfOc>8;A45c7RA(#5#;6iP(wq1dsG7o0=MxRG<`I!jtvf zQ4#9su6GmQA^&NFq>7H@b#9v3SgZ;?ur`L#O728 zs4UxhqF>WmqK&qwK0I@nOMK|=?StCSZpHftTG^Yn38PlJcXEc@8xI!@ z$R4ex^mDWoTRu7Z&JF9>f!;BNSP4)3SnmbzV0Ook)M$N4C)rhdp&ydj@4v}t1`J)3 zIL{_EJ z3~FFnw$!qpKr=jHAz3~km4ic6D=qjE7SjgUmNfUVBJaHgd09)%l=AAC2~AogfCieU z>Z-7)BY#95Dm(&b#21Ef6jP^VtB*ZHhxL|n3Aw?CT8?H30ZG7d`RfBb2Ion_l@?E_ zGVRxC6{u$`M@)5tNn;Uq2B%CDnp$Ry6Y|dYqFId~e^OF)DYQYt#+{p8h}vE3MkQvy z*l|*10znQv362l&dWm1#VCZ|@Ph2lN29mj$hFR#WLL#Id9Fo+IqBqz??u$U~3Al&tZ~Pup)}kxkAeh|P zqGek*ODWo5T=d8leat z?!V2S@f5UPA2$%v7PiMeyz-cj{>>4e6YjvUuTNw0k*Gey!9k5yyL-Kg4?iX`I!vdwkZc(w3-a&`g@lX(0iXusJo#i7l#UJJgX%SUQLQ*MK;~yyL zc7**gC5QUP>c$?XxhjDJ*o0-ounF{=F5rVenhtekfX5G0e zaFmn1{4}teg&9?q*0>w(&%JUdttQn`RPztq_?aJl829fN@T3>LbId=#eGe}$LiTD;P{#=&mO;|<)RQJk{PJbD7+pmu`VsD1-5q_DpaI~`BO<3((O*|xFlrU4pq~&99%kt4Twz4 z6Fmth<7r)*sVTqT$?H1oGp(M;bR3I%`rkMI*qlWpo?f3S-eb%+Ng~i=bN+e=TWK6m zAh-5l)$_Tu$?|XJuZvi^yBoNxR9*vM3ZUJ<%c`RQHeU73TD}ubUsoo0ARodIK3oE4 z)Mzy^l~B;3Xq$g}Sb}qu zXqG1i`q5elfMMdH;EP=)erSnZe66fU6f5;yPEH>v^+JG>Rebq~G2QKuYUTE2TQJb2 zus`}DPS=V|Qb0h!dv)C$SHKyb zsj#-2;RaW{OPzIoEG$yI2ogMgFN|+_SOII`<3+1^`*Qb3QP3ariyo zaRV&!%jX?Jgj(>h;wsiNGrJ!qyjA(Sn!&Mlz`5SA$~*{CF#0a*23VNKKaIx5HAV6v z?iZU^SAzp{xn|=ua?n1r{GX};Kdj1+;WC9C+u(#Wty}a&ML{_qKmwhhj4VE9F3tHs zCfJf8CHycFILttWC^p?CY-I~NJEk%^x}vuoZ#!;4z|Z}q2)f*9gMFm}XEu`VOvUzR}Pl@2uMPp74{-f4WY{2lFs58eEy?) zbU&toKLh*dC9`?P5=Fh`(qIFDT#W?7oh?tDb)uHUfx=BJf^v))!29 z_u?8N@Jimg-92$RZV(8(y7A&@xxFwIT=$v1zX24MB!-G}Z3AC7ieb(*#HO9n{LuqA za+1q!%9`pwWn-F3*(HERzDg<^9Gh*`c3`-{ejOVChK-t$!`m?Z5(H0{Bm{pNQu_4n zks*18EV>*EJYQ4kd8%5H*B$vz2>^6~lbWPdd1WsXMnZGG=NaO{P%}gs`3A5l&*yKH zR%6VU@%NR&i(Zoq{5aRMIbmZz`lq?bSqLne4XXJk zAyiTugq;%4T-}HndXD<^wV5|>Hv4k)k*OFHmyom8jB;9G?CYqb(@SO3dAlp%^{I#h z;{)!StbhhVqIOV4H*>-ff4~NEpXzy-VQxUOe|FV;KIg5b8&BXS{hPGlNG5LUMNR^2 zfI$id5)2wlH#WU{jQ)iC?g5R*?GJ{_oG*Ugdlz>OA=Y0__z+TI3n$+okM%eyK+_Tc ze6U#f5N3mV4?t?cWtv5`1;5q0o!arOOsW9F-;{-q87%{V<0I3Rq*j0tG`xu8 z;@P9OGWHs>fIYg8H*FC%vU6er7sKxEp4l9kRG9x5d0SUK-zyLLSxJ$mEGVDdNBQpqL^BDXS0RTTz*8prl#*A7A%0WoSqor?v(owt`|@ljcHxJ z@Y;qtvpBU0k=aI|tU(4c623zKQLw7^%0u7dB(}=_-1mc?4w*gn?90JShP-9z6<1h6f45)k0PMj*wl`9yuB|e*l;GjEx~%Q^ucJ^rU2xLnBV>{Qx94oI zcWtzGQ~3!(hab->K>f?YgBp9GIVfu~mZnYQc@1c9*}vJI@7suAQ~__`;6paeBwfwS z%u-CyF@asLKXx{r?TPMI!5VgUf73;4av~B&&WaXT?enky+4`@1O1cRv$JpNl;q>L6 z)70`AB1==YMW;j5*PB0n&oneWLE)?|cywg0FnXdJJ!tR)EDua?_C8PVz)cZM_?YN? zh)Us7&yAnAb#qQ}gD-jIY@Bk;_EOw{j3veUa`%b-Mr-=e+$msF$9SENXIz0~0MK}(rh3_HM(Jcj!x)m*d!m$7m{l{>N(?bx3 zDPET-K`Cj=+jwA>4C+;bbt|Uy1&CxOX(V|hNHY9U(rMXIFPo=F-dy%u{C^2^O78bu z{m9ad?KC)}#Ic-Evh15ZqVM|A?E9-hV&C?V5eYE(rvj)N0x|KruT{#8fLtTRU$fis2LEmhYhVy|eWq4Mt}ji_0sv)s zy<>4=WhC)_gj&zYrC~9>mr*0zpVcG!R0_(tRo!zoge`y!a_S2Z-3oUefFi$ocfnug zS&;Vl^R}H6aCn5!sV9por)*mj9btht+|)lE9A>g~UXE_0VC)ZpjX5D~Rn-rG(`XK0 z1M*})u@`y@s)sioJuHO~|F9zm1Hi1f_kw=Es~;!m7duiu3}4V_f;5k*@HGVP>jYk# znS%G7z=gclw#BQk8}d$ zi_V?#4~zeBos6yhdGt^-TxPv#>UGJCdKXZfhjgzd%*{p)Y>s!xN~eypOJq#5IKhTb zI#iF^2x63cC%?W%YJ+}gH~mIhEPYl&`g?RxbQm8mNBSvtwD{60RH*>|CND^g$be^9 z11B@>S+IG^m@Gc=%do#wZ|%D6ypAXalDN?BgPp{jg^ z`Or!Rc&HDxa2RQm8|lW4`3fuSb69AkV%A^?xBV^aeY6-I-4kaq+aRqK<1W^fm98DY zEx99?8`}Y8-ue*gQI3+6+GG~S$YBAd?%}gFP8J>{Z8 z^Peo%@sDRSVt&UPQ5}|&T^Rv@?Tw&F@lfgm_2uD=E+9+(3>I|Nv zLQE3cDfW)7K}wqB48n>vx(g3ZLQ=-zy_K#3I%xq}5KRS*obRsizr-LnZfkWPw{n7w z4&e%z^ccfpSF9i_(!T8hR(&(2>gpz0{5T!sH$03RfMp$O6O;oV>%_xr7!L>NKnFD&tM-%`lb$cQqvre>04_Gs}P z!;jEzBN=SlQlQ7l&M1j0O)u^NiVJnEK>SE4DDL^F_*X)tSDEzTEMXcJN>+u1zIacj zk3l0b83;SiFTlmgNDS%W;w8Wc`LWv3Bbi+>Iz2NvZhd~eMPUp^5xnHS({bdXBB9ZA zP3b>PR1d#^ICu~npzTbkAAR1uv%fVcJUlY;X?rKEXH7dAq~@T#OimZMT8}2Z6p@5M zCyy}Eyj(7wb-W{Yre*{&3mp8G#BV z2lq3#gEa4EtIylc?)5Ml4})V5u}FOES?dYw&mb=f@CE@7J@If%j$@@N;>-NI+`|ZZ;pL2I2E4C_2uyOw>GH@@xQ0@+kyPbk&iGqVv|7 zF^Wm}G3WJd%|ve#?p|(dt2DSXHce+)9eEyjVr5wKb#_m0oJG>{shhI1jgQ@IXItj~ zUW@}l%kDcHDusr=s5mh#_M4lVunk8iC%W}BNc7}fBU(k$IiHQ)VzN_uddq{!>B;%| zJj8Uw8wJEsdy5UA;-pY?jGctfG<+!AcI|90EIyNwl6G%87DT(b37Rqq`}R-xV5v&W zZ3!^v!2S7s+DkJx_u0D&rToJ*JFljB9wz2A zwOD}1oB7f@FsL0!=CKh<(8iWU0L_nMs6(9j`^`Ac4>*vpX5PzVq*mub8~+3_!=& ze$C*igqG4%t0I=eobUvr)8Z{#j($ySDI|T|8(sTuqI-+skkAI@eQaY8HuK^m3}V!F z(Qx4JZpVL~2F4uUsDP?S|- zme1_ujhh|WxM8D$BGhH8u0-uGr{-=B1OCqVwzc%o$Nsa<1PwX3si{k~+3Sy#vnR(_ z;BhO~Z`E*NjmClm2U|-qchcg*D+9GzV+Mqkx|QWmoLoKiyBj4k@!7AA833#BH6x*_ z=s{ADuwDj7%`jX{ESsqP>n~Ad{VLuHm&EtY3V1b;K<2KD*WM`l865rR0`aOXXDjdX zXDuc3Q#!;f;4{`m-)T+tZ-3sOfrwaEvatx`mFRSFu{alDP#tli>}r zkk>{}P2X}}h`~7o?61mGD(?y3ps7#JPg$Sv<9VXJHfp6w^Daw%p8ERrpB-6HY~}2j zt`{T+F0LpCN+9vzxWog z_zsSd+V$7t880=NdHD5d&gR<#WTMSy3m%;Pu9f8Ukx4(o#3P6;T(4lDqR zSfqT6?&%{vPAo02eR-fWC;MP7-;u~Jj29k_KyK<@;@oy(oFp8HUV?QN@pbWsYBsp7xNC6~zF?TbYo zj)`xCK8q(1PmE|@wP8|)9<$i?*#e^h@a7VUDe5?$Fy6EslXIJe zg@<5(1J?)-iVLoY_>nG*gEdgW|Ht7M0)$Rhg(CO4V4_c0yQLQlA*(`{N{!NsB|5Dh zILffOJ81fw!ul|NIGw5bDd0zHzSsLN0|;egdOFzPdX=Q3M?OtB9yMGLEb+kBt3s-< z4~B*cQj=p$+^D`F)B|BVL8BhTf{RmZ>$_rQt0O%uS3%HTY2{+Mu467m2|t3ATq1wt zh*BdgnLA&tMEiJr8vw+xOah|Mcy6Vo*xBAM4HB)Mkv{=0>~Y9wI6$raNwxbiD6qVH z$_)XtHKOx7++|j{;;4_1uf|Fngs>_=BS@(qKS%ClDTKR5dLLJu4guy}q$O#tog~1A ziOpJfoCx(LD$K{nX3a}mcu-+jGKZkw`nu7Ff4X`7r8j^S%qOt}Rd6L_9?&p5D&0Bk zPvy6B`@KUCqY$%=$Fw0pIefXk&>NHv8EyOO%HX`ihrpyxwJ-fd;}_3DXu9@s?3-?( z!}QzrN4Qt-LwlufzHT;a6j{gNxt+Q-H`2v>68Lt*oQ*I5LtYAhQDn?WA^}#+t-?tC z8N#ZPm^I$}XNRnNAW|kFVbp(8CM;&deCaQ|!x+gKOH|_kS{OO>+g8W-tiO&e!(ks6 z^=K=S%)TVb<`~6MLQLe$kUxGEVBK^3Dg8=}qh4TPc6f|=os0ReFa1gA9|JIS+2i6E zP{`Q~r6eu6>FaXCOStX%1B}|SvZmqiI*`l&vM!5=%QgsNCCiI*%}!{xWi%9^vY4We zjoIKyk6*o!CGm2DkiBv|l8L%@Aa-J&Od?Id?R~Lt#B~Ivs+u8gAJg-XU-8$7;6ucw z)C@?RNfZNeF~~nrA9(yycynGc0)UqB+@?}tgxb+4mrceGp&$UV7m}49qC;X>@-SNw zDfo{bwki=e0>n~~MKJ`~wh^aM3#ObIZqd~RCJcEmH2D19Of*>&FM)!T31GQD$;;@t z3?IX)EkhV`IyBh)a= zf5B@#Ncf>L#K5dk?S)^w_XD$UZB(C9M|9roY{SjWn3)|D6%nMCVxs`L0AWqhf5P(L z&vQeUqbV;Ocv!5KNXfL|b)0#XESyecQo}E$a*4EDo+KyrCHipV3HRyU=*<2n8WVZVCo>SGK zA6cb|w0U`n)rcFz0a*I$6c}O_hkt^y8a>eb3vS1Nx3n3zRc-I$+TpJ`7WOXBJJ$!m zdSrNd{6=tN!dQW-pZO!0q3tQlVcD&M4JW7|ap1zojFUjL-@zdd0)CUxdqo8W&nM8JU7f^=kU{0xkdLRJ^)Y`qVn;Cg72Dvmm6DMfl)8RC7 zR%0k@>vC|J$0_dhWvw@iAhPq|Xr*JEBzw+8X8}@)i5>$jn*;VDf)py_Y21*F)(S8K+g@XpIWSxnRGrNu$;^jw4 z`TmzRq+tsWetkkSTT>EmA_r)v5p{#eX7@QtL^6RTx*X@Lmo_6jU#BtTbd4X5$x0Y?+B9l08F4)*%g9*?aFTno9|GG(l~}64PgRhLe?ul3d5Vx__81!O+j36BJ2Cm{qo~q9}o#{)k{tN zOe;HBTt#u3I8?9i;HgJUT)oupm1AjFD1zuL2Th%?aVJ{Ehnl`8ul16BbPH!-VJ0IK zY`Q@f+Sliw7<6bb{swzqJ>$l)62hq@_#!7?zfz3&8K`f>q|}k@QJ(s_7l^7jnnkx& z#+T58J6W6&iqgKi-}Pa(`Fi|D3AB*zmagw0N*yMTvnW@ zv`Wkq)k@(j>@F9cUAo1hx0BgW`JuD`Co2-kt;M=ddHh5OFO)0(8OG;Sp3E6&s0a%v zFwJ&$w6OCYUum7+P%a>za~fOz>9fE93S+5)$*_2(DDGSLN6eg+(ySa}_Zq!Td8Tx&_L^ob42U|r^S z3r|w@!Yc|m(jJH^>FMt?Sg>G95an5(VB6vx^XuEEjIHh5Y%yum)5Zn`%hTAu8N&3* zzkl3lOTFRGK&UcZ@cP6z#tS6opcF)}w^QgK-gjm8v?zoAofmaVL|t<;Z9PKrW(0`4 zcA6Clmcx&0esPShJ+^6^P=x<-J&1wHN8cZ|gOdxiIF&Y$70 zd7qodTsO^eLWFmq0kIY=sJ( zF9ytfP&nH?wS*_Jnr9?DsL%9{;Ic2wvKH(3w-dUWF=e93SerX<)Im*s4n*iR#ujDv zs|`V20l+M7?VDQ{Z7SlgJHj(ktp7|@VFsZBMdx}U@jw|ChSF8B8l|+`{)q(E{PNG< zV{{;>GbiG)%F+O8r8TsdY|-@P`pcIRI4brEn;|7}+qr0kVY-JlBc}Ci!|k@DQIs*vtoy{AIoPq6Wg8Lcu2ktpM>f zQ?4fp)G-!rMh_(J^l{1QZqB4~AE*6Z?z;5*v$J%TS8*suWBTSb&?-9bXCazkxjN%#LOk+h((LErivO2PrnT?u|NqK*z4J4B7bHSiBwKMR=gmcT0Xb5DO4A& z71jA5^Cc^xN>B2P*u4#`W86gI3j$x2W0cC>o!dKB{CR~qis5NL2n@Au4pbPw9y*Jv$`rLx6{ZCfTLY6 zRX6iq_k&GobIw%i236k-%g<#D)?97qqkDpB>Ce$xP_?nuvbp4T7>jx$5YFvZFP;kc z$~%K%o`JNx?APc*tMF|+#8G9zsqbSULU{L6?H&Y~n*RX44qqG^0lRWUEV7%uMGU-@W#S&)Kkf0n7N*(RIi{ua zU%HJ!*8r4#O75uS-XTXAAePfTabbUlz36(%Zt4esocl;+ zr3TJ?_l1#vhRp0Yfq2McTaM0Ni0Nx!fIrzk`aRsm;L{sP)})=ES63qrr6YWsvvW3n z_PsY!RJJ6th9QdW@2^?zbZuS?v&vU6x&bxKgv-3iWwmJMXYWhO14Z{RxP^a5F|3~t zjGzqkvp-50C%Lq|kg)G#78cBA#6~OtTtl&*6+}GQ`5wNDyb(3 z+9tPe8`NNOeXc)HEM7<~Zeqmz+tY5&ip3waO>@Y|%e=3ogmS@vj3(iY9?xIA0OOAR zeI=E%ghnT@>4O3h&=j=^fQ*$nk<10X3X8bOTaJ!ZQe~f1(=R{j$kLpR?LkvsEe^H^ z9W`jp0y9VMSHuCuS)+;gii0m4nKqbt50|~v9&o!&>Cslk-p;#6<~lw6^0Ev1?n2O; z!0`_EL38LzPbqrvW&D*XK-_Q|Jm&Kw*dU^|20KfB8n+ESi;3F#!d76!351&K&f3gW zX_ruI%}nC_<`?DIetLA zyYv2LYGoy}piX`hOT!AW4JZO5RJdctpkcpW?iOtgXkas*2RY(?v5aZ?TrwuJtIfH& z`IpbpcD6paPSYEaP!3A%S9&@)E7V0O%0vx)f%pEmBa#G7{yoEYGGgk3U{OHFR5Qpg zhxt=Wp;0Sxhih`%Upr(2LClicGQpYo-lw=zW?WJFWXGRhT}Fl&eikQO@rQm=6<}a96KGd0PyzO!C>wNHCp~vQ53cjC;99m) zu?^d+v{Nr3snM}FGA#fFPL$nb$QgmnjH>$WNxZue1OLtS7~QBzc6pfqZ4EOW06{%4 z(x6r>mR;>ldpbfh`Y6!sO;46A>Vzq23RA#EDjqs)9f^!}_&~`phf44~q4m_ea1@s+ z!QjwPT27ADx=4UT$oE^4zk+W|wda~VXZ3v@S+S>YdMK$WQkWxTJpzanMFpeql~rh0 zgqg-(Wn{VmylH>{d839Z?o80@*f@Uw=1m$@a%H7Xbz^2GNkPG||DB+~KpP`n5xQ`t zvV)`;o|6$gv8u{jK?+RDypzyuycF@_cde&1|4zlV4D9~CmC=^!m-fZp`~5E(cYyAt zrW&MWOo56hM%+=fTjpWOx-=6(<6Ny^E7Pg9`pD%T4}n;9!;#KT&+p&H^1jZ19{bwy zU3QW^&wEji>T)M{?uH4m0Pb!N|C1PaeO}S;&UVV56ckcW% z>Wxd4N>!ahmi1X#SM49(E#X5(biF#%+8c81h+P)G-kD|h-}lO09#0&5xWY@Wz!lx< z8aDQy`PqRB2p9Z|JSSek=5S8BXEBH4h|-)V8+UHA$6m1a`QMHokx_w>B_{4 z%fz|2#_nUdyI$cdf1|pbX@UgKF@}&;24U;HlX{9g#vEDYDo>uzQghmm8`9FvDfAqT zQ5qV$FTV3PKS&-kQ9(rlP~A}e&4Hni!;1siMR~Wp4s-JaD5m!XqnBeeS~s}2?mm+w zL9ML!-4ui~kin@C{OUe%wpo+jVf%KUE{_LSURxpSF#GspqAWr46Hd~Pv4O&gTesW{ z6LIMKRXb&!W74HLMn5Yr?GX(}D=UP5-7`_;NOhgcae`Ua2pXMk{z zHbjv;v+&v{g#J8of2N(>yK(!G$O~mQw)OnL!6sW5I{G|#=X>6A-oTT2=Ub_T#A110 zvCTKp{{DW`_E4s;wa$Wt^_#b$E;|CMx}ul6?)QHz`l*r1&3AIwtRuX$h`abpOBHRZ zPAmYQ`UkX_Mm_LkNxaU0r@SCGt50?I4N2Z6Pr#ApclFe>*0c!OP{gW%1#MIclJS|j zG~Vn!lQ6US2h8{dwzN@DbW?uKK`8iRi-(?x=KI-xWxqIJyz?J?9y{dXvPE9iMIw`z zVj=e7mSmd%F$Sc>i(9E%y|%_?Hbs?L(_ro~kAFEbBA=v7*|(Om!v4}zk2KA^=2U#$ z1@ojJ=$}luoaf2!=YH<{B!W)aEVgBDn!Am-Jan{c08p;yxYXz}H3nx0bHhhUZYwS` z!Waz<$uODA0r^84VV4b6l&S*LgZ@ZHmZMNh+h2PL*98NA*{9#}J@9v?s9?_2I7QgP zm~z2<*Zlqm^$MaSrdN&yjL>}diTZW7i<|k0i+S(a76Dm3FUtQbLa17 z#1PjonJ?Gy`Dq)mUOd|Z0G_1KA7>PW_ZT6Pf^ue!D=lHGc>S`GJ00`KguvVnRWIlOD$_0jF)sbiel9)GC)@%G)dFJuEnQ_~opTj3bqXxy1kIrJqVC#PiEvy;YaOl-tY4 zrN&Tt@Igwcb{mT;=H+jZFW7~PLI%Lv`9SVL*JIUZec2&=1$0WbqRw9=+Am%TJ?P@# zA?yH<-JqAUFK!{(uCWGfPY|oEP($P4!d8(wDX%sZU;8sSpYa~dCdhg$qzDyei=E@n zO$at+`eXTwkp}Bjmew_|J z#>n?{{}WC*@rAQ6s6}HR&{2F}_&}q;FHh0?EBAUPI>Zt7<4fOcJk$?z zvorKQKF^(g;~2jx1aR*!GdAZI6qdFZ#CP5jbP)b2BtJ>{t`=RuSfhJ+J&1JY4P13KExbQF#vLB?ca#OjBvt-IW8=lgzKDRdCgL-xst=P zw34IzP&HadQ?_{esd=jS1O11s0Z;iE-c4@FZHpqDbealOP#VB;zM_2sHJeh2<@G5M z$GPoZA5MoRY<&5w=@zrr>0-_2=BaXi7B~NXU*3Wma0sJro6hlOZeD-THS_-a>9A#x zqmC{YoeU(Vnp*Bp2=Q<)Kb()0Mklgj{vA^j(lycwf+R0NMgh7qIPMo(Uhzh7!}upq zWC@-JRY=42ua2M;O3n&7Rq#ASBtKtDDjJaR=%qi0^e&)U4MXE}dg;g71E16Rlpd$s ztYEb~E!$lSf9?4H6jU`~W*l-kn)`>xis z?CMFD-t?J%47A?lg9!1olTuKztls}jT(UW4zxE7%7d`3bm(@|Ber3NwP0XJuBE zS#;#d2@2TqZ!3Y2HF9-+^uexXmRa*CC|B6=1>a2a;s!giw3Hfby)9M?a^3vJ%6D2@ zNZ~5#knp({y+wN+^G6f=i*cTHEU!bya`Qe#mLxsd)Z7o{@wj+f67!TwGa!Igo}9W7 zWHmKL;SI{8`6c=_0@&A8Ly; zsDF>wlB2{zaqBtnJ*YlPF#$;^+fv=Kta!8%8qYGnxB@EiCyN^X3fNXpkcdYs!*3Gz*PxVSh))i{JA)qm&mN)8Wpr+i6I zUUqh_Sh`#LUtuN1O6?4%v7>9}3^G(UKpDr+=lMy8m zx@yej&7=qgi%=Vo1TD49p)mo~Pe0y|JgJwiXQyrYaJ&J*yrWj48~1SAF%&}8VAE*j zKTyW@-gjm)8odU@V@qMUoyRGMA_o{b zF8R-)0Iz}l&so}&wWnf+oumgbO8~8g9h5b2=aR7uiBd0gWYZ=7^HZW@1n~}gcl1Y~ z&G*i)rf*E27DHlRfqzabkA7j_8+*nKAeTsC1DxJO<(Xk%kzd!xu_ans@Y%Yy^&Q4rJE9-Wa5YNftJIn@!-0n|PA z!&X@n4ZBN@p6<9FgGcpG5y1@*7;0?`VX%i(eUkHVJ7}a!Kp)h+?E7wr1I)AMogXp9 zIhO^!j|rDpSWF&^d6;S{#vQi^A&rmE7$x zgX#bRP+eVVrJ1T6v2FcknY6emsuH&`KQx6fDCXwoZjTwIe|}%zRx=%EZ8wwPIvFZh z*mTqT55r#L;ntzu#(-{Jeg4b48*>ACRkj@6fP(=ksoupp*X4KD&LjkY@}l(qdY=S{ zbr>01tO8FLC`?{WuBc#&kUNl|mYU^4U4HaPSa!1{0wnLK+~9g5)`Qq+-P^Yjfe)Zd zrer>QJF;RwBigtH)PF(%(UNaaMGd4!LIuU;*LdkAc7DE^05M4Ttx=$$bc45I2e+sO z?I%_2_yQGc&*Cpyiei#H#hrt# z#t7i}+5^O{lPAB$4H<Hd`tnpgE-yRb3ySdiVdW_q4e~xnc!&Wok_gD=E9(laVfd z$;nj-51)Pf6`T4&6Z3qESO%dMfJPX4W6o=a#az8do+q(Jg6?qDQlGK^PhQALM8V?WL zfV4~9$mrn^eOIW{PXUhiA2O<{blJwZHvwpes7_1*$!R+{w5!50LDdVTUFYt;qkIe= z#l@4q?ezUVbu+9{t(I=@a&*J`DJ5<8NyH_=pu$u4wdp&M`X7;hs|eio-frcb)NTCB zgfJsw4Jx7Z2m*JRHnvIBtV*#z+O}YK`*}K8}=An6Tx?eHsQaeJVLs8WTtBvSn zB06RWfuUxW+9w!e(g*qxhA3f^XTm-^U1Ds`&k?T9>bcy!bAZc7>Gf#lc(v-djaT?{~iMHjfDc8nb4v z$c-CRIv{deU{EzVY+aO5?eGK$mro)$%FW9Y@!YhTh{?)OiGD_IEFX+S>Ncjkn~TaB zf&R_#txN(UYJT`pK(X6y)V^b)_bO*Qayop#pa!>_#mM={HmoHq|9HFB4c_6@`^twS zC=?LD0g0eD=J7{x9{k1VTfUIFfX||RbB9yzf5fG>F)<4n1_L9i%~t>F;^0H$mX>T0g9G$>p^Jp`Aa2reVaV|Aya*ZQ7XcCqC?h72>`eR<#5E!_1BqUn z`Uu|9Rv0dVfMn!@13+l^IQYBO*~W3NEh83P1vLL@y`O4m`>=;2l@oZAJ??uwiQ!}n zr;%ZUZHQ+B0EGK^58l_xoAEso1f57g%KpTD>fIfn2t|4YCp{NL+NXr;7DU;dK3_pS z0cX-bG-SCi{OQLJE+kDbba;PC0;ViPtiJH7#)*-E8WR>t0)VdY(x1QZ^e`nEKzmiM z(OU-DzfMk0T#V$1gvZx9S7C&t*lhprM$62Rwc>Cc^#$h=#wm9a>?CNTkA{GZ82L?^ z4aSDU{pBgJM{~1Nmhcr6s3nPjG4!HFGCU}D8ncnoyF>(FI83$S7w>$ej22X2~gWm_j~5pElEns;Y15n+@PzR zURu?O*Iu2T013^Gt8#yDY3b@l*gmqhZbc+hq`^dPFFx|Yg9zb>i!q73GHWX%2Giz( zG&SDtF4dufTB|n(4X(B`p};s%MjJYiO|Di?x}QmUEJ`i6w}J(hJVekG_J}`ZI6g2y z5;%0;c}^?dc~D;;`1D~7Ry*Vl=s*D#F}9SP(X{gBkhY^s5|AZD*-gh+0K z4KZvJjv&&2N8GgA+9&Z6K-B}dA9WdNHJE;igNA)17>Q1vh$8_&*fF2S$K}{?Yi`nr zX(AyZQPD+;J4uyg^tmY?E)wYMnPOa{UbB)k(B$W#P>&1MWS zB@4Vb>9?E1)^QPO5M+NPKyuoVYp%aSQgu;3HawVifiBhV{i*2WtSr)*Bp=zt$A7Nb zd@CgeHwLn)EkJ9CLV+;|90E)5n6#*VlMV7Kf5a9dq8lZiTebk(Psz)pfWSk{%SIke z*NjFU5CSU{YH<-bZ(-a3E~Y<%Tp2z)0bjBWj&Xi=>u`ftT~0;Y)aosJmmwq9JKgb; kq5Cj@kooKe8Y6ljr#a+!*gKc>69s>+;nWlh;M1& literal 47131 zcmeFZ=R2HV)HXbN9gJS04H9L7=v|Z{A&5Q_WfEPY6P;iPqa+BTNAHXhUGz?LB3iWQ zy@ueu{O7-Y?Gw$8gQw*Is+?wbwe=xz-l`TvHWH%t#CZfxu6nDC>Yg*oeCy zLVV!KcdIXRz=xz89O0(xXyxYd%Ec0-@ygBVt)tsp+t+OGEL~h}9UX-ECHMtlY&LFg zPOee{0`~u>0l%Y*wSZ{Fw_@NWL{3kPTtOi6S9d>H1@if}AW&`CQ)LA`&(z&Cuhe_` z^*0%&)@DL+7L^)jD2jI4Gd}`$3T!OgM+Gow1e^D%H>CXX7#r%qo$@uSq>?)s!y}Di zo}p}~q>Ozg)W;b&lem|(SGLF+mww`wq3d4MP*mJ-_19m{pHqKQ-@2%{INf{kT&BD{ zJ6j2d9Yvu?SOIRC#bLYqjYotVLwNV>Z76mG@Hcy>)&G6)f7j#xb9K-OQ-&fM-#vuJ zgv~1PaC@4j1+Gsr{GX3z5@2y!w>Rg89@&kxte}HIzWwDEekq)*9l3$E z7>FX_qaYqdMVWqe$1-|aL(r!uHl9ZzwZ``#fTrmK=k1Vt=;5qzg8kgsR{Im+IDQEM zru>moi&H3p3wHo`;7LvlQuLTdC;o4rgX|}BqVHb|Gz|Ow-P9vW@FRfX&Kcxc|4klhcSb501P`P8=l^y>3a??iePBh9`57fbPYF9xeWHHxjg9f1ICU7Bvx)sK24ct!H$?CIuxvY@q`!_ zdv`oPLfu`gffXs^s8SE_p%THl4+5s~D5M0dimE4u`A!4pR0Z^hxoNTPp2N$GCr(lK z-e3rwS&gc!L1ANWKfecFqr0j$*Sl37IR#O42{z^Q`UK7(`k(jQewp9!GI<2-)z!wN z5j+XXdAC*6^}ME&QOF89cJ{LDbyZby4{Qle42$o9g75ar#r7CgmhcMmo~)W0+Vgpj z47aPYGJa#f)5$O5jx62L%n@G4f0nk2%T){w6RA2lI)&iB`EHJnGC})(`#y+@*LV&C7tKr&zm9J->-Kav+q`5!N>7O(+5JV zRs4*{d!11W^nhOcCzLJ<*QvhOZzx&xXOovOnZ)n+ks?T2TOKmG3#5p+xcTm{Z~Rf8 zs5!jFd**2B2OJk*cM9S51_PYCgZHi2?>EQuNv4OtJTmWmhg!v!4U8|Q&NLlK5Cfy? zK01JD{V;_0cwG#+B-Jr_c`9|^i;C?h8+`z& zpM4Qz-##QICHj1NM5v!en1PWRbsJ6apS0+G%t`uPr5iBlOZ?u$7|onrtr z)E=Jz0Khs($Oqgh;N_tNES|{D%4xFz=JJ*sDG>5#wXXxaI4cYLqwE>IL){WS%%p*O zAW=Y7NePF)`9$a6dBCms6-8`n_I7YQhjX^AluGuUMRPxaB7o2LO4!>qvko2hwexvR zei|C!vc^3rV~=@vP0|k(x}NOt0;aYsz-E_a*)qOdqfjy~1!RiYkgjhO_|GRb(qH2f z-~&bqKmiOJL!kcnx~CgCgm;pgMEVDpv_bFi0fT3IULaruWg=o)vovt-j9_0Y)Bo6g z{YX=nENTQU;2|u&o}VQN2j*@E1AZnfg&tmMw5kaL{FhMJ7Ii_ltHt=&{opP}z?gP! za9Mv6{ohU=t|y^!(ty{m3m;XFUQlP`Vd2I+(ay3>*6ZAuzenIoEeqJS3WTDEEPJO> zq-pi?q4JLgIg0(|Fkoh;@Np5C-=(O`b${cC2)Kt?iZ!3bVk%C*D)v`Qn_+MCjn;AX_#etu;4fnT1zCqS}t_|NSB!=o3W%cra)3cfAuhK!|7eE!aOV;l1?!&x4mvg{&z7aI?KN%$MR}G;#3$_H4Zurs;$^o_ zAfky4!G8bg!JC4K$76Yc|FzeCWmmQX`459=hg%2-!S7z*R^R}&E_I2FQ~{hj!I`8YL5O)T*n3Fn1Hf|XR(}1Vw zpRSXXc3>~3ct1c&UjNS!inqyD_e?5r0Q_~x&+G3QiG%>1b)MHd|H&d7c+$C6L>oyF z8y*`cZO@2i`R^;+KdBM#Bvr(~yj5Qa*?+V`J+iRx#^)v~F;>QqdP9T&Pwj)55!Md8 z8(dEZRd1tf{xjm!oxGv3quh7~qf~A_Ae1K&M+!chxK;LyRJ|$z{$cCbdc{$k`P-79_Dbha>MmWZy-iK$wbDs+Ic>IrnZ&Myo z%jHs60ZgFEJ`zRErzQrDMAFDUgHXl>S=(VMxn1^mBS<5PIn(C-Jg=~HYyQ2Hm z?@-%+QjP`G7qpF$+B2?h%P-c!>;8=fG$&7fA?&jj(df9;czO6snl-aDTe{e4a~*Ib($^lgmDGwaT>m_}(Su6x?hVx2RKK+mDH6uF1sg<XeL`@h>>gHRMW4D-u2J=R_cl{ z#!@oD1$2es&Ds%2zv@-|Q{fz^JAo~cY{!3cY#$qHW#nEL5|WlrAQ@;@x8azaD!_st zQEN4yyz8#qTktRW=hjS;&7%n$hUzsDDC3c{{`eHh9|vAeNVQ7s>zQrORA&CmGo zO{geBN)91+IQ*;Nnyl~PcJd3dv$XtqK2+VOQG1ujHdZb~O?3NAy=mdS;MmLHZ(-BMg(Vxb~bZ7g3kl(dxs;WFW-xC3_R5&pp3 zX`31T$Sit;5-2^xA+1m#yvNVc+$xrY1JMP(6SorE17uT6-=>oS-vFoJXPa-7Cdy{~ zox9KJ^9+tb1nW-#%d3@@2;JG)`bPb$mMn#hBQjWodfaiW2i)6Mit>PrLX{i zF$5fB*fC}Ge;89e7Q8NYs)jMhHf-PPZL^-wJh}&oE&uR7Fu$WWD1EVZM)5TI(bkfs z<^9aj*`lKBAT@U18hZHbNyJhQ0cFu*wp?-~)PW7ovlqr}N`7p@x~X@9sza2ukux*y;G zxwL6+3v4??20AthiYF}9c|zguz0@3EJGexs-~L7?iInubRr%TN_jgu&e0 z?omSj(<AdGFNk(PI#o^Hgnp1!#140xr8^L&=qj*f(Cvm_$dTRgbbnZJ!P6{U6i}K`^6G@ zKp5-I!3Q8B!Ess+e~?vKNm*=A+D; zs))~zEIRf+@}E1BAAWv`%8irO?s5;r11hdz= ziWnc8VYyg7Ho^xl(9-2w-NB0#7&X9)Kqx*R9{BrWA9dBy*Cj`1lQMeE7txCwLcHuiQG zomuC%Y10UGfoAH(zdt-e6Inff2YLdrZN;>y&s}saMvb7l|E$*=hJ%A+V{5Ab!1DGb zr>QFrC4^-88cjSm-*~{44ZS$a(x*!|A*CttWUmn;hrS7QS3JxUquk_dAhA>fmb zx!&XLR}-p@;<9Pf?yTd-kjWf81}WubrKP2DOw9+}Uf)ryXTRPE=;`a%KayFd1 z8d8aJaO+peW;tlXUNuFeh9t1|uF|B)O23bKVPLTR@;(IuRLY2E01jOQ?ZfsvRRc_k zd4}IvTlj*DG3zRxvsTytIhXK!wiLRS4CrWW z1>G?*!oxCDh9>Sbe}1HGp9wyV4ww1_6?rS4y%lVkHB+n);71ixqt4kUJ`kbYRa=Xg zJ(uv-tQ4QafK*_F9X-3ohqbhz|+>chXskrYJu>1(8WwD<6m07@N#aVU>$d1rc zMyJ-VyL3FpGLSYXCymB9b;R5d9P<{4sc=O!T&qJ>xUPGQP=BLj;5H`orHj=xEzR57 zZ|5qR&9~khoVseZv$*CNEwJ_}8(j55Jz~i?5S^~1-LKWO>8~Q@CLK|l=h%8)z5RCX z^!41D0M;zOIS{|=4#L>`JaG7T-LbK`?crq+0yiEDEi!(+ryi)^bO%3PO>9U$we~14 z3_>aeT0)_#ZYNLH_R$sieC07+@}>R(eDWqA9?t$!g)z}bF0Bj`*X~9$_4<3P<;GI8 zGs)3C1RT6;0YU_%^i3sge#=%7h#TBTS3Pmnb9>XOhK?AG&?7~1Kzr-^RG*u|AugJU;g z^x82#f)tORjCuNhsv?X42=8S{D4IvHHMO-;6uyBxc``1ND-!bzrHx!8c$ZIDTl0=E zQFzQ&AZyWt?YC;UGP3Z?{kV1j+gyw!;+@Ruzs9SD1v?I3~=D48^OR_Ut$kD!yOo`vC^i|G!s2z~2iVOs3!5Ib6^X5|Unr<8@HF4PkYKDIxK3j$+|q7}G9 z@2|>wO-zssxoU$$P&Z9v;neTmEE|V>LQ#zl4UcOaSw9F!Y5Z3}z%7-{w%~e`*}+f5 z>cU*5NyCq4_OB{lS!M+a2GNi{!K1Z?&=}a;4z)UG7-0bFrBycNhaxJMuP_#jJ{8a^TfwW5{hd9y zqnTbqIt1o3N`nAM{65XQxluG9#-oA@;;R2WPkUNG#{j^`FD`t1kaId$A>OZ-@8f4h zdgU`n_F+c2I)B_uN`A&e=c?f>&Da~kmf~4f!)?DmwNjd_JOehbX=Ub_hok(S?{A`# z7tL5yj9V3})#ie4eks>}h&K#NmQ6${6_l1yJCtvQSmx?$+S=03H(xUhq(u^QPa}=E zO>2adhG3Nh=)uhfL`)u`#-3{V4KWgTz(F}?Wp$^GQUO@hlI0KxEamSI>ut37!WAy? zf(wgX6=R=VTq7Qe2P&ky|Ya4^`C*Rk!kAKQoCuI~Ie+^SS&ZvmP>LVTa z%I2pt_;Yf{OE+RJ3+wA>!F(9B2dm`=O!1cpHDE@>#ujFx;xo!vD@x>r-k;0A*d7Zz zqS8iVMDDd0B+sd0lpS;4SCzVaeuI(O3hokrCz>;quHj$qO$!D^sqCugv3z<43GGP2 z9*A@n;(>8v-db#*X)Ya|X-Xkd6!cbE$Uabzg*?|zH=>#>q;DIGqXqWRF*P@LnJ^(v z8%ux5!jkqC0KoCNs`7rid2${>JzTFIsX@G(tu4Q^OJ#Jx_ki3A&vWEV*s~|6s;k1j zPwr=lf4AT)%;Oc-uo-|U+R)z{q(-deE<-&YY`@TB#Z-#qmT4%FDMy!xhQ--V`YJn& ze=Wm6N3p7F+&3LoLb_K?yVQ~m5W%9U(7{Mg;UEN{urpyW{mI1)qiT)Su;lFfcvIX8 znT>V;Glj2ymS6@gZtEYXe#MWTvlO6?%=tN-U~eBfi|I9qwwFUFc;VjR=Md}x6$|o9 zITg&aOu9D8AYRCnvL>{r)5qz>$EfP3Iw(ls?)ymn;^~#4b9n`QxMZ~STe%{>fn7$^1wpnX zI3eg;kmC8mcW!)q0&o=U6csV};;SAnX0F!u0Fa!v?RAkFSeWvs4L*D8v4gl(+FW3! z6l|s$Ma_S=?=hCR+wryXosPHvhL-|vx7Tie2b4?D-7zg>fKSpEFM( z!pD6mWtZ5C!po?*NkI)_;pZ~bi^u{2|=nhAzmi}Zp@BF!AfvF)Z;yNG2#_^ zL?s8lcWsBg&8pQRwY->S(p-1;hX8Plsx?XjOqAg$%ug9x9iHQMp`s4E?Tzm7fyMZ; z#IxbJrWmQ0!SQKvjm%d+@NLnb3X34UsLzGendsKnyD9d)rgpJI>6Y`v8-GkwfsK38 z*vbFck~TBX*2Zojp`xiYo9Wi$7^h!&?T9&P=hR$mL{Pkfc_kMMD zugRa39>w!z6!yUVES%u6(Bf-iQN*FAqPN+6WhwLY{3Xcy3OYmjNFeM9qb&I_v;=a_ zF%f}$==Vp|?cMn%i=n|P3o%}3$8DiR3Up8txheZKExj+_qqOSh3-Bb!Ai&~rpLzKD zyqv}6RE~yHcn+DKh;TBs9I#!P*7u8aRvp~3ja!`g9O|ywb@7h>hV7_SSK$x%Hm0sQ z`q_9I8-Wc3>F=epe@16(?iq>sOwHGJXy=4!Rs$&=j#19Fog(bUV%3L557p|a-t=}B znO0f9x61A!#!JxHfIq*y%nlXTh-dx%;Enk5bih9!1-jCHTninf{^xiob$=vxpH4v$ zIiC?)keXT*llrW&VDII-szlj3to4YwE6!6x5MBbW_o5lEiuMd=By#4%TUv+5nZ0S$ ztatK1z=#Y<5D2^xi2dPHJhl9%@zx0QofjH`kF>6+A6}>W!TA|Zq0eNmu8V4GJ(#uS z)to{W+I>ak8c6<-dwU8kNrl@8q|FyGlU4^co2@d=4A={926I)}BEbgQih-6?mDuN; zDj|DT3r?m!>*oKK+VWk->cppeQ8u>yQN>frjra5uJ(609@q;DH+tj#evtB~HG*vMt zWv(h1l~~ItX(^3ozOSeUSS(s3WgmC|fcQ0Vr0<_t6<{3|Za*D7EA~E%KR;+4qkHCe zpEZnF2J=3~F*GX)B@|fv%jPAm0xAB#`tr8^u{?!+tX(&7!h-vc4^50)q6j-4MUdkD z{nsorqD@tF?0B>@M8Jx>(aZFfs$eu__t-ushJ&|m{+_(KSZ^_-DH|}fhziopmyggv znanr0i-c9S#^wSHIb-fX8iuL4_yYApKwFKCW)ujUunDGK^zP5tk{DeEoPj6k{id3O~sg? zM*ucQAHw<2W!mepbeh4GfXlj)Dc)px?=#%(6!`|cVuSKp323bHSuDkqOXSnNacvb0 znvxinB3RUhrq3m`too^_up{Lv^xbc1vt5q{bhiTsTLA`z;E5GwuEK^1xnP$n?Z8$Y zO~}?yk&9zKc)=CJhwLZb(~A#WsV(Vy2K_>G}wcJ1Pcn z;cwdu@YVN+SVn9oD_5dy06uZKk}JP;ePB*y{CDf--?RGX>fLkw+w{>fo%?Lgl@ zvdHg=oIWjHo-u61ir-nP9kj4+A^9Wr{ENIOF{am!4Qw!of-j`;TXjec8GrHElF0h*)K0Rd;Pk-PNX@>zF z%BF~cy8!J57og^&0Axn+4)I)M^Z4(<8eDayAoz^hKd-8h9I(&VKNl7(CHTwP)xIU5 zln!#aiypJRx67Q_=-tn(YBZFb&zk0a@Yy^i^sNtM>k3()2(^f5^y|H(n3_b7uRm4R z7RZX;@yNKuMnExk0FC+I40+w>X@Y6{!WquFTpNQ`m1geBPr=QgL>D~0jx=p^!TL6gb5pw zx?{PAYLI?A^{1~o2!VwMsPMnYF3wUHMFl_bJz~7WJM#UkI=ub#jriNPC=Z!b@o^L! z0@Lm_u@L(;Iw`DZTyVyY+gXZ^ZC6`em6O=`t`STVv+kBzZ<-@Ut4?ik`>fc)e4Opg ziLqg^0EWIT)^$I7m@I-1bXN>@_~$Ak`lkwQ2spB!t-r~vqPJNhv$YZ{9$U@cn7Qt(H~pZ_U@W>q$k%Gd4Oi)0d3tGkislk3<$m*4wKkjnkJ zjIj+{Wh(E>;XjCm&=ZxiPEo`UxcOihTg=G#RdpPs#8bxMf-RFS;gJCcBA1I@?{oZ? ze>9JxWR`1{*KF_1&q})D2_bBt%80g}4luk%K<-v2r?a=u?>QSRax8dr!oYBuATfi( zp6mE1h3{}(^=8*LMwCr(m5R1r{ib_@h=BK-b4L%23g%r7As#k~Q<=@|;JLYhpd>?^ zP;xKU2#Go#R|>uY*udUBw>r%r_KBOI0CdKIBEr%%jML_+r z-){=WKB^AChxEz?#aq1fd+6`C%`)|?KVHw#$RutTy2(~> zK4I{3M!4=My|C5SEPHod6j`2F)D|h07dm7|d2N;sjsZ|-t^iKqi4ZzIFweGKYVi9_ zAVjz#7gF*$@zv-x8oL{ISyd0U*A{DItNkG8oi`OfCOE)aDC60g(1Y@j&&Zl zy9`Yimjnst`_x(KCWTSyalN`IC2T%Q=Er6&hdA=#1^9e9y1{r7>mimZs7?*y`wzxD zRNO;Bx+o6J9rUBRoSifcTeUMrwB?@Vz0m-Y}XQ?`ja@C?O8yESV*T~X^ z))LZCn}2Lq!wX3k4SFXDl-7U*ANXQbkSC;T;QTfQCnRylZRG8~KtE>>T2p@U&GuMq z&ShBW-)f#u#m>yMtZaA(nZ>o}nuu+nr;o7PhVYc+o zID%;XNKZB7!jNh{dZTR-7nQVklDW?<%*tE+pO z;DkaWR95Zlv|;JZ#oYDfy@^90OLutd&_E~9T!CF|;MfXOGJYUP_>SCul&W|p$^e(L zU_prL(~J=@6jGam6Gk1?1Q?sSzTvC){NM`T>H30Qd~twk9TNfnmm;$0qbxCNVTqs< z=obHe2)^ewqTsm_B|b7Sv3f?4`$Y}1)wDDV7@p;v?6V$*2Q0kCbm3&n*0r)>;GviH z(&;qHQR!G-jbCNgHHQ&-wykgW{Vk+|xX?Rwmg7iXxXn~v+bMNsb5DRzSN_HpL(t+3AUl1W z;XDebTe6nFGE!jVwg1JnoJq`rQeb>wdh6C^#8;q{ z7QiCymG9kJ6lbp0-UV=kL;(4zn;ZW*rw;HJDR_a517K)REkk2QH&^It4oVUAs8eoQA%d&4hY0A#v!A5Cs20}1Jw z{CJN%LQ7Eu*^J1SFl2c5Z_AWW<00taI-!9WkK$t%XAPZ5QG^P8bLWF>1X0`RwpOD& zko}JZcHhb+L5Y)@X6II z+CgLJr5t2vsiKR^TNY#XA22dgWDvAnP=+gadok003Xr1=mwKmhdUC=L-Pj`kdi&6_ zXM6wSSG@;EN&V{@FEKka;+W=U5}$oB95V@DIne3VdwqO@u4#Q3?YOL}J+lczMlno) z;gF$uKeMrMdh`lST6JzH9p1Ct?n=o_|Cp0f!Lj`2Tch)_fie`LtlXkuzv}m5oU+{y z7*o<^VP2-(G{0J}r z=ipFN`o1PN7jE0AHSM6-@)ao}N1^c6Nif^V=4oD#DB%4b{b^TpcYZe;kW=kffPRDbyr^Y-U=zs3Vk=rYm6m8LB}f1j5r=F@ruH3l8dj&=?z z_Vs>+jx&d14s&7Y{La$3dcUN6oK{$GBxQn6JG7=>=^oRlbQee`{;% zIy$-5!t~<{8L@v!HaTYJJ~lHo^OH$4ni+-=Sy|b3*Rip&pu8f?$wHjP={gf&c2Q?F zXOX+mm>bA?m3`xd2gZ5){)C}qTs&w_vfT7O1tIeCWH9MZeW!b%zKIDK^z*LTuuDG{ zNQlws=4*ES`u1jYbTkmihi&@bfA;0mDFVn9j{u{DhT@~RLM97KX6M2yE1!il4U}va zl>5kM(|^k;xfc}`#W0&#{f_Wl_|-p&rL%X(x8KL#-(Jm|js8mKsWd2eY!i0$MUniF zY8xrh3f=O$wwX6r^77Vlr?a6&J0*4|i?zr)Db{k5V3GOGMoqU`c=G}>4G z+qVqjkBOQ>LGk{k+gr&w8RdnA&O6D(AJoA;vQ{VbFF%@@n%;l*EhbYvWzNe#eBc`HqL*1m zpA+RN2K)TDnD3Odu%txU$ir&a2*~9!GBJ%dH5;D)+WpuKT?sO`9cD8=G;q1YWun6Vr0%j|fiA9pL^6QzUq9+_zQR#>`H__n7bVQ0P94xeE?*&IJ_zJ60q}LFd=`sw zi~ETz9!Mt&oZ!RA;mPSqvVgoCk&-Lf6IB9j9i7-oM@gnsxpF9W+xvr5&T^^@vnIKx zj<=xY@XV)*o3puQZ}j!!WBvZ#yKbD9C|72kj+i5t-Vp?~=4bdPS2#F1QM{QhgTvu? zDj!+Wwlf)^M?ghxDCup#n()%(a3v(hZUx)xt9g?V159z_QOQJdAuVg6|dpcTk~b1@7Myha4z7D zg&m5Xi=(Hhe?Xbcqm{SO%C=xs&sg4k9K%-?vD;dwAARWPHBckw93!1J7mhoPHw9oa zr;}0DyQ=Uyz~HEsT%DE&ME&@o2}597<4h6Ih|uIBVq9#j&qTi(Pt<)e7VpmKOzXdn#52Qs?x4bjURhk9~8+1XaW}D#;;cYWhdpo~Gc(8|ATCy~h4wvo{#%4E1i9nD-T2{AA?0Xnt)+st| z91N6KEH`YIDVdvd_+O4^G{`EmXAuI?5*O%e$)Gas00%Y+=v|T=(PF(#MRop62FoQ~ zLd$g~M-MIhC`h4Y#8)hBELQMr-mj)~^pulQCs4*k z+GjY4oH8)p61TrELGfvh7+9(&Avw|@pAd$3E2Cc=YMsy$e9GieGh(;D)0R!9S~>q1 zeo^R|SkoyG<9Qk#$HVd;1^hPEJ@=c>5AFaRpgmo1Iuq1-x(^vp zo$f%c9hM%^$PK5DA%xAOM9r7F=*_&@BQ^G4D5St65CPYnrdxVi=Qf{ef+%PJMu7^R zLa=Y{m@LR38c!sXkDHK0ooV~Pueytr&H(=}QjW59;sIVH&OPw1c!pesV7v)vIV~Xm> zO|U{v*(&psYFjR*E_h6E*`B1n2+q}M0`y1KEo$9dOLm1iQw?m;c+l`f3j*Y7FMN|? zEb<5=$hDL)M=@pTa!W6d3IN)Qq7B_c)o$F92ykfkTzeNJJVr;`-Eo2+&3OWhiZN2h zj%GA!_L+%3H+8kB#uw7l0lOEeMdOb+f(D82_dpT+M6i52j7tpkbLKfs9~4oDtsX1N z9B2nl*zo32&itwuJjol4%w1&lmCF!B(=c;49jlxG6i8SJ`;ilFv0myg%3K|Mu6nOp zKmeG`+2d62IfZt2ziXVjy##`{eBLzTO=9cYudRXItB*Z>=L&<{DBk4kQ{`K3# z@tg@5kd>~**t^Lm+c~fSES&VIz;n#s}2-6d9k>H}W{@-7};;TCaP!KKnQs;3> zb7Np*qg=FzY`b?rL=C28i$Ho6_sTM741WNeDHg%-qJEvfkB@j+^BR`zr6P?pIHBH^ zf)w9riLT|-q(m$yhoOIq8RB67GkF5{B{U_;LToIy^xzY_w=>17TBn#vq-6%wP5bc% zQAzsX;uo60+!w)IR6e{s-+ZAdiCm*Fb8RmIJcC1pK+BjKvZU77SrO1OLCo7rhZ>E9 z-Ol~`wbAO z7?JeVzvq8_+Y9%90He!ISe$x>d;Y2MR>`&+`)KuP=#xgzS#?o0J|8)Hj%&HAWOO6! zlCOZK{+t^KUe>j#`}(XaA&9J}f>}grA@|k7A5kM{A(P0z*WZ^?(h3=2eII9cq33Qv zZ6E;uz8*|^^t8@@zMJ+=ffKA5!tJQlU_WwFB^*RFrI#q~dHqgL7&b2|prmP#1~NB9 zoJqCX&wlf*g=z#Bh`~|2RfLwNqM%dv|Aoj7FPKE6!_DW~S zyz7zk8CM?}pg+|lI;d}x@dx|8J&Ede7-e#(HhN@TSD18AlxvCNyT_r?7pbQ^8fT-{ z8W*Rmw+@A0jDR}O*k=8Z$%HrTIDu<=F^zyZvUw?Phxu&J_?9*|WMh?IedXQx8A;15 zU}=QSG~kkO?g*shiOUl0%s*L$SGat~=P$yl1j6My47=~DnJzDZTTHQr07D(OsetS? zGDZo)xhZIuo{xO9Dp3K<$#MX{EYnI)G-X-9d57qoeay=OCEwrsXvGEp65WrZs$5h6 z$;G0SthPP4@@x0z7#9PR!L9UwBzCPWg}|^Je52VEr4tcarEY{Vj0t_SolEg z#%rbtMx=|%GD6|G{0NicD2r4~VOZw0XHMd2*9+9=FKyFNhcws<6)D=gu3=o*K9|kC~2;riwtRRQL6M@?Y06UfNgp;z}2=z2hyER86`1gnP zcm|YrWMO$1IlnZ)WV~hjsg^(h9l6|D*4TFozn!4`nJNn}xqQN02uvYR`Zq=+xEjA0gKHp$w*ie2h(>B7X_x>_+}PQpS@4Xd z1-E_@q>%jy|HccLiE}(!LA_@;@`>pWA8rMln3XSwuP+MCeH=s$KP$e+V4z!Ch@YJ$ zMY3*(5n|nwYth=MHJ{>bFPw4ihrniEt`%GbC$-HRp_X^`FDZ&B!^wC}q$|BKis9Xy zEx{#rz$J^voX?R)j~#>>goDHb17Amruh;l)CiwHosG+kA=pms-$CI3#_V#DvMqtF^Spc7u| zhJms~M4%B_m}!EJy4(pxvv2sbECPZRSO<^LKMf5HhmY+0pNL8(2x-|gsnAeFmUxQq z6G)zr#}u`(`^~1#O3#OMUmC~nx8WzpLV=d*xC8Chp^P@W@)X!GIgpZnE-tl9wz%pFeVdcPlA;W3G&2y3 ztUUGK%cdqq>5vMYXe7_XE1HjSK7STIQJ z%|wF0=A8y2g%=@W;8;R~z%=o!kGF%u!^&^o@B!Bc=ULPj*n}9s_}2{IC~|`sOK$uX z06IB)xQEanmWphV&P?X7(^A96V^ZaQw>rA zeZ)vJBZ3>O5Xq`*ePN{S_VV50Yuw^G!Ug9Z=7Q4Ft~8H@O(S#la&|NlAe60Ac6w$(9<3);psc48)N$M6!02;!N; zSoY*Hw2W;8ej4mQoFPiV*BH+cW6H80Iy%o!SZV7q#TL|aJu#z83vB-L1N7A}IQJ72 zs6ALi(q=M0SW-%TK|yH)`I-WCr@AjxG!~0d0JJLx(`l%)`kK%`+o>RhjZh^ zz?J^)-WF5HwUImp3cnbJC^WhPsHZ1xUuo8VF{SXPLNm56 z1V}pG-IcMqKUI1TWAYcYT3IbSzpj6X8S7zXrl&OPq`-&EEs|UJZiIJ3+r?yyU=Pa6HUn%4hzj>aYT29f1QJ4SZGM`fuVfh8-3f!x)-)|ju@S%8F z^DVnP03^^-PkDZ`A~`<{pQeyBVb4bdPh`W!x{5>*3JNs}?{1^V-c}cUB~N(zxSG>_J0{`*wkl#8E zPt21i0dpabf#Pf~Gt>7ox;-S*jz9_N^x~yqp}KoGm`5?m9mTQ<-)mdxvo{EWq z|Nc=coBpVGmPJj9|ET7Bx8RyxH*mEPIMIs$#WHaV@muBJ11c4et4u9BuWVH92Ki7y z3aJ6zqhB6b202{=*T)Zs^UbKrT#IL1y*qjH#lTtAnK`{CC!mSqW5G(>pHovj68IQr z_2Ls@%^z$NJ{MR=C*?Z0>c9Oyb3Twm+=n7eg0MYW|3ZN(jQ(2Srm@|NGifsXYr+qT zfX6Itbku*~@zn_$pbWkRZlH#*-rf~N*Y>P<Vf zHyx614*XYxJUMG1Zhj*M-kU^*r`!6sXxWJHMj|%}VH`_rt|VqHh49Oyn*wj#fwxhO z|IQz|@mp*P##3jcYbXIVOx`&pOxpXpkBwK$)Wmq&6?vwnM1~GnWE`sflYv`r%AscC zBEX%9XUQT&R1Y-Wd}Pv9?Sy#4kn#OGC?0V!FK3TeL@-c633tb2Vp>$_=r^_5L{xCi z;M;Gx`057X6Goi{B<@zC7Fi{ z$W@a5KSZ5%R8?Kn?oo*Y3P?9d*CC`q1qBXBHyld3LAtx7K{_O)yQL+S?rxBhF6q9D z_xtX>WB8wAxVL-nv(}o=e4gJ#R0`+}^gdqgBqSyM&A*xI50uxo{bLt$1>ZNXWU=}{ z!J>*@Rk!7F-aclaEQ9yh50vz5*<(7b19xbHGs$H_MV94>Oe2;}Mfp`GRGzqft^lXq z4xF#T>S>3g_nK6|{uQCS?R_6Oz1$5<2?5K?4}3ga{hj$LV^M6_ErJvPU|@VjnAK8% zaJ2s1dS$cKn{XKFt#&;tY#vYDghJo{w2KJ0krVdO5b@zCNJw|-r|YHn!{LM8`Q9x2 zr%UC$!9T7dPso#oASH8!iajxv0#LLQi$!%jKGTfbzn@OGCVXcU{$RkvbPIDJzL{Kl zF5+CY*ko56P#A;VByPy-yNSdai0b%Xs}U|47glOI#Q@{zI~EB& zMsQREyPvB6*^IsQAJG4Jb9-2~^ng3<-n;&n86@{KmP5sUAGxl+AFP*=0K+FaaD6m;>Q~~1 zU}WXiXxGc)x1%9fXXHTLFKHhlEzK)V6@R)hcI4}Lnfz{Ta=&@ZKt3T%(Y}cNcF@_X zzLGudKfEvi>Fvv{?5G9us7+9)L}1s09u-8@Ji5uU(VkMgB4!|Yw4iCJEICdP z1fSN3p}L#?mz97r(#0|#l=!&5MG0AxqJGRT7h(#>0QSi7z<_~sYCKm?JzF>SkP-|j z*8ql5=%^KXybj*a3h=?yN^BjSH?;bqJ5h~2jzJ#BZw_a5KNRaUI zc(jX1i}_}%e%RL6;to_{z$&4{gx(RCAZJrKw>N)KU3&Dwte|{J{XJc(xoPe{?vW`& zQ-Qes;r%cQvx+XBPAIzs=(AURajaQ&fBULz_yyu^hcZjp zLfCU}F5=FM)(6kWPF2*q-&Qg`vI2;p52kVaEoTdz{3EknVlL$QK;DP02?_KuN2d^J z&6Iai=X%r99qtduq)X~o$;v(jwS5Z7$gIo`ypm?0XMV`kYfb1VC6L!W|3zFb?}N8kpK*YU2$ncFw`;8N z{j4)DwMo;ihLjS%E69VO7}!dohmVhbt3-McB8msp!yZ5Bw}knSPOOsPS6~SeOxcGq z{HjNmqJ)`d5@e2E#iM@Cw*Mx(Lp!->F=RL~kP{gWNyut9&&+A$k`esIRf8n^D@ozf z<_vkoDf8>)(n|~^&Xn(A*F!NKokDzk!Tk1r|Fqm3{8A7n+c6U|zciBJ(>x1`BOmIhvgD#YbfT^|=YR)w(6Sx?H!iA)|11-Vo@h zqdlkszjO(WrNm584DNf5*O~mv>z`?$1ELkmo)w}%e@n;JyOtJK@h=Zj${*$(BXH zufjM!!buX}+!k`6g9`_r!>S}%1Gq6nDfzIhiLi=~h*LAy8gU81fpMNsncabnL38Ji z?t;TLJz2Z}YwK{3twE>tsHVo7FAti9$Wqv8(cBBNusFKC!{Kn<_=GQkn~Tx{Dmp&D z9qSafX$y4LKeNCXG}*A>MSP>+UAQ4isqmq{=(3cEaDP%LBOy}!DGM~Mu;3C4x)Iy2ZL*cyRfju@nYwH6{~On0!e2J z6Be}TH%yS-E1d6^^+b&$%rY;TeEX?XIWqG+Zf2i<9}0!o^d#iDxsqpMD%1|e2mPrp zs1g(L8@|OA6L2r9@>^BH*hhdd`ZeJ&Sr+C;|bqF)(GS9j$<+Z}kOjfVF z!i|W|1ql?TqIM=0)aRUdZcnA+0w4WwuRV~?&d%_Dy1Uc@(L}1_!y@B$79=4QGhxs7 zQ*aLzd{I4bDFz;rlQXT=y93pKeFy%sE*0F{=0*GFNv59on*`+nAWs=^Fg@Pjpr-iS zTW%R(TbkD!|4wiG#iD`+Qx=Z`x~R&JdMuEAC|TPg^{V4c={vB7eAua_A^p)w&)TdK zPjnL~jP-mhM9d6FTT}r$IW$$G7hLA#G?0HF2xZGyJ>pWy=HM6G;Qs8S?vhQ54Z8o?qUzcIX`0U zOzIdJjO&UatjEGffC=@_db%jrnrq3QK>82{KahR0U0F6t)V67Rg7S(uVl^jL)(-6I zVwN0C<*iSDW2X4F&m2W*oFcI1ZQ-#ytfg=otPlLKVF(6QSOvIYOX4x5fYp?GxK?YA zwuCO@g2P=)W~*N6tF*cCX(3C(Le=&3E5j&JlsJl{LPvNN*JpJJID_S29OYJo2_F)} ztadG^t{_Q!O_E|9h6V=*` zK`8;6Yv4Gm_*4^Tv-;IKs=@IZ=n)3(3t`^u3F4@ESz$%;$uHdn@SxMwyPcVblfRqW zw{=PPZEp{ELqaH+tTaXVl2;rSESgnN#DLTC4zK@3hjLd`>90o_EG5tAPFJ=&Mn>cd zW&&_kmZOJ;Qf5m|FfvvcVvVoY@P8i(6^Rq%G~mv}ZjT{oC>FOp9SYL~vS=37)!o)0 z$KJuVl584XP`OzO2pH&bph3dLWKOeL0)Pw@H5ZaK#hEAFwz0{gJZB9*y2@z|T)g00 zmAS=LGlw68HWkP?N~T1FE}4dQK9dT-;Ux#P$u=++=0a4mw0dzfp^M45tg1=@RoBd; zh4Uk+fE1=cr@lV*qVZ`zyI(G_`DcupD*Ei^lEK(aIbxb2H`m!6kT5UwgnxP?iP2Qb z1Tuk&ax~WwJ6D>8RPGAKxWz8)I;n~|JxB=(=m|8i`n5rwQv>EM5V4`jes0`z)E<)y z!2!0?c$9=OsBq`EX35{uI9%=tHNGjYY3)~~q%68^Y#l^nsN!Is2fu@d(pjiX1$R?m z2g#q9r*P|m?P%F})AU%nY=n_%A$H;L6xT}v$#>D<>9F^HRNeXDtMXP}mr=j-*>gg$ z#ZfUn$QQ#HcLsYas!FP_()m*71P; zZ#>pOk=w>=cs|rbL{VZo!RJRSl8fB0SWMdM9FHsI<~J9<|MA}?hi~pTDlQ_|?S0;Z z2&Sx;0e;A~8p=F{oiA1@X#7-OMGNUmAA#sK(S6YH=C83_DQ(h7XDoFt1T;oriA<*| zKDctV!T_T%eZ{Z5532sO_7`$l|JoF1>C6(CaNxZR0UNlP>nlRmiG?me)HH^I@)4;? zI)jEql#Q9C(qTy{=*a%kdn_8hDQ+ARgYZU>+wBm}sN$@?aluL|9_|6Y}Yh(YMcCn#P+J}Q$s zdIGd6S(G*c^feMft;P4_M>F(mW~+M!s*18+jMIgDv!yq|KEIFxn@~^b(m;d5DcX62 zc||ytmQQqS6R3dj<$L$fM8BnhEl4roy~Zx9l2~>iRtVNKkaMH=P*s(cUy(?eKfQdD>MvlPWrah0?y+S*Nr=q9JZ3d}@UFWhoKG6&~duL{-5?ui~> zt_eyZC+Z-iM3~Wz;7$xcpq&1c7Z?Acc(@cly|`HWLh|{smV@E87jY(ifb=NQVv&7A zJ`eaozzjPmDz)1K_!;IHxmA*~cI@(H#)`e-_M$>!rkr$+*VV9(RYtOI#dx|~DWFB9 zo=CctmIz*sM5uh`Z1pEZW_&rwMQLK~1g99%?>mSQ4Yeu9O0o0j!F1s|%L}0u<7MxAO}SXEV?WXaJS}eIAZjOOUKsxJ*GgC+I(*KU-L6}+dSyVSa*IOohl?$G(7X^_jynk|o%S`RbR{axIZ{LoC&8-rs<}P!IK_W*uF z|L3yp=3Zs_9aw=)>@m>{m*LtvYxUEDBGRH0B3|RTBP$P)6V=Sot%_dL+QD>{)CJm5 z8CpNuU0yzq7nyA_-WgdAW=z{y(08ZQ@N>NSXVmi>NjtD4amEfwiNU#)vq8`<5I? zoG3HuUw)_|ReQK)Et#+H+|T6u@~|4l)&<}eNT4Cg=5-tfimKR;EW|IQ#bSfe7O6*{ zY@_!@-U`iz%t8|OZZ&}}N*Ixn1Y@8s)SNH}FCImGf{F;x=kAi;zOEkeyvr-?D2Nyx z&`_yLhMD5Fk8uswXJo$5+4jt+>YA3I8g0i~j%vZ28mV-<;TX1#knx1Xo@z*A{f%vl z83nkYBX@)7rs|S=4;=El>0;Blh0tQ_Th9CY2|MliIFHVU5fMy1U0sCd1gyWETW_?% zf+A6JPAN?#nGA@lW8Z4_27}7XQNb= z1y-QXRb)N>^&<`V6AZA&S^JN8^&k!gztPn&>RZp{2F7I3J~Rw_;65NIG%WCK*HiXrpK} zd#Ap(tE>pv6vkK@ps8?Yk(2e4%Rt>6v3~;E@f05|62!u0@>cw#gt~zRnMKRFDlDgaSOtve>P$M8qiPtjTFN-c)R5{fTuM0G$+ zQL;nd_s^q%N?|161sFmF!?KEu2owTSL;k>rK^0S@*DM zh0E@pT)d**_Ga(aZ5|pP(YA3m2bYY9S{;y($npG8d8t$05tv3d5$R#hD4~$NKn`e~ z7RJwWJ3WWl+;~QzP7kIEkOP#Se5CmL+jd}TwZ8g1~zT|>QPbQ*deAY%!KAk88oQ6|7VbSXTr35qp?AQjk-bN>_$Q~ zTTOrV5pN@xP+KkHQDnOd`@}Gy9~Vi&YM1!2)`iM9YARTVP|c$XgENnCI7v3c$dt>s zttamZLL=Uw7!E2r8OAAP3Bz!z%=G-U&_dXhR%nHdMM#Ng@%ZtT2PDXkhzHtfK5jEj z{m^xOK4A9^R3rTf&>s%oX96E&#$TcZvVTr(%4|?6R$T!bTbuXYw71^0wzH!nbUWA> zE3!yM3iIhdb(Jby1h9DN3;NMUN^3}v6#U#MwlpvtM*u!+GwMM9o%uU(ZU?{Sg1;kB z|H`D#0<3x?d;FlC5w=e~T965Q_SI}$*TE}ZF(6bGy^*m48ZHK7?0`doGvvjJd@y4N z*^EjQDMla%qUvk>hSvK7ahI#X_zuTSRsmuVskeWdweY7EJmr;>E1M2f`aeL}wlR8H z34f9J$&K;RVq9F-*cbo02Z+3I|6C1kq@H~+pb3hKs3=QF#>5UG|;I}$&|Z#M5MssF$%Z%@KE1U;gI=T1%D zAv)GDK0t-XEs>4U>3d$-#ypQE?^ z5X9TnlXA1X^JfTm(ZMUuvlJo32hQv~!5?Y-O#7B&a1la8pFSI9Xl!(k?;;2h6Axz; zcqMrM=g*(u{jR7&l{xPbp;Pzp?lq$M{6i%%6Sca7N@V0O=Qv@VIR=M^QIP4g^Rw)_ zI-SOcbyt~(12?zRVQXi(jFl_1!#(1q%|Cy>JKUIZh3;FC5$!VfOQ8>E?4=^Smtc6M zRcEy8wCyP=MkAoRBe?O`^Zj9J@W_t$&;2{ zfBzcKhxch{XgJ+poMW6mM^v@^uH&ls-Z|fef`o_rd1Bq?`7d9~kCyBdhb>smcK5K- zO^EJ1-*p_;mX}XYcp>PzYc?G?0x+LIQ={X!9zsQp5pzmW$4pfXi@}T0Ed-6)&oHhm zo|c4!QtGZB4X(vU_Vcw?Fs1P!w~SZ%k~fE2rjM9mH#d%9cYq@vJ2aLmzT}O~vG4Y3 zZ0cMtr65k>wZ{!3p>nnM4X%<3Jj*<$+DVotT0egDz&^5i7# zVheyc4Qe7TOHqAxxfht**kqksrq{Yy+&%c+kWXrSa6J{?P1O-`^WNRPsj#&)TjasH zSdwcFJk_avt4L`E``!DZZjwXq(CPb=Oq<2kwQ~_2XZq{LH)Q-y|HFSGo2_H|b=*Ii zExxuEB{Xz}z}m2mEe&#;fbDZpJvSVHic>}25BNUdse(?U&rxKu;UX5gkx?>}%T#zF zfZ{68m0MEWzyDb8(HAGi6;5tsce(@vAEt!5Q6l&-lh|86TrN&U5C>Lq*vG!_>+5qY zkA*|aP7}DjZutOWSNM4x#sdrZI>Gaml_lA!W{|vb+6&&N zlT8gy*~v#&A|20@7Bg6L0VJo)5(7gr1r?Q=u|qoKV{2-OtH=`#1qI(Ka$f>9byTL} zqQDzSVw~$pBqr#Z2^ygHcDvo2%`@`X%Mmx^fXvp!0zCKMCj|Orj@A-P^;tE)ru zM`KpQz-!^=3eNYXa9*%Q@NqwECZNyosB#ec&s2SM^uMO+lVfy)o%kqqC2huqAj@Ty z`1rCQp0rnIKmW#5jXha$O#n11N>UREiJ1v6pUgRi=GF!|JM7GY%)BfeOEk@kv8ciUJ;6x z|Cs|FTmzST;mofNtu@?}dF6UU#{plqbV)DXUPA>xjR$lc8yv-VcIz)B2`mmb*it}t zQgN{GHjHY+D}|5TWlU43y<0Ue)Ud!;;qA6=_M!`$$Q#@r606{aVO)I3jR-z=`{R=Y z2_117>`^>+*-8-9TKT7@uIR5r*SiP%yn7@N zLs?{YVx?BU=QTy6rgGNaT^ERky#6lR-}?LR`W|C!{2KE{LRoZmSPin z^Lp3cXc{U!+U(J$`&69r=<>vRHGBBC*@(5rHjPO2f-ohY_0rqZ^Yg5-GK^_0dzm4W zqo(CM+4|eZQ&9@H#Su7HklgIo=|qax;DFi=VZwOZAL;#^MR+x2F;|)6W&o%n&vY_B zz!VJEH*(EVs^C)IGfA$O1p_p3+K0yMRif$`rQGF$|hQ9DI$q=9P?`jCCFm zfC0g;-KT83Xs>f8EFS!sKZx&^+*0zWgn{ z+^r%A*ahmM+&~5|bN-qwj<>Zn+xd(E=G*(rwK7=9Pic3xJQP(GSaKml>|VsD(=TX1 z8;Y1U9VG+i#@rABdxqx8{05l^RL$%WN;SEf6W)EpX2tFRatHf3ZKniNavl z!e(i^yOEvg0&)-NfNfafq$}rqZ>2PY+MX3pEod4_@F8Z%r4N0i#YMyQSkWna?Ji(+ zFCm))QMpY*FvuPa$YabWuad+fhLlu|9Sv3P2=1JP5KHsR{f>wbI~xiL)iW0h9mzv6 zaJFvMqbbVn_aboC-6CdXK_x<)u{8Z`=4iRx&`}0S==o9ql^P!P_R3C78HcbDMW=Bc zSF;c0A8M;w=Oh4Ce*s^x+PJ^ZrHq|&O(Uq;ProaA+8dtsdBu!Us2E~Fi)9bou&Aj; z25G#I=$$u+p)!>OnY!vmu0%WHz2)BOZrmZ@pv?}e|E2k{_KnQ5YsXthjroZDFZsLy zs@p_`!gV=Zui`O$tzUkps|f!z(kC;JS1o)p#Up-^@!T>@7uCE08QCDuqT`>hoX~Qx z_w9|!N@HvkKSI+GwB?2RIeH=*VMAEcl>j6gMGpH-N_b3kQiN`=Ml&LG$>9vGNCh@J zMCE+!#!?JPaCtN9uTg$nO?IZ{V@p{f*&Ms%ssRDVup zb+*!F?fcJv61;R;3^K~4G1kD|cow~d0Ji_+qfZ>J9fYYhe~uO~`<}_`ZiDl4czrR2f)B$}#%OaNqxa1ta9$ zf9Fy#{9so_4?)H>uJK~I2L#)i- zLU%2Sh#Q6o4sN>bXR1oy8Mv}CY?`%4fEXeJ~%@%^J1GoX}GdrO_^mW<-0H@-_D$oirc7bW?=rC~^tL)9%?_cbW zWA&s_J#WBsd4&VdhDyh);=xbbswl<<;bTlUal-(%_yL~*O|DPDQ#m_NifKZ zz+0o7Pn)ySQ|#Db023WAj~B!7*lL=fYtB*3-tx^QXeTa0ar~sqz1h%aHA4&&;2=ifR};i6tGeIWezwN7y{wYqb2q zzoY13N&=ctpe|s%*6o#@zpQi|LkTMJvf8W+??xdUrb7IJ_%*gh&^SU&MF9wGnF9V5 zqMNjXn=&+{mmb|$MOCVY^pYvvGjYpcT|fZd(>l zc`6ljE^CX}A4(w80QljI!Z*j?*oh~@+ThLGJ9wJK1Pvr_8j8^nnj3SKPpQ0P>4Tpy z?laj<+v~|?am2EdteWwlH$cJvbdFBE9JwFmW^n<=Wj$!^YoxXg!hD45L&)IHT1izh$I|)`0ItmqT3nYd%g)X>*k2bkEHlJf8B8$CeNy+mV=h<1y?+9mHQ&3318e=yR%RbnQbH`%3 zWtlxyR;K(bAMI}KO+$TG;3r8T{QiNqU0N-~ve%>-nb}hu)^o6Vl|r>pRf-PIA|*D9 z?I+Hils5+n;L8T|71Wfxkok2u9=r&^)`Z6m>5UN+(kV-#Wkdkm1kpcveruMiAT$ds zBZt-scowsBfVqfy%qd5_J>=2$sY!PyCyiWPm;&1QJwoyaL-Yt~1em}PEjZb=P#7#) zkXPucm#d^{B?oX><`q7-EDo5+ceT0oXuT-R0M$F?PL6Y4Nvfh0a?*N{g?1^b)sYD|V{U36<3R?=BWPYf)lDkHYD(Bk>#aFQ`a=u!mK&)Dky)&T}MOoSuJk z8ma5g%cK&=D)GRBJJm8X=ishXnSAO7^e41w&$R`lf})-Xn_+r}3Yw4F3oL-f^gs7= zs@NdL8CJy9ub@gi#Bl%P7fL^aU;IaaVN=Gj0RE^heKTOsP7-weIcBReiaVYbz2#%n z{|s->#;&}$wBw7hZ(G&N_M)PmB~x6RmRb9lTRiyrqW^PRSiRS{>f6)bQXP)nCIodM74;D!kxbzLV1v%hz*YNl0}Hf1ce3<}cCoASRfTi3)(<6@Eig=+dw5ttV>0 z4;JoowmktX2Ksw@FosXod1qf5F%$l=#w$pKg_yq;wX}!pb}Ek5sZwK{)l7D5EH?jL zSWtPs@Z=c9j{<*XfMN`pKX$0 zd$O`p6q594-P(DbI9KxeSU;csyPcI>T$Gt`_HqM}aQpY8)J>`A8}PpMw>isEr&->f zzXGli#Ypiu9eG`em#EN;;e~I8Ohu14{)RAs2roeH-^3Xf1|+ma2q$CE0B)wso4SFg zDki)98B`0d`X#u)1s3C%-r}WX#ylxDT%@e_H}BOfvnskV9WJ8C`QyJxAFjUvJQXwo zKAMN>bU%dv5C+*K-2r}p5^n;oYKoHsu_$I{sgs8U`au|PZ2)YJHCF(f%>iDh(x4SI zK^sU)2e`PiMo58CK?tD8^94crD}n2*ofR&h0j%C)MA* zH(WPB>_33|nHswY;x;UwY*qiieSTvzO;X7c2|VavD!3{OamB$oir|8cTyk5+l&B09!N+c#Ne{ z=XWIC5mo=a;Xm%Vvz*Pqx&lq1W|W{`$u}o%p+}D!{J=lwz}+E%Z5y*=%AA8wAHwhQLD47q7uqooL|=sG%_8S@i*ib0@Z%SsY_ z3_sL>gPfN;Y~%npb9l3Quv9C`0~hWzrTb(x(U>hC0?dE5K-PRdz0cu^Ez5u2MjFN7 zo!N%{%Gq|f3}~+^&mzP?Rgtd}Dd`5Ens`H1_>1G_PXg#x%ZT|7kh@3HLRfg*&-;GS zW681D0roqZBo(|Y7vk*2Xzb>okz3s~tWeHDFJJRZ9(Fpmw*i^TAoq|Y)Ma2nT^XaL zCpkByeY28`Ju*2?pK4|_X~-1(6 zO(CtFFSsZ12$giQe|nm;2^VAjw&4q4`e2cgE@+>XJ@*#`+Kx82ZWe!Xw`Reergh^X zpHc>YzTAjWTe^Q)-f|LcvlufT*$y(d{NxH=zw#Rp6i(4VqLFZf%}y;?S3)pDdd13g zDYR9nh7_2%^q2Mu^9GrX92Ke{QWAVgdau8O8$p!Bf}&6e+8cA}&pXx3l}3Yb0yX@J zGO97T^Vw-~)u#$(SW;0T$Oa;Q84IY+Z+MfoJV0yhj-K!*{h*WTqBipL?RKU&>hwOh zvp^)j;UReR4=dwZ@4x+i#;oa^t3TNWNod-_Z(s&7&&?ZZ1%L@$&2MeCo_S_Acs-cc zZ8Fu{{No3Wk}hMTg$Zz_UAuCoe=<&fW6$x)%RYCkwvbV{y82ygfXD}BRm0l6Q7+GC za}J;f3qkPG`HYyLRzj>?`3A;Nwe*^kk(S_pH~*QALeNWI=5zM7z}olt!YKTNOcoVP zaeEiFbfxCHmN+>J3jU*mpp0amBx!M{s91m%5p7OuhNQI>@=ytaVj;EUr)Mqf0Gz2o zqG(Q}qDg#k@Es|dz-mGop#8skKwGpTfV;kIcXPXXyQ+--rzY5A^5oKQ{D`8emHR+JPt-fL4!Wo_alb3E+;yYA$nH)qsZpU{Mqx)Txw0T8dGDm z()OUc`pv20TD8_57k4BscGq?(Kx454z4b^-K9 z?VV?vuszH37cTR8l%T&c<(`1rd0&tsnflO)qeZB)^4^#B{a@esea#$&q~*&< z3dyvlxOZQ3eW|0LY&c1{B@w`ZrG6FK0gVuY75sqOUaxQhrfly1s`?xk4K=|m8V&QA zTF@S+TK(HIH=C>;&#}u;5WGP0XzZ1_P(lnG5@O95q{Uq5+xQwbZkVgq@ihu9AwPHcP)Hy(mo9tTfvucGsh+q*45 z!UF%;P=qqPv>dMtC*;tQkr_1`9Gy}$=ft4HpiQzb zdk`}aFkWawMB!QcBZpJSvT-3|ASCKZ9K&u5Z>M zw;&iBB8;xuccHDKZmh1WGQY6JA2RFIwCp?ik5wdimt$dW`mR>Tcn+qv{8XKsn%^j{{@T~#(aUgpor9GV<;88QJ z+xrq(<&RA)zNng$nURq8|jH#WUIdQ?|3y{OGpw0@Ry4wpLu^r-E zniWDE-&3*K8!?pkaXK=;!})S%xqdi1m{=+)e4i%(``B|UHXq>^@t=I4KWGbw1l?%SeiY_} z7+QH(!G?8JaJQd1<>8f{MoM|gYs%DJd(6(i?Xl^|qr^qi^AiOsLquEOAhbiPwtstP z`w_rLsZ|HYUqboJA5tT7lfJk0QHqo*uVdPZRV>h!9Q`f&H^nA}Rg~8f9#Ffp$2Ljj ztgz{)p^2Dqg;Jkq7CD)>b>-cQ))E_dpi2Iwu!dI^rs!zYK<$L)0}_NQ@-Np&b^>;5 zEggp~l{^3NNPsf>DHzC=k_Tp!cw(pdDf*1Xykx!l*BhyA(1|f@9yuz7Q}p&vh`r%A zD&SpsoZ57HAs*kQX8~-bFou7g)p}DU5U^Or;)7nMa7dUp$BvPaRw0X8Ngkv$DZFS^ z6nvy;kElUzzaPdYQ@2SHrmbz*t;(B4+C%>UXPM;ClS=CXXyBQ8rv<6u*@S?Y_u9=& zI1f}c85)w*I$y)*@_v_5fT}aO*E6ZdJ-Rv$19X{drO|}{h*iVWKdXB z27FARSZTUc9Q7QC62-)1{FG9FtX`dr2;YyBIlM_dtHZ56vqc3a<2ex|tH`}xE8X1&;U_@j|}VpKLsXk7sn$ZPFDdy64)V#$S7+aXKp!jRsh&-bht0XjYo$K zUZW@2f#vJtT3Y*_j8h*zwOWe`zt?5aT0i z9}`gpk=t$-A;>Rk5UE9jqA1mXQ)g~ohoLGu6((IiXo`vzqw1MlK!w4N8;k|E1&~bC zX|mdfx1<%*q}`D+P8|@{NXE&K&ogN^^l$jDww`e$XoFvV{nj3i?Ox_d{2)^499KaW zcDo|_ZV(NK;+eEN2mQVsWdtrbD(8HXcl}>;16M-=9DU<={8jX7dKMdSGZ&j7N)Mls zRs2bwTAVc+E6r~<$%woq?`FAx;vKY>)uQRVS#uGOl;T*ydDk7cD^_vo$k(}Ya~Roj z&yeo9p^eb?I%qHA*TwSUsn_WaXG~*vPo)lKJXfW;VF3-PaJh~aJflRy3@0i4>Ch|} z5c3?mp7leLWkjIq6{IRs5n6F1KYC-Lj!&LrhJ55Fq{fHi<DTLgFDwwxvX~0X=I7Xx#d^9r(Yja- z0Rx8Wuh<@N=c1)e3w{C2Z`GO0Z$h*Z(rkjouiQwqOCO9sCQI@tWmrY%25w-LB>*E3J3pj1?>C`}qm0KSfaphU-GXo(X> z4`NZsno-5#AOV+04P#F6e3V3;w!?gyZOY}EkO(1l&|;;M8kdKoM_Y|}Y?7QguW_nbF3 zpa;T#E&t;kEXisApn3kqiqm14hQY4w8M~%;ym^8-eb#bK8dk|Lk7c_OTMKXl&7qu#l)n(&_!+`ZC~A;H3ZX@?D9Xq*n~iN9xKP7DLC+#E zX_VzLS;)~R+e8AI3*@nB7k)uBzzW-PD4IF|0h?uBBYl4xo*h6JXX3uA^_QbPQ>zlv z?%bM2%R-fQf>m5oDZH)NGg{$Ko0{<%m*bmASbKRQue(8r->}K+G|Vn3P75p81Dm#F zHg1ThF#Hb&pULQVKfLTwg&GxgO^lu_eC>Ch9b7wc63N@;4r3NfgP-2WHr78opXbVX zE(zRvS0~2Cmearua`sKb@?Gr<1>c(-+p{ry5;Xpk8~kRzS(SCK2cZmcO_RJuNpLLL z(BYpvcE^u?d=d^3V%zHnu6v)eqa)L%-}BLYK7a87ufckDidD-bD6C1PM6_bZqPQCW zIR_;Z&Qm42NbUs_w^*HOHhEbME`;-Z2n_4;s>uiqif}m`It(r!{D{Ee7PQ|HHH+&j z#6|!}e&lao>Vz(F*;*=v>km=`#r4MON7X6(;X(g*TX-8a&JB0M2e8r)+91`lR}`}L zn=ab8a*U~4QoFAprLP3o)*(~ZGOPH^sQuO z-de;=BY>_9oD_n_cIJJkyIn~syA=x z9zqv37(0fiOa!#R<)w*Dv~&#dKzmLaG%xL|hk%W9&plqeB3vl|fInvm80Y~!`36uH zTFU`j7@W;};rFxG#txE=keR@NcF(CF5@W54g&gP#4s73W!FYhnUpg70CeAutja6gp ztatx#U~wm;8?-4|0<1^Xu$| zWT~C>o|O6ccQZIOKsgb2&z|G6IoR=DhWAhxa+O%SX{ae7=_HI2s&kpRyZ?pur|h5s zFF4Ti zC+)P{PD%c}y3g-$)OokY2N)kUKdtpC0FCXh1Aw z96r#GJqCdqfWgv4McOa}Ga8$t`p{>9nVSO(3||O3+IQ|+KbE|4LL1feln80rDk(1Q z(|{%=r!3cJm%-RN@n2kXw$P6=3I|zKRN>`r_k4N@3p_wLiu5<@5T)`RM#L&fR{ApL zUv)V2nc#xPX^sob)mSYHdZ5*+1N>Q=-%s4(b8M9q(-~VQo5S5Wa&LWsbIaxTf35ob zbT_8Q!PaXaMLV-+cr|U{r1Ia;Bd5 zR|1y7uGgOv^eZQ$L;u|SW}brzQwZ|i*LT#gY1~#+2(AFH#wM)(I4e@^Ofe4Oax+oNjZ4IfY!t8f9ySf?~T=}H`l!kF|kMI z-|1Q-_V>94hbjgLa9RTa6AOZ9N8BzsG%$uUpH=q4_zgGT_A15<$bdWVAFu@LKPoK8 zb99>BUqzifhh@>Ay=SY+_>`VvW-;wa4O}Z=wR{}QLQr-CJW>4S*wO=QjcsGpt|A;K zPRW?TOFhq?c(>oB1qS1=4i^?oY#02@q_f_tLJ27l%+30VxYiZUu}~Kq45l%gSL~Pv zNh?&>kh0?pCUbc)_~l->*UpYb@oQr>)NuXa-YVeUNVnmiGbfmA0Am3}5U%nGjR8O-T?W0(V#ZB5^M9Qq|F?FA|Ge@0f6Ejn8ExRvs+b^6Lpr3UdToO zW}5iT+fL~5PG|>Dd)M}5*g*b_g|7ij=Zx{hsRoFBG2MOOm%j=x_%lCX{r2TicGXX1 zS9j(fVqZ<#68rt3M{&WgwY#vEA28``4aCsHRCOXvK$6{{NEIFIt91+2(hNO2=EXL1 zl_-YXf~zmm2PDujFjj$aS`5Tx<-Gpk(gMMJ2f3miz|??|*!fC(i;)T3U{{@;TV>ZNC}C{=JL za(p+3Q3s)BdAkerM5_~o8VpX)#1UH~29~8_ib55^So9Tp{eZohXa3KAWlX;*2goGI z0biY<>6pRwU2^vr*VXwp_{=DYBbcl#;*lki&qYRns~ z6_a(pp`ID}$t^M{1y=l~0DUnMVg)C25RAgsUug!RY|11z0Wk1}cw=9uwFMkb&jRLyF zyl-I$;GfxqZPwT>6s&ljUYK~%N#wK&t-%+y)B2V>1734SE@RHkZ%kK(>$XL~ z-zvF0eLsJ$%EjGFPc8Gg0O_mirwrF^bkfRJPxVkaL2EG`9q+DxbD<+g{QLV@I!f;r z7b8a9&qN6Q|Bs9(aXB>nRT*>`gegdNMJ@R6 zdouuMZq2-2q*2@Crbm=gP^I%?PGQ%3N=zRKGct*CAffIGC$exM15^Dni+MxA>S^kL zKufz4uB_|1$N-#hSvBtOU7;ukP5Gss5DN?7Bt7c*G4(0 zMj>|QJ5rmT_+COizU6Sb7uie>$?NiwI&uAQ8M$4wS(&|qpYM?b ziz3_fwAkAYb!4Np^ek?lq&#Qp>t9KnD2t1W`wskPM$cYv^SE7lw58jd5T|F$Gw|s@ zc!96QWy2^}#DI}Sg;+}43a^WIX1)$eh-O6k<|X9gL(7(~7T?rPAKLaZds!xVZf-6F zHIi1?X)oY!|K-oEpRyLDLO-J@pU?>!&qkhPNV>Wvj}fwgqX6IP`_1NXNl7VboqTYC zt*GE;M$qDPEMIKY(4EVvoLQLTUaik4vk((L$<*R#nuG50SoL2vb!5IWma!mBMduiR^xx(Ms$h8B;@36Zrv z+#NpuWSMGn*}}JSJ7H00E2;fQAIj)><%c7P4$*V=F^*tjpB2Vo2c(=35`tMMOcY_2vE*Y0l) zyR%?nHr-^-xIgP916P?^<(qgWTgH2Fx^;)O^9|Pis_qG7V?B>l{e~L%b)qc?n;ai* zZjk)C^NFvKox1{XZ!Meta0?j_I%_*6laiF>6ov2UZDNJU>mh0royi+ zWi;4CXZV!+b~tph7E&^(IX|-aEtx5u-*GkAyFZ{sX_&m42ff)7Yr*Nzpu>?fFT6Wz zjkB3LmTlK6x7v2k~vLQyGX1DW{d&T8<^AP9&j!y$LUR!9r0RzZV`@W z%-0(=t?>L3%MN`isAl~uMV41s-MSW=%s2kWV2^52f#|i^q;g~h@kou?%eV3>RBszR zR;s8Zr5szH^=Hmsl?RP;G1{gEQB=m1zn`G7yynhJK4M_7mR^V5sU!Dnb`(sXM1mn9x(b^ zo$CLT_TBMVzJK3W5?A)h&K}_kB{HJAGLu=jWMq%*y(xr{nUR@98D-1fBO{t9WQS~7 znfK@P{e7SNxt~Apr`M|&#dV(Nah%8TS;zbHe#cq=@}?{_o95HY)_`>4T9c69DxTCq z(dX#%Eg;XlOwj9%^V0nY94K3#Mr;P>Jr6g}a3*@VZyUp5QSvkM0-o5TGi($%JYupY zQr5!W@*TaEfIzx29QzO>!uZJf;&t0Fuuj|8E{Tmm_n$p^5Cu1ueedp!IA1ZA;El5; z!&UdEAMq~^hTW1s;dipYIJR9em2WQ6bgbRE8?00{K)+(BX{^s`}K)Tu& z3ONamgK&FSLyNv5TU+SyEhC9D3~@PX+147veanUjcg>^WzEtT`ye!q3OQxKC6S}+} z*t)QEQs*~Y(!-V>PQ$TxLLx@ae7>fdL->KVI$~tz#6hU{I=w%W<~w=HbftN`97J^F-fiOac=1 zS4}fXx8! z9H{cJT#=u@=fc<0d!dJ=G;imY8fkIVnF~7ke+*t9iov#b&lC|g{X4629%}Al(z#q9 zu0osQ)R&St{~=+45tE=Tfyfa!1h6fC*!d=++B8?gsL&yw7K9f;K|S}Fpe(TEKK{b$ zfk)?~d;5XQVivZHr7Ati*Ne_%VFI=CKi+I3o3Nodm74sE+Coh3_2(7!0nYx@g<+cY zu5TF3K4gv^eDro``4&geUxq*Uu8u%pkgp}n#(#K=Y-IC&;ghKAt}uofvsByK~%EIr&<&sgkoImo7G+RVzW`l|{|> zvX*T-OQIjEINHzo?x$nwx$zdR3ba!)pOFDa^O>&Us{vL6Z5 zDHj@Z^O@-~{5Wn0c@dqWWf#l#7U=~Xp4uHQhdKG!bbtXr)zop%vbn^sM42DiPiFjr zSDfbwQ+!FUEoovmNk!U^OE_^$_itg}qVqeRDw&ET7VVp*U(zZJ&9%mzPrfehrWv%l zODVcekQQMCCx#QE7eFbATBz<3xlV-Mb-#nOc=g*_6YrD5AhoBQq=GhUC0|MM_c73t z1I&?ScOk^qiqi*T7ERCij&H=3{Vv%W#3q7zHwN#>TDK^=QWS8R+=w2iRCRSV-=a+u z6)kHz8#8G1-MTd{YEIJdUCAkOjGtlE0UQK9_S;Tg8uI+lo%ma>lh=2eu1{ERG`W91 z>bAWk|CED-;NX7Qimm7Bf?P8rubDiAlUR=(K`8spSEq1x&9!87+A6DwrI2>TA8|WsM?58JW&KvS_$Q}@$ zD1rVQpKOh5^;}J}O!s%}bpF^(vcSHmlC7*z^XAK#=C2R65~ql0!oysN$|rWcfx^mdK!CHj?U)So-1n*a~X zOXsWwu9L6P`Bd`M8=sZ_8eO_SgOh1w1z?az$GTi6tC=;)#aaT9-0YyB3%(6b${p*v zw|Ny$6}%TBb_CKO?m$s%ed#`#8FXjIHD_X2iGs19iV2Lt8G75je9POcx8yLzcQ|ok zXpB;Kk&~~5x8q#$FU???%zj~P+^|Le!2M!c79TeGK`nBj)Q{?+Ld+#aITsc$Sf;Gj zrRKHn`cBcdnLMM+`yRI|fKs#q<+qFBI6^#s{lkRYE|LXF;t>n==+k`KrEj*?z33No z$;H2M@IL; z^;V{Gt~aQ(ezfH8>2dtHZ%}fSQEO%pS^v&R%$Or<;y}wLL8fu{&l83oUl|)}@wD}3 zyp4brkylZjd7Zk-WmGF55*+s7wamLxJE<2O{AT2f-Rqjr9+L2F?TPT{q8Hnj+$`A( z1}4$ui8~YgDc8|+nE|?f=^CTygFcj!?5G?!T(~t>1K*~*jo|6;OSy>?R^jUFKIEZ+ zRkmGNwQo15e4aOPv~j1ETPw<-&4+JgUi|5@beRBOJ{!P$dcdqpnYY2yuLSF*)aubE zkBlC4BA8)SeG%v;yI_AScPJp>+ugi-T5*8AgqnppCh5Bf{lv@nd2i3r30?(O=;V(v z)@I7K_G~2G6`QItB(6JBT2KJyL&G|)9h*;!&r<&lMqsZ>Q_PMYnYwG8bi?wMK5IgpST>^NfFH}>^|tQ2zkL2!x^(=I70 zb-#Fvx|~~Ly-7M}xJNU*`T4!wcT8tAr2anW7f;Ng$r6c*9>DrZ?N#XdKMI|C+gZeUjPCG;2V1@5=>(aMkTWxU2QVr5i$R)mr0;{0)a6C z^Biv6+S=?nA%S*XVloB03Mo=Eb8g&=xiilVUs)*Jw>zxUts0Nu9bZv9ukeahe7V@q zjX2s|ZrOXRKqFi@iCj6k07s$Ma<*EZ?&;{weI#ACP3e(~Va;Rf$&z`LEk z00~@!=Q`!iWLLGQFb%1i_OzhQMqvs^`9gERzVY68vEQu8RL2u&So-?pV)y;zKuHb$ zR&?Uv6Zy0JE#!{^hfMn}A@w!RM2DerQa}x26}E7gDA9$>mYB>uQ{fcoY^6E!nMqpv zoGO55g8Z5NfCz${Z!4Ue+}@+?Gv-gOA_UXIbDH2}jiEe0KHgy=@qMjG`9F_d8xgQS zw>LLdD4XTVpH<~~xzS;(A2hS1E#bc5`}9J<&t8&;r%2>VqUc_hU%upUCO5%SE%l{q z9Wd~xIrl#NMR+reHs|xQxS)&o{R!!cKAxl&uE&d# zXgJl0)C`ue-LmcK8m(SivMaTVDnIO=B*9`AL%{jRzyEyYN7NP*KP80}exhLwPm=#l zceeW*B#VWXclRIN5E(cxc{o0C)HkzO%T>COW%#sPS&TH114kCgiSVI)+}{E@4`Q1Q zSrHOH8KaO>K^oY!2get_?=b1)*Pn5x)NX@h?v>5Dpq%(?p<_|YG~eD6uk-j7TIcQ} zjIcwO%?C2O$5MY>?I#1O3nm(|*>bw991aglRtBH`59K!WpmYv*F~{6HUu=~;q#hl< zuE`rBA7+gUk_%IUZe?0E80NMyFwYBV&7bn)4u7F!NqG}`nstNy8(ER{de6|cTs`=; ztUv8pkKze2ix>k!@8fqq3+Iw&$M(HM*51eWh$J?at(Q@1lR-8A7z0?V8@{O%JdFq2 z{uYNaC0R$C$VBj7F=t@T$B2(Ay;hGD@90k(ru>=~j98sJsNc-acU)xmnHsvWt<4&P zSE@whJwWyICgt4~xj7mDRVV-rv}BF90w!R#wg0*GkJas?XD<)C^Mj<=Rj+}GR5HuU z!rk(-$TDOv=ieuFE%jD4@QVg1w@3> zRgKB2Yx>*%6xClf`Mb4cUkG~jw|PZTA6*;=FVk~#B~=}zC@W^L+r-8#rY06}cpO+^ z{rNE8F)eY$KfG=#I!8ZzFrp=`XNJ`i3N+uSpIz7cV*>h@H>txtFX#L%dv8=;cqvk8 zs?Cq{wA0Ds$xx#No;vVV`I6N>q_J8-fcfS$qb5naW!GPjMOiMp9O&j}m1dY`L}%Oy90*m~i9{?qMPJ0vj_>7w54ZeyD+ zLx0l@zKi83c4fS18BzG&V5OGSyW8q3F`W_*n4clHU(=B@1%q~29W_=lduzD>t}+XU zL_((I_{rmyo#y)WkfG;(fxxYA0cOKIgsc9b^iE%@LfOHM*F$z2$FL5roD(M@%D8ET zPmKCSd`m%;)YIV`W0v$uqml7vG5R-scCn?g{k{i~@>2hq~)hesj0^ovv=txPrB=-^HN9ao0+i z2qgj>A}m2==+h-l$iZglVl7jOUZv?>(~~WHfnCIM%hemVOHal&@oU{8$CCt3Y$M;-BWC9{^%XV;Sn9+P+jx3<4Im?TZp&q{qHg+e+gLwqQFu#Z)HPR zml0n=`2vZxY4h^WwF<_0V>r_UowxByb=^+}l}xY%wf5lS706PYjf+(bv!s+fk8beq zQ$iEqd2YA%3)j3Qu*`Jkg3HI-uW)B;2uy3DmZcpmLYjUrMZ9^6UjsF{N{@ylub|2w8ED<0BlyezGZlku>vb-IsakIj)w(+ zXgPM)!Z+*CHc0rIkmUR9TTu0s=iaQIHV-YX{@@v9*xa>Wg~i2>B}L~k*l3mE%i;Ro zc6Ia97h5WOHk4kUqq}!w-jRTPjpOH`D7EJExn~;rFIbzMk6sxV^4Ql53(?>J%ty_K z)y40zp=9SYURonDRz03hpWbH{RR$2mPVHQfpr>U2<#;4`OOetfR3&H`(^9ydA&tm} zZ~i<~?6?@)bdeJ~`yqp0Uq)yA)ih6sDDGzi_w3zbIM&3p+F7WkKeu^uJxtGYZ}67l zLrs$)m7t8ycsh%0B~Bb(yy6-LyXjIsIKuE6!|DZQ+<6gHE@u3u@v?P;RR<%@mEWEk zFm!pvB)>Tn5aW5q;V9)apZcQb)IdS#T1XSsVE_J7SJGPQ)q}GEKF)uOi^Ic#wC$@M zBQ}feaQ1WAg)Cz$f-zVC`~5kV0((|7L{f_qBV2=S0U&G_vZ+(U?pSOJZog4_~##QTxIUy%_a8?E<14M7SD>62BWczBKoUfW$HV5H# z+ouL5Ys_9+`X_eBYUy}*=qEbpw`t2iC|#_1dv{PGlj8E)p-@T;UR$DJFiW&iLPAJF z@J~HfUw(ai9=T+p_q%j>KU3GvwUBat<)iL=;r|pT`@zCH#*_Xy1d|&Xisk4HwdgOE z#GF|aS1`N*a_rm{i(>ZrIzWca*q)*kq%jG=613Ba?C)m$(>HGNrMeoh6JhGRNWCbV zovkBF52IW#mH8Z8be>0KDvBpelna>aE&5p~?|qjo?xlb7ix>eA#NfHe zObyJftf4~Cv2V|2Qj~cfB|MI~a$|1K-4 zYa~dX_5f&;-f5{0)V@2FfYw&gs&@3!dgSTVz*#o8dUG_5rP|$@mn(Ck=ur$aHOa2s zW9?}3OC%es$x`0>q+7V_TtR~ zKiba8;Yv+&$3aEJ>5rP=4Jgfg#&dO4lS|}qy`dhJSJYg&lrC{qki8xFC4#5vrG6Ko z*nqHnhEm57;vDhwDLQkLL@~hJ-=Ovi=Q?top{MW4d~sTIPz<(B1aAQt)tjGLW<2J* zoomz*d|G^WE_-dYmAqCO+_x#sWArdhb9V$y7POhPI*N|Pd^4(!<+uW1%aZZe2kKO0 z9P}GgVJF?8gh<{2Q7xVQz1T-f1nli0yvz1LsdSN6$S@K#*^v4yw29*?Z5ae><~VGJ zicgIF?eiF6;b5;c4ke^D0x?RE7CE}68f|puILJy z{?^ZyhA;!-bxWTJSMr8`hf-Xm8a$5Pq)OPS1%rEZMBs$yDy|;8bgf zgrY?+*xUx!-=74ZM8)j4ZPH9A3)Ke$*9T_-&8QPJ)A? z`+jl&WB6Ee-uS5||DAX4(q{3@8)<(>jrt^o7ZtJol#f>AiaQo!li$Bu5^8d#=&`JY$QYN5Ri%E>8qT(}gogUQIFN;DY=0-zN6;HpmsSEw-#8P}6d)EZVy%KKU{k{B>1m;yohYt0; zrsi%{Lw-IH9PEeeS=-yoUl9y={VXddr#S z#iw4Tg0p+?h|g2r2ryHx>U--lfv;*%WMGiqvXEU+FkCjWx0!y4WF;uJy;JM4`08i*LR~UDm8CxrC&TFsn5mS zoB^cxf*1Jt7bWOa$G>jg)iC6#lkt^lwCsm#fAM2Wf@_lx7VyVc=)90DfWBngv4(V7 z(wEPRKM?kunspGE`@n^fPYroKy$9{Llh@E|1aHT($R(yJP)#oV(n%$P)tG8h_P>EY zxf)DLtx+46RG+O}dDlFDnVrHa9>Ow_oDAa>cKdzj%KCfG9UyNBN%HXUn1b@WtT26B zQo{x}oq}Rm{m_|;wVRFCIX8aH&}5S*_U1OfRgw&*a2WR{)rQ}52-wrZ7}nAArn^!h z8xxi<1~g_D28%io?Jp?!*GS*O+TKXyxTxG9Tior&fomU%P`9|mNH=6hfnBFl8yO|L zy6<>p^Xu)Z!`%f08esxzZ7#oho5}rGPo}vI=-QJjr97 z<*WNJEiW+6Ngp^OHH;`V6_Gk5%DW!5M1}kNxi(5}ne(*L{bDrxBRT((tkZmKi|ftZ z@g!ic_+?6rlT--V+lG%nBJtR0Mg=H&!;8@oBjylF{`V)KTTKBS!PgQyw0S^{ts{l# zPokqiTf&Q@cy3w-FBb|=WQbQp)sM&7m7$3_0=0ZUG1uaY{d4U&({L4_;SJ7N2zQb< z5N<-#f-Od_kvqge?~N6{C;KA3m>?o%5^}s4=2k*mCu%cNT6Vb;$G=1W#l(!a^tD05 zt-EZ&uaO$w$@eTTCe(}1!4J4<`)qr0?jY4P-lB+RSA`!dlAV4OE+Sn%K6fCJh~OdV z8t22<1;zYUCG){N|%K{@Ul|5^JTpq*7;Mu<|^H4KkG z^`ZcmeA$QJzHS#=w>QD~^^TU&VcoNuvh%0e{~}2^*?7H2`guI{!I6yLEf4QtLOx&q9Pem!u!WHJBN)@7E+Us37CEdX`!Ip}Sxq1oFQ;gP2) zUWJeF6~e#tKo(b#43y0O&v4V^;0?APzjUr%!(bR5&GGP(Ik02*x7?=2$2iL zKo8r0hSkL$X+-(&5Kf=sgT?-m9%^@7p~dgh{~eE_FukJ>8b;xKy!6^;|5QukW6|sq zNMQlKwpqXgvBS@8kwowR<3F4p7+8u~V5DrCCj=wmdSOh*+Y3&kST$=Wzurlh`gq{( z;&2Ull$#$v1Z{6^O@eTBYrLAw<1+%P1L$ zCpJA~u;y|MQCA$vq1rjKg*^2%TIbXNqC*-X)Ijg%<|Yotu-I_|Ydc&?+LL&`^%0$6 z*yW#|C*f~)>J6^8i->$U1WcnW1TbVeM=c}KOP9v`q*mG>5CF!mkR(t`I24MK_(ebB zHJdIzo8}@MaOg{?poC1337L*fvHO^xN1E5KXPj+kP?2Y)Xz%U)fRL@IZatjo1}BUS zT@q;-F%thmfC620g$m{~n8Kwhh2tq@bmv;rN%AJ>@c=7#XZIEtRo8CS$&)8J4>N~O z_7{k()=B>Nm$c8HHFcs_lpeY*RScSZ%h%djPil;;cA4e(%dM_vSo0i7oO)MYK2*wj zkt##Sa@@;};NLHUu^=vaD^q6l+l3uTNy&0skBi_$%PT7Q92#xEUu1S4GH!80l&#m^ zIQS9!ES3;vcutA3;GUKGZ9{#xZ(7Mx9)gE!(E;Zo1e$(QGmwQE9GMVN{`*k>KH`dT1jLI4 zzd?DVIYGzpF|foNfe6m)f`T$*Gi3JIt2?1bX9WtV`cCa`PClMq%~C6MK_dNEsBh=qY6gZW zM2U22B9ztL2j`{i;v!;Szp0(({=*vCWq_Fp`d(&f+7-v`2_!h9EQZ&ezNlQzs;s1i zyLv9Xc{jqM`m+p{4CZb*8j;hia+)gcWbpx>HNhreM;&EheAx3L@lX@s^E!_5>sGOKYaL8g@OP9Y*U}3>5G9^# zCLsQj=D$1t`t93}Qu7{1P+d1}4I$m>^JtjbqWA+UA5|w2PC#M1AD5WDrehKK=s=-v z5E9o%Up)joX6Mz(@-M0`KFMDF@V*0q$c*gFnKN~v7LVa{`geZ8DyS|oAj6n!k3dii zA5t$*!4kX<04pAql<6(u2o}j|0cSvRP5ty)X}{d~S4H1vsbc3-w0|%{fwyElb5=mR zunF!MDHlNt4L77h2MO*+#~ne8DuNhx3Ebf0p+Ygl;S)``>i#wdcLc2=DH`dCX?T$LC}n{8tSc z4M69L5b_uX5sUGxP?i?Ro1PqO4fii)&2WQ8lT-s>T&7+`2(|znURk8J1n~DYvrX~Z zx6)+c6*V48+BY7!?{B=i+77D%-m765Xwy!Cwih$|Ta?k_P|41Z!3F}9=S+gm2z|<| z*L+UW>fhPSDS#Kz)9RqqwX`0s_;1&SwVPCdCb~Yev45%KL<@=2DHI{AuP_;C^diC; zV5bBl3mtbpIQR!82)qPM{Q6{aib0rZ0xy_L&fUCS9QYrUkjo(QeUE z%iG%J->@k%W-|j=mX?-q#n6VmCXP(zy`$a1oiCY(!4)=xHPTn&@XX(yxC)l(6G%}b zNFaOioac`_r##0W5{?7q;dHD*jWn}bsl^9I6h$ry&|w<)?p>`T?aIi_<*8e3A-1xz zY62w3FJueiFd>lX(Ue*CTPQtJse?I0g}k@}c(!xeMTXLKeIRQ2Sy`z4=wR%qS`=>0 ziIc?KYhd>H>BZ~6)5>b{`)i&(`K#yEAi0DfUDF^V1-tonxOI)oz`y|Y;P>zQ6TA8O z`4e`E?j-*cX(?ZfSqI5-XK~SFL)vSFpMLxxLRJ0!l?ohfj}SRqrpxwi2nZMf=fJ#o zAe_oc3Q7++!i-chWzO2!*>w*KK}?STZM}VboM79T0u6NMVB?`1p+a&dPP&K#A#9z} zY1}=7P)_XwDzD5YEEvZD6dI*Hf~^Hb4dF$;GXmm!i)EuMnuet&?L@#4*w}<@mBord zLl~M7aLS?{{9jt@!goY=k{b6Hx%63}^z&lXTExm-1cBB?h^_g(LjVA5$2u^GUiuBoUzarATcg3#c5a#(U8 z9Zp+fBA6PI;El)`gnkWq1%Lm{n!X!#Zw27kO3U1OCafVs9et-$07FeOX61O%&mPJg zc<Iu6rFU|IE^RF_a5C+1++U_`j-lLNmcYhb)plqOeWla|N z{~67%mUMf`2K3^+Sl7^6G*u!J6a~Zx%oOw0pZo1 zW^!Z{)zWo!X5i^i4cdp5&wOZN&;jjH@NpE9 z^~4qf86ifu)NE&LrSYgCA{#OQYK${)uy{uZDbp$hN@qnZ``UKarkqxr38x^ghgh&> z2}Gzu5x^|sBoH!wBy1P4=xqW6v{n>wAYi(uELe?yTpfI#mv#DNfH-XNEzfpmfsZ0Om)d+_i`<(@)eXF6WZaq=Ek5@$+_h*Eh`lYv@mzGi?ksG*_5F`ZoZkgF$)-MwQ_PTRt;9Y}g-2p6* zV|IQBUFDRNPH+A6ahUKQ^I4JB_ndfyCI~{-z~c9^Pv5>hf)z=R%sK3^5NP@!GB-C@ zO(Vi8Qo>0Ry5uY?YxiOk2< zqrd&);4dJglBlZ#TGg?=pWCbb0f*F=M_s9ruw>Ya5zQ_Kvgg4R!^eRISg!2CLJ}b6 z>_lp%?GbcSa7P6UZO;z;*V$00n0f^Nr!NF)zyZg8c(~n|%F++vZi&^W7nGAkC`eKq zA#CMjCPM;TvHE+kJer}x(&mnA6;u-vMFG)iL5fBXnX+zUK$K(XDh zm~6HN>KanYG@9v7NbGp3$h8V@aT4O5PEd;aI6N%HEcfTHFJc|xO6rD&_SQ$i6miHQ zV4J(l-l7PqNw9X2L;osNknw|>BhL*$pch)?zgf^~a#I$VW9QdgU0ufu%lcYU9U82w z&LSTqL(=*oRcGytb0Dz-P-{~I1qDK6mASgPO)Qr6cR>6eo@0~SsB&phz+^P^C}rcL)2 z^rx+CY?w+Gp`L#o?zS}+5P$$v8QgFXHk4mV#9_oReanqU{=F%p0;Yb-$`Lt!)Y!1d ZBXUOL&WczGrWYvqqa>#)`xa{y_+LHQ_PYQ8 diff --git a/_images/scatter.png b/_images/scatter.png index fce86333e8a492df1d1feea27e3e00525f25c85e..015b8f9e12d3660984a34e246363e8b21d55c8cc 100644 GIT binary patch literal 15296 zcmeHubyQSc`}P1L3KB{xWq?SlfOLZh2q@hn^3dHdvjwiZkswf z+Byhua$5cU1P&W}6HcC@vRp98RoiD;4lo$80rU?mOEl9A1`}kLl@eEVja#2|^N3ie zySO;`BkYd*>r2?GcXeK>UMj_hlLeKNlgkzPW=Vetmd028R87;OzWV0b%Ws5i>QY$3 zw@af2=w1eu-<2A_hc}CtLdde+vZ%?(dR5kV=LCoJ${+Eab$Yu95xOPuowBkYm@ z40ic;FBa?}?EjzoU+w@=c0s|=`Pqq@p5D46bAm*TUw|_K@j3_fFL?n9tdc%i3W3-d8nc_3Y9JDLwB&qg#(GKcS40NzutT zVi7;5i!=^|s@3u2S?70;RKZ#9bb7g`wC?d7gz?}>i$!Qvd6k6S_(e|Yz<~Yw_3MZT z5@h5mub}Qtfwy9KJ`Yrs)kmoo3Bfn2+WN~cq~Bixk&*HoVIC%t{35(fBKcFlau`j{ zmCq#VNl2XvMczrr@TZ}4`5Tiptir;27Q+R?vu$7g;yCjM1mNJsL>;I>&bA zOtj$iQHa+;%``LBHRoeO7);6cBENhY{k1D{erTu=FQDdqj7sEw)d*Ag`a~i8zJl`0m!GYx7AO=FgtYed_6#VA zVd%>1&6k(EN5h?zwTsgbMrn+z;Dgq}hMj?xj{90s+W-I?O<_!5 zsthYDYi`%l-pZi-Fx=ZS{9!a$Wei=hJn~_f{c)QB6>J!c&)+cU7kDwqdNoXE-+;j$ z`WrH}=4+Ka4Rid-7+t!0G&ne@9%Wb)8ykDyJH^wqVyoABHhHp1vWAwNp5A7>jOHpv zEmwWHY*-&9O{teA&skTh=bf3A_2Y-yc57>^V)TqG6kNZr3*2|!Jvmz$MkZPfmk9Ur z+Dzr?*wm@jxgQLDAZHyrJ3#EM7#XPT=VoWWw6iOE%*921E&o;KVvy4AI_viRN)1KB|XIPJlS7I%=%Hr3PmL*B2P~}WMw1}6P0!>92`Tl%>j(E)V$V~ z`(+%JGuR-ceH8Iod!sqw1q&U~6-Tu%Q=evoXBQ_A))>)@*Z+Q*{=cS7AI(ex7%Y5Y zb0ilm%iOd)Wi#f$>hqiq?$;x?Gdte+f@SU_4P^o0(1O8l{rE>7B9RelD+w~gEZ%MU zneuOaK~^vP0dhnnSlTf$_ZrL%|9P1|mr4Qy$hEUjH`j_kfBsRfgOxVt%Kdx2SdDj= zvt{x9Boycf{3PV$W$m->#(V_DAZUK^<4YqoC&Mf}$vbN5YOG+pB-=WK93LtF5A{n)d1;Rn;%u zl*-DH-p}r|=uZD(JqI_~8hbVWDoZ~p|q?ntVtLp0Jb#^|-#m36)*uM5x z(Sq_ycOiGLii!%OY+?2`L?0!p4-Gg?lm^mp5iqNwBP zEUMt~CW67VP0Wbvyf4mIMoTiM+?Ht7)YYG8E$i#)~oQW#;E0k_h74sVCJUvcV9EO2-n*ZCXhdJ(zG9tM{y7FzZPW4oe%%)v#C{ z$`4B`GHf#kX(B9*-(eBmaK74r`Ef54eReQC+?y;3g-_l7n8ht2*TTilFQkD7SW+$j zSX6LN^76imDapz8C!S-N*tJWaeSKop zKa{Tn3S0IUE|V3}^EpwzHrfK^f2+N)UJ)?f&O%3-$I*_ns3<$T!ojq6!$!l!xh)6Y z$bDfRSy1O=-yt55^~;+5BvQwPSaH2KA|FtTfYs#ae61yY-qkCBB6cs z+*Y(aA4`nYKW<89uAWzJdwW|k8oTrZ-G2hAjVXLdIRAi3KdYu-x_)#5y^4R266PfY zjx9X`Ehd<++n^YbA-1Jz>ZN~8 z{x|t6j!E%<-r`t?y3{K!I&Y&%z(63|LH9K;yq|AaP}{bG$MtH^FCQYRN0ua5ba(Ve zu=#jSYN{=MI>qcli5s{j<3+e6?}hv)utqpQ7T$1kw3;gv4C)g2PC$TfAc{c4EZZm=x7>`x z@2tsy0q>1qQ_*p!qlH5)&oQRh{X6 z1>VUtC6S|+kQ*>fpIP`xQ4$Gz5o53SQ3rgbP4v9z{HVvdks3QtW?ucK3Oqdo@B~3kipDPZC!wQ3UNwf0O%~yPX60F^#AS(cmDSaWb z{h9m_JE}O?vmu^bK}7;U311vMGJHSo*Ddew8*s=Pe*f5adbGQ@>3uQ2@))Lh`=1uc zF=DTJFU851iU5C{X{>%rOJp8GAt2u^EG^|iS*=Ikb5BjSAN)ai95_C>adhWSh%J|pr!AtO?~!iL5(6RQ^{u6DJM5K zpJPy+hlfYu+_A>RWdl`04c9O`x|5#4uu{FYxdI}4R6k&NtcyL*ydwGSvH4WbeIBnT zU|I0EuN?3=zJTkTcV#fN=BBN+Tz`WZn18RE*rVe*(QgfpjObVjmq?zu8af`y>^z0j zsG+Q^Y}4ka@3Af26)&hkPEH;iN=PrF>oVyS4Jyp&;`DTbcf*@+ufFz3&aa=&kO~*= zlQTMAeQ^K&Q;;Ln0xY;Kc8qS>Bj__bB+2GV0*6jlK3}M69VL_2Z$T5D;@8me@@$w! zdYv6>dBtBYzjXYoHE8ea^y$;x#V*vK20R~waaubq6BJ=0N4d-eE6l}enU$~rhyLfp;L|(UC z$p?f)GJt3h1i<(;K;QMKu3XZ+m}+OuC8wqyo-c}_YG5H!6I8FE9P0{xZdnoJPuwTn z9H5CHBpvS}QmhyUA0Cig;oi8y$ILEWg=(X!x~*7zr&mYkaHz~eBi`=&O~k>Z%icmX z9Ks#t)im$EEk}0x45pY_sFVg~&|*a)?QJy4`uc}T{o8JK+jC}WJjPM~RVohbOyRn@0E9gzSL`W$+UMeeW4F9ud0GVaJ9>3fo%AFvyF)=fw_-dAh=<%t+%enG)0YPIxqK2J1lng z0noEnNkj6IE#|R~b$87Dwzroh@6hJt40WN30eeJ~=xmfz7CttusWie|dG7q=GKeiRW?3S&ORz3bchqgOh+xRu;7#Exd>@U% z2Slbg1Q{?_ERf&+MTK}6K$N6L<4NF(1HNJZh1O{l1lf!Im;S7e3s5MuTly;g=?xgi z_9id8#2oZBs9L%$Rzbad#}r#c2((X7<@WjNUqdxYYreaDTlbQ{%w0AK91;#}THEUz z4MewfJCkuZ`U|gEEgW~Tup?EUY8P97iRz*$m#;L#!?qOy=iQ`8u2N|xdgm`4L?}q2 zxkp?9V1A|lSNBHi311jZ5Wgd=V5VI7u+0z;dm@BRK%ld$?tyFcxO*c&)B>8?eGCJV z$-Tn?8?f%wfDj@(cTW7Ng?+k*f+RD}mjndfjhi7*Pyy8lJ%NgI&+8>H3mcyhu3 z^0BV;%(gdXFRV3DBBnyqAkb(MPE1O#YGo=5R0oGn68kCPkvSYx%6Xzs>B-2`D8ln%Li)wNTvZ|hSAL-Q${v7Q#ew^q$_g-hEHlVKR9v&Vw=iSRV2#dChgP!mD z2v5(tl{eyqB6Y~tL1!Yo#w4!V+ViF%I)uJ{0$}P%^`0j=GNE(=Cu=26XM4k|B|Rb~ zCD&l2`$PvC4wa#R!XXyA-7q~pzvSfPghp)z+Uk?c6!Y z$zg#2rROoGugQ-<>57BwhhQTX`cH~9J10p=FZ>d{lZ!vxYk1MbZ(cE*R$06wxpOqI z_V6{IWH1emN5t@3n2hV$3|j}z8AvL<-`?W!IIn5qz7@9`E0vXxV(V*>2-D3;$LW20uX{s}y@x_YemR{RSU71X>^Y3TC$zM5>6hX^wnzFgSrvqw4k z`6^acdUJ*#bu4H9TtDaCR+Dv`yAXNeSkJ<2;}JZE9G`Fqi4G$}h82@)guA3Ysj%2w zS|7VgX#t8wFg)%}@~4~}qSf!&)4Un%0!_IWiUC9`xo)Cg(@c2l3;K5?0kIue%Ld?H z+_U+7b7V@7@$)OUqzjNNqZowG59e+@{^NbQRjo$ikUQ-x=?vd3ei>aTNh)p{>ewhO|*+SojT0Y9M8<$|o)esF;2Bij0h>Kx1m}>{Pu?Vp~nqgEpEEnWfd zA7)QfCmyv8QvriuTeVWTZIM+<*d%Q|9KNq>_R{Bm*I>K&fnue1DSo+ks3adcc(7 zjEszON=i1{PHUEAf&jc3PJfLY8@IO5M@asZ4Q%TqJc*2(AC8Tl>V;~%o^gO4x5s;I zU$MEU-0*&7$8k)YVt$0RYa(Ipgp#7t%MDD%cu#E2#&(a{a@k~m2$ULqnc%9*61AsZ z4ehKsn8t9 z>_Lk<=T73`;zhXa$bOK0y-Jl5zK}a16MTzN_IRtASm{v9$|`?H=sYhNBBTDJds_iSPF3Q zTY}DP?tKPVkv5Xz9U;@^l<$KgrlX%opXfmgN4>AgVOcGnw<2^4AaJJ zVYSmuW!b%QFE@v|FZ=IB%7Yye?c15P%Pqg?MdQ4x1hiD4JB-+0;zLjn>VuzyC7}v$ zqFE@qsfCB+GU5*zem7n|-shRNh7^^!zC?~B!o{g^)&$^)tDOZy=O0HbE{)t1Mr#ko z-sFF_CB~*j-v$@;QCJ4Qa|etJukW7VhjKoFXm20{-%=lznZppowb2Olig)D~gbbZ^ zm$qKFj_JSyY>QSZ6pVsxOAHtx75X!+v<_?oFtY#96M6NL=3_JeDlFx?FHtI=XL)7x zRx92^0?Cbs_$EOWO3jpsZ_~+ljy!_l9)N&4Rdd4(QUd63Q?i-9kN#S3W*5cU?Um%! zE!}J3)2a15{Dl(}AO=1XiaRXj?#~7hzoNsQwCx)r-Q5}e1%;yjcr=U25VpeCikAMD zWc7!zMFXNq+ke3oz9#oM6WFZ}R!;pnMH<}f>zut0164WWhb|)C!`rO;O7$=C(Fr>? z_mS>i&dhk4V`1(z)F>k0{zA01^*aLLDP5XRi4`J~MBUvX+1u9=n0*~Jq!F|4dxf62 zeiEFy;j9$Q?GdO6KnYM8BR@yw>0}tWJEN=WHrqPy;73sv4DZ|}J9 zg;a?rS?R~01b|>~w#)A#?3d>yz4w^bWbBEg6zFudJ>sR(TdOaLlda`DAU+{M+tN6^ z?K1*+FDE}6wb7)csza%oH;tSUt{xM(+k6G<`TP%><9ne(DS*|aXJ)PfGFd~)*eD%C z{gH#7@?4&t_JOjMRlElz%VGL_?|SZxHdt1PSUh>fGLGXpUGG_aaefjRG2cZkc6+C` znv-gl`P?P&R3s57Qw%?sc7JZ}F2mswBle#A4$Z3NL{)fi#k*o2Nt(nvMI9e(B0;tu zcXO+x0<%n&sR+mPF$K)$BBOhjQ~>gk*xOs_TW8QIxcF((`WuxE;gVCXYN#Wv<&+c* zx-JX#4AC9;r^`dy6;#o7PR^Y5Z~4e$_!(7j6xXvWEAO2JR#s{f@|9&C$Ay_4mF)sK z`Mk+HJ0n9~M7FHV>3D1IVo-xIJ)zEut+%mUY`VlGl!9G5O~<-Q`t9XDQk)bu>uxGg z7?$&VJsrEXrU$;@oIK#*=#Jtcg%rGLn?G1I;mBj8%$3(3BA%zC7e&T62__w%-1YS0 zjl1KrL2)$)T*RR6DZoGPa_!X>6coZm`$T|_I5A)?iMKaco2bzLH_DvOV7@=FX@O3v zkGc@N$Vt;(Hj_OzR#zfFU!Bg$B>+`eJrjc-Ticr)u-2FOTi?X;Dkgvq@vO#Wb7&RW zP*7P}S*V|ymG$h~tA|aI{K&tHqMfa?hTmH5>PBG${K(X{=9>$`< z)tdCl+WTYUU7H8F@CL7Py`CMhX-E|I*b<*~oeRDt;AlF6MCEEAe~>R=1LhCS>u;>r z^)l23Tz~&X9i0jMSB&I?ldugR)3ySopMWP^Z*tXAlzgVajWOa7g z_D)ML+|`5n17X?zSRM;*>j}Qx4lI&|k-Jw_wCK<(8PCo3w;}lzh|Q5+|W7YGU6*1Fegx*Z}MZ=lY7HGmCv_bx+$K?dUKk~GlBN~CI5-pN>eIl z9zAfy`jLCz!yY0jY>-W)I|_64AaRkff>W(K4>$ISO(6R>$_*hq_j5Yb)x{3ZrB>l$}1_DpIXwe zu@9fnuMK-|9=~wEaPu*6nW4HQK+{&9@WZT%*ZoKG2La?P!L$Zm2WFP(A~!Zx8w8M% zvw{f+E#GCy4O?6==u>$Vr5W=OQH4%6IF+zMG-V_PTB$6#8oZz;KOn<519{KG8P+F> z_p!ep(+cjRfUedOBnoF9Z00-Q5f6-J9;hJ9KQJuz`x=7NuJ!kR)%!DtQxi|!6v#q? zW=lK=Qsr)yYnbQyLr@5*GOCt?R#wadasuO^ny$VDT19_p2Z9)ZiA0)=*FR`|n54|N z8BWFwSb$I|l$zcePJ2_r1TOeoItgd16tK+zLCQ^kHy7Rk*a38Urjz3p;kdUSrzWd< zws+_GQFK;7M|Rbg3FvM9666h{Dx{}|>maoJ;XF|(j%54>c{d3{hWIfECkBXIJ*run zgo+2K?^ds}P?Kwwlw#U)ujf{I`RuXb$}I(bQHDLGE;*MgseOq`eUlYkO6K%oDkTl8 zhlKAc1Fw%YeG=@wj0zA?h*2y&)`u+-^XHF}9B^hs>=xri^^$-t?p3LP?YEAqcl}YMj3Jps%OXO57{P3O| z9v5qs8$cceps4yy)DQk3V9lHqvBH7?kLHhcU$eF-WViiEDeer#wJIEnohJ2r705W} z-v?fjqC3BRV+P|^>^2FBHo#{tzkD>`O+z!IXPsC+b3ib0mjyeXpD%{(-xOI&2J6J7 zrQhHCPked%Hale@jh9zRr*!|sFWGg389X5CX@N`cf~JypwU5t~b#&TZ2w9So`)=&> z^WE0{D8i3SpXS`V0WW{W+JRFCvMPXss7MX{?2>K)`N?W0RHH8rk5N0>8L$Bq9`A%r zh~nYB3+iK9D#M&Gay*IR)G3Tya6q%F=ksiCdspSv_eLYo(()YWwp^#>7f3oO4-E3;0BqD{`}qw6~J+HP_djA`AWJLX@C zOBKC1>KQ9C450HqwVQMr){rt1wTRd_)<(7R3!tUIbBM(7Fq(P1SD(m(~W~VCY!|!bPsbJgP<@Da5 znJlNEq-2r>1y(T%OEaX^f_84+xz^A-nTe@&^}|b(T#$(k>eMaZ<+U_489T>MUbLxK zQG%vr7w@zxC=K00yU#P*ecId>UXW8Doj$6JZ-*q_VrI|nCAEO}0SQ10L0ev0^>(ZW&B^9!##UBx`7BjKBEe30iltr-A$Y<&$8gC=o>GtGt$=Y;9>l z=Y~C=taB{0PIQaxrnir6j(p;@{x0b2z%9Vj)SNVV70>F~6RnV*Q-EAY_b~ZMd?Tf+ zD6UID%=XBkZ!l%oZ;xHo!$vH&YTP^iVty`Qhgk6wh3fG2nh=%ReK(6&txFstA|f}^ z%YxQ@>3|AvF~kOHih@d};vi6kCkq-hezze<_DO{^{;aqFerR^6+k`3Yf#-ncBurc> zv)sGC*J(Pv)XpL(dMHKx1ZeTaa?F9-v96;Rs6A57A^)zUoUA-$d*wG?+}p4BI-jWm z{l&^jdS!QL;)L2Bk@&v0oT2qN9mpF@c_c~-Mdfwpd#%wsKOxOGhRSn$;oE!timKIT z%G;Fiv17Nw*kP{*>0^hbgOfodyy02Y2#XF*U46ZNiAm28XuU>;ho>^iN0pvz?yn4X zG_|j3sHmj=`t{n#*qDXn3ZGtx3C*~*lQ=Uo^Y*)?0bKI^I1`57rEhA>AINVH9^DZy z`}QdTe1dMhy0B~RJs##5q zV*MllBv4~5(RnI`bU$^vRS=mFOSA6;J=h*=4?WOAi---&S}kr^9eEb1;oZQ$R~1Ay zjx9`vzx0*hI5JLS5**9; zJ6&!*`X{=~ryfoArROW{=4Q&QB(Qqi(s-X35tTBrY{&+W;a-nrRU8?HJ5@dv{o-gQ zC92W|&s49_caYW`hMKp;LPsgUTC{L*qNe{c9WTM7Z@X1j|Kx0OV2MK+z%j$-Q_xjU z_Bt7#E-t2xUmTKDdk*ij9zJn+EjYEU)1@etJ+$^fgLeo zKZ#?|cq&**^wuZ6|GXD?S*|!pz0)~3iuIC+S>D_nfun(qCaTL!<}u&%iyMLaMMAxl z0I)(A{QUXz*27mm6rB1VO%9Md0H}fEE6T5K^Ll-CUi~4S7IS`H`vb$NWl9fZFp#&x z(ms5^7e1VM+a6hV5adqFH*EK^i0-}obj6V>WL=1T^;zLlmUnfw4Q8AnE3QSx zQgnc$YBwh=-xJ<}Oi?u~LUH|{?~FYoT0+cvq4aBA>L@Lq&R<7AoC0!Y>FZeq?Sn&F z?V_!WEMkXj!*92KlI%+;J^stFh4UCh+>1ejg~g9{mBmrCaEFIv%0_Bsxxa@HBU=H# z{`g&8Z@7@NYG%DY5O@dHxsdjIl;TfQZa)ejl1dL@qxd-AB!SE`Gv!NL7$NPM2zhG+ zIQM%A+M6lC^R^tqvW)_mUaaVn*IzYctP5`}e=Qp63wJyj;%mg8h- zk2o!N?WxDE^?eY-)BT7eDG>5Rvh;2*7Ny}=jkZ4H_v*mFq8sw(aUg|5Zb<+m=)M^+ z!?Y!dX}5fyO*N7Ed;!Da@Uh{F0kZn$5a5ZJ|$O(8%+VCgUb|*o40r9^0#hyH7~V3%_j9 z!72c>EELlT8WG@{uxz4uLOO*r^90-@g3|K$`6bO=_bm;$W`!%o&qL~}XZO?Fzm$oA zUV=gU-S+EfAL*ypsME*^Z2GI)HhVw#@$&393JQW@&gvChi4_fLv4I4D^JI0+w&beL z$n(Dr0lDN=31)zSmM!1(#!B)F^s21|J?X}QRg=5zja3p`p>YIyv+f|_zCvu8ijuHe z9b&JaFuxD$dpZMTbm%r)4)p?_(u&7+jsMr20~9-2K^J| zemd)mS{_SpHqh(QmJ0)o{K{VqzT@Lvs!=`37wb0OC?NOd0k;{ie-%S|S{fQmTg}?K zV5mSZS8%fywW17@@*!^Ja?dAiXQglAAU3hUr`-%n|UO zCa*~gCf$j{YQnZLbwDqJRT_F4RGy_wh8Qi~!tPm<g`6PMxeUR{_z9le;m)%5fm2Mf0MEnyNZ8KeM=KtZNa%m?5XI z@S*ZT4Sr(9mXv$V(Qlc#r+gLAOG4pY|Agc1_KpsnwK{shiS@7NcbNU(qZfJMY75@dDK03gGPbI(mbeZb{{-AAc%ImIG-+uOnfa4Q`)oAg;yF?zL zp)DHNXNS{o_ki9WkVE9Kb>-CqPyoiK&&!W7%c+FaPaqSJjR)`r=mt@8s#{v-d0|rN zwe&8NIE4s*F8F&=dp-RaTp2K7XlS^HP7P%d6x7ksweu@3DTxdVO98e=Pk>{O7dXAM zv2ZSHg3BXs5z+DQ&vU?xi;W^rAXBG?zMC`wCC32$`4-;b(9jA7r8G?IGLak?M>cp<(lin(!lZ8b67d0VM7Eu`>)RI((n=#30$8wToD%puXdlV~ac6QD zJ@(z;;MIdPNwvXhH|=s%x-=QV1?&X0SZQq6k~x*@9`}biEv@~0>PHKXy91&~({GCo z%GTC7G}$@1947(%Cybhhcq2h#c(1NfoMY`noQ^TYXf~0$i0Y95xZqWwspjF*Q?{oc z^#Lbl!LW6{K5i1_ef{V)2Bh5KBoi!0x}fW+l)gm6Gae2}yP6-VfRUy0vM@o??wPG`_lRp6qapYI7@3ZZ%c(7>;#Cx#OLKOF&a#FN@;~81JBy|~#K`Q+FI@lF@@CIL) z0Ct7=-}}!0+5LXfizR8hs&%^>V#1C2CRikBAFRqfHsF|l2&+iI1*YoDGeadXPyk?{ z@dwOSlT<6;UObCb8*J~oIcIAGTLb=~-=~a}U#5Da(}Ud?{M)nyOm)D*T4p^dpa+~9 z0^sourpgclWAgF`)`DJtLh8I)ZWxe2`|ljAk5^cLplk>JlZu8jt6+LjeYnTAA8_Vk zP>JWNo3*|U4_Aw2nZ5F=r2L*TL&%7E`7{LYC zWUz&)uC0Ln-lv`=6uK`p{s9&YmdaO5?D_2t?if%C3+nc@A*;mtu^<3t6dFdz|7u(G z0KJ?&E8%RQr-9Ut96L*Kb91}JW3E~vssqg5*44}R<30CBk9QL<^5*B~o$D5X-Jbl~ z<#9b67)%lHu0O5L78=CDVATQR%eq%zXJ@A|J-oy?c(FS^m#dpklCut@T+^%@2E5OM z8%qdr;D-S12FQFTc6-K=KSBJTef#V9m}hI`@H#{pu=}N=ltlG_Sx@=t)29LF_3_OV z&iI$Gzt{7!_WkA226|mdG<(o5b))6Cn9uwd_R0fUl5kMJ-< zXN}XU@g5^MBoI|#f3XU`$N_%CEWkPL$%G7m-|=j6xD1|y-Q0IzXN1ANmvHxro~&^V z4%2H%U37BwaG%712M6!~EGZngJwbi4*qQ&Su8$29;sop-a6M#KBd|Mnq}e`l2sID&u|4zdvdhpz=t;B8;X zY8e^E@V*ZWd}-#EE=m3^_xI8NYeRrO5OI9o{>N20!vmaae5U`|DxBI(Q{~A5o5=#E z{p&MmZXgZ)Z}y;6zXi>@f8TC#Bqt}g63+qrzK%ryv(@gqq3jKM!I7UoCj;#twAosg z?RB$@igrJimA~+Y*f9|&I%csp-$N?KHH>>=U-C1Pv__rqnDUNg?8Qp^E2e{X}CDs zRE#Die;v;OW6H_N=?AUa$WNb=+S}zaJM8lRXNh3V@k@x?YJNpTe0)BjeW0oY$SEkO z0e3`(!q*HOJRmouO?S|LgCOA$5{?|!cUM@7cS%5{-weIu68*EMXEmMwND5Hq8e<;nE$?%Waa1Q zhX7VNDDiRi2%(_BE+|msGU*-wr1#5R$1A=YH^4Lop&H>wK$!!!a41I4nL#c)Fbl`^ zvf-7FT;0G0AQKT8DI2D&qVo03O-}9uc&)MhEHSsR;PE_mq!sbd1bcUQg)tOD0Mw7w zxmW0WpY4%me0xQVE&K+kE1A%fp6u!A=s*FZrK*-zcH+h9lEB63u2VB1uO_&qe&g0% zS|I<^c^w)+`5!Uki+5M;Zi*@}9pq`1lv<5Hfwlr^z&*=Qj8**wdNmjj11pdK0zBLC z98Bid(bu8i2U7#SX;2Nr905sLfnOX)LoUhI7OClCf7|hOS15i#%sPF)X@UkZr)+O; zpC*Ti^G|S-R62778(G-*r|hIa*Uh*mAs@8mSecjtc5iDx`bU4pp*kY#dpQp!m7ud_ z4aI}AH51X);n6pcy}Ub)A2Qbh=`j;bQ9v&&6$p`Z!lzr!kg^#WA3r&70t(;?Dl-&p z2`K3L$}6avTmuv!sGX!;c zym%IS*9$FhMaT+trkHk~-xyeI zy4Xm5&cQb2PhIAY!4%Pd>k55k4dTG`>RAGdC+Hp2`tu(!6to)F915xyW3#R~%2uOOf}nk0rn60c$IbNTNn>N$@m|Nv z)pH?&5#ix;j&22xGmTiX%F@z)p!fI9I59jjQaY(Q67;CS#>u`48L+by=YP7>Z|f5< zT|qnN61|SIQRy(-n?M~(c_Aws7zH*bm6mdM#qo2cAoal346uy_4b>TMkW4MWwwRpk z?7j$Q70ifXs5C|!7IL@O_kpUmc8+uq1!U~FPK*hr<~0Y_>g%2gFe|XZM@ki}R*w3^ z*N~x90K^IglmYYB59Er`xKyEHcqA{u^M{7Kb#W0d=pvv=NFoeWjLJ^Xu5|=U)3nhC z3);c~JjL0W35c9+^`f>D;Dap%c@EmCWs=~Q0XaqV>?^O0$m|i9acA$RJCY2t zApJnLogHsNP}WKTkpX*dR&=J1qw2SVZP3)yhyEP3TN3R0wVIKUkx{kYu-T&vtg!s> WcJ>8su!9x`la*GKDv)^f=KlbwPuofW literal 14317 zcmeIZbyyYc-Zs1l0YyqAL`qVnL_j(e5E1ESQG#@LmjTj>bf-yz+o)f4bCxv%|;sy)`!;^j?p#+1W?L+@? zu)vXS#9R>g!|y1m;izn5?CA2^-Uuf9+R@h1#?jKufY#Z_-oebqnv0!}{ShmzsiUK< zg8&DI)juy_x3M?j;3=)h2ZLO1u`Q5-Nm5glY=+c8N<5 z{YGDI{>0-nSMORz8w;fF5|FLlm{5M=0F72H+)b>jJQ z>r*C)1+ReiW0)xwIv7ArafW>5sYr_aa?~h(6b_6|JhgTB@lXT_4rcr`DGp|2a{Puu zAdL1grht%@(w3>}*zsNQ1`$F9r%=5w_ELg>4fMp)v~nwf^C@#y_6u``?ETv_yoTsy z(`eQB-H3U&R)1sSd6;%M>Ax8xxi~hg2yEeV!(W9BuADnf3*_iXJ$$;r+9vQ%*Cauq;zYybaZr-g3CC>d1E{+<#IopLe#t7 zd22eiEtqWm9f8OI+@>LG>5VZ525f+osA3?+ZRL*DT%(Spq+~p|nbLTN$i@EfWT|1m z?%v+P>3Z?{QPWieq7a@fxLvO-=)5s7EH6r>*n$RY4yU`Z|CwGY&!j(@*;89w{GD2% zR#s%>?HRY#B-yRH&C03B&!5vq^VRdy((XkVz+k>U-yD^+6%{`>o~+!}ab5V(;grwJ z$Y^%_YeB$v-WOP0AuEWb?PZP=THq>%T$kTUHb{Od!_kl#E^_)JqTFJPU3w@_ zHNV_#&scgWmeY{ic|${5$=kaTn1JZoT6PNJaC3_1%^!rD(>2OAO&66|_>?*4=jW#N z_%N6dTe{d4G9$d)xHq1uiiDIjucSmFVx-KZzg26WOcF?W;bKEf`GVskWwO+~8T!>4kSxWMqz1ICalgA*_Fy4MV&>;GO?HD`=O+ z2=*v~z@t_$lk+XeJS*FIWNDpatR!thjtm#39ZD)-sro;~rD_U4e0ZToonj|d#L^zs z$?)F4#3fr^bgIgS`8n1%_h?i4vv<2tgraCL)9c`9*9#dnT0&EMI4z-q`$Iu2bTK#~ zvSc)KdN8kOhu7cTi#8QS(ZsYI=3M;-HgAn7V9E1;2}`M=8kJa6cz5He9yeWKyvLx&c2m zeGe^IX%M^1??a{j_h>N(pJ8kHZJH6ukfVPe#BnTtxqz67w;w}amh+KtD_iy03V!#u zv*d+nmD!S(uW@js3~y4gkrwgHXNehlXjyPFP21lw>lDz?9c387@M{+3;9KA+9~d+! z$I|C<_tOfvM@tzhCKb$i@1~mJt7<3cZb*BnVA(FJLToZpZtn#IHoAby;@GAezZ@B! ze=1qd0Xh0JLN>>8a8Hd;U0PauFx*2h9HYCR?;qf?3AvEh(CMUbsl;BTk>Py2$@ZUW zi{@xC8&lJP(}Q&$VB$$`D{+wT^a*YY^(OKwdmL?5WZ-}jq&HgZYG&IzTkmo=<}~H% zgeLS3*K_5suLglD6p`t9D$+j>87R`J+qe&foNt~JT4rXs(X5*3$-*Aydn>&!Wn?Vs zZFYXPK|%OnqpTk_VUki&dmjwly-Rx9=yi4*2b0@!yoBjByL5&W4L=dGZo9FpmK?e_ z@bTg7@LR;hsu~(OP?R{jIO+F^W(Xzc{Eh;VP@lWIZd%X@mFcnFpnf##QOsWd>zR&S z8_7#)=|S*N`&)I}sILjuL%qCnmQI{7*rRwhc+;%=dZEB_q%yY!f>rqHd@r<04+PP! z-d@!@=S{g|!EMW{Nvx^R=>=_m&nLBQx0uWQBgb^7YyL%4KId^7EP3y ztoz@!R(Ss0AIcUUTQyQXXH#?K_RBAIoJLh&`$*Z@m7>z_EtY)2-mVK~xi}9!qv`G?lLHMF!>~}J!AkVg&#=u|7-J|jfB`||lg&MqRe~a1~ z-s#=Dnp-WL5ehQHZ>ti#qp)DUQLF^}uUq}41-=Eoa&vS0a;EEjVgxEIi$6ZydnqgX z*Rru6*)6u4Eq6st*1MJU2_I=gQyyx#vR%IyHd$p;%$|buj-Oor<+sNn1Oy>tP=BiNtzl({T_c zLxhBdd^6a5&gk+YqTgj{y?1r*L5+9>2#`qIPM8IBTIt^ktrBcM{O0?>UvFTd%Ua`N zqQ8`vbi?V;kHqt3WHq^27ge z-`E1f6c3&1qhb#NYk&e%fG{Jr5HFPn$C38=H4}@J$Yi?Qr%6M~v4q&P48}D9&Gz?x zphMqzpoQ$6x5b9}P7xw|^=k-W%~m-3#wFS~u=yvL?pzw|m@wPB=nZ#R$p-FSQjgFx^LNKRy5J zQ;&W4L;N8eP^luB@?j_pG^)Iv^}~9~>|iVmiQ19dkFJB<^Xmg{J{Yx_e&F@pM%x8U zM0P6+s6_Qyqh-F!fcbAXs9~soFZQ1ffJHy?dj*4g6W;fWV? zDRMtRWdXmVBwLAy{M4+_m{2OzuA`B1Gq!VA%x5*p#qrntQz&#F92`K^$4Y-nF$s%W zPIdJ-DmwsAgL;u&+ZWCFTfJGm(>j7)KJrs)Fh`??9`OG~FVKcS@u`(S)bsn?;?Wts z`{m^1B-7PTslkGTdlQ;ku2(joD_Qd(WqEZmbtfVzYoe(}j-&CAEJ~eP$=zJ4w|Zxe zn?aCe!{e~CQaDufOZ227aZ#;=FxPNsev0X%0~=A#b0+&*y(!iNID@0o~C#m#?^u! z?>e_NQ|B}&Nw&5>EN^4k888%0>JE|`XbhraW61}%ACW)>*nPNS z2fR&I3(DZ8q+j62I9Cp^ZQIMs$b4bIyYo0xI#x!>*|`#0Ch)Kzfjpq6r(fDO zv&dp#Vw%({wSERg^%qg2-i!?87WVLGZ&g%v#4p}Ig$_%^Ec-qs zH`M`0`|?36J~m>yrA6t(7-HtvxGaIS;R)*z5&iQQ5sk+`gBQ01J&#L3I}nwaSkRXw z2-mp{BQm!(K2M9M;r8Bt6d;4BuiWzQuy(hl@5T@YmYVTAR0*UiUH7#trlZ~zQN88m zWzYlNv>5awM@$d>sQaozQ%3xAvX+W->P~B@rSu@^n3Q64oa2mpV$*nMUByij?fffk z=8BHyeDs9f_XorYgx^SU>T}hy_S$cB>UcNl0rSU?zF+>=jp6tvon2i+pexEqxjJ7x zotnG+x|-}E2kP^#?rvaq36XJeW?+a6Vkb>f>zTp_E^G>0`%;m-9wIt%AM^eiXG#t( z2)wG?b;n?HqD*Se`>YV^*4*}1a%E!Jok`H1+!!+L_^D2j?)Yx9l#o{-r+%#AKj~va^rW zp_8W}Jc*8zB=rzDI;eK77OC!9|slNnr#*vzud0#&u_=VD{|j zBu+t*#~7F{~Hk%AXQ%e~3{bHdsm#H5Hr8lJ}}w@gl!UYa@>KCrHHNXcvy80GzZqcdv|nYfDoFg(+?GysO*Rs)6Y|Asjkam_!{6aZcJt^m6~xq zyF(ZLa0oFH*e;zg%b}_=YTEZxom|T5gF;IVR+}U4I2#!DzGKZIpEZ&$%+YjSVlh){ zjs|C>dv!0@>rA3u5q@vP+Wq3}P=S{48BwjK~$01*q$VIM(pXy zp@0_BG`cgvGBGELynb%`2m&L3`;?SA`X0Qx^z^vn7iR3{Wv>BR5Us`)*^7&*?Wl?6 zH?k)aQJ#Y>|m)njz3-rZfMyOatT z!*2ihY~LMbr+9a`>eQQ%GCyo2FP2@6<)-m@+=#Q@-1J0kf9C zr3(AFEX($G=5zO0eeRG=)0ni`gD%5pL0@vI)K+I}zHUzdfZ=uanQI3mM@B9=eumMq zg4WPb8JE`Gpr#7<(BLNcM9NP{Ww{WPG59QClTNsM+RBu_#eCmcG9^K@s(j$JAV&{f z_A;j6z!Zs&_0{w(WJwa)lM4MR{&7Dx?Tqft6u4CFbc*+>*^JNCMMP%RoHu+m#ix+rfy>d5e>dc3O4C^3uxIbB_2(!P?HC&!=Ky0p{nm!W(W)0azMRd`wV~DDEK(HXBzn7 zv{cz*4!3HopLyz#yAe@75?1?QRnMtqo-1RwE-CLWi=Hxf&4o=i&xQ~-T~R?nK}#3& zIKa1_hf-w0t!uLEa^o3flLS;P5CvvC-zxqqBU6`d?lrhq&a*k0rrZa}ff#LSJdHVz z*Y{86}ev6)Kl2VLPvt}@7wS)i|~T03&wo)u0{$uBHa{bv#$ z|N1!A|95BB-+Qn(zI%X*{ET?hC>DS(eL9Ri#dA1B^xCJAu~45G^_8u-)7tuSD$odY zTObKCN&`@;ch+YuE9PZ{TCr|nsbPozxvVs5I-y_27+ zPJhrGR@?^Jrz5&CZwX%-lxFHis-e{IQ}aLK2AmPHnZ=#b*5`lT1wc*-4PF3@die0+ z5Q(~W8n|sfK=;(hu3;INa7oY&-MJ|BB)^e=Ti-2Jbgzf2cUHs+r2>G;waO`L!*z8D zhUzlSU${@I%i)?F<5qYs27 zU6z)AU4AzO$nyh4biJJ&k(Xm=s|C_NfVpibqKcTU6x}x(puh4#S&TMv8zRn@;mrVq zIz6^Y85W0ClLPcSD9h^cW@9yD(ucS91boN4a1TivVzSaX7e)ntq_OdFvLA zYcu1Y;@RQ zQfl5-r@>Ps1%*N}N}u6-=D$C79UY~4KmbRfZ;8bSYBR={wHO+ame0r(gi%?W#t;@y zPPV>$C1k(9vfzW|QTP71J%!UwMn{dbnY(;ofr6um%41-b8#hHIIIRGBFkKIevc9b` z8Bl{?@oA(LAI3an@5|QBHlnENrtpz@MC6A*_Ax8V*m`it?x!KVAW80}@^kkfxtH?L zBU-Un92~>n27*bn_%Wo!#cSHjS30Iu0Nn{wK$|`~I=<$qMSEa_bEOb8n9i1Ml!m7H z3Ra<+lgEyw+hw#q1v*vx?y0~cB81ps`u@B(ra;JTi;fI|w2DG&tpeXVBIKh8V&>Sk zc+-m7nd#w$m2Vh@lBumPm?=aLyU4uY@RJG)zf{`{#Pbe!u3Ch{X{?oE!?z4mBrBEVGNgfZ*oA^Kvty`igic; zqgxGRKWe$~SOY13_<&SAeYB7wAGsA8@<5!#ml*t(m`q%(l-v|;zVS5!vDt}V@3v+U zTxL1n*_l|wB^+JTKZK3jWg1APiFnE2A4#>UMGe1$Fn_^Rx$?(Ew3 z;_7NXz*MXSH(X7Tqa5?!rUfB5jocX0Te-ku>i+6xF4cL9PgA4};E`LNB2k`ug+t0; z*3=GiR%%0HdgIm{OSS#@vH1Y_JB8Wg>F&Ip&e3?P*LLO!8i(P9R;RqM?>BARZzYjP zUw9aad{B*b@XZ)p1{b@ScE6BOZ7NV6Ez)^QK|wK6Dz22!)O<(AQ7!YpMk~h7_Mn}^ zxOcb#7lHg@<-zJDvO+lzqK2izevJHct-Lk2EN)O z{1a$@`SPWGEgxrFdF}PSZ|ubdYVPLWK$&f={76Dcw4-kl|D0=lnnG!T5-vJeR2qRsIw{V1rD$uf^#)?yzV zryH!kZI}JXp^sn6rt##fKLO3`(jgnX5{b$$Mp#wNdP_6?5 z;WpV}L5-(*Eov=_^N1pW>#V(}S< z39f3D2{^PeLdtJ5GB8vhdQ}ER`G{Iyg}AMikzD5(4NqF%pt`=_8bGiP{pe^mc)8=6 z(u{2@9`kwJpEb&qLM?IK(b`pZP?vazl|vjDoM1WSxT0AX`bj3Zvq}MnfuRcud*X#( z<*T*dogLjcaj5U_OWS(=_W0QKU~6Woa<#0XTbK~X^mKo1@|#hxb^T5|>4zEyC#ZB; zE&KVhq)7Lr+}8NUrnQy}Dk^^onyBoMa;AlWH1UYb{TAoY21kiMQu2i0?93L3B@3Ms@4AyeZwL$+s;0X+nhF4i zdayaA4p4f*El$Jskipca?+Vy&2o>-w5DHv892Lrq6HwU z#Cg1Dl4BMDge(!a?AK^BCnBw+su~3#s6bKuFW`ZLv~m4z8`xD@+8D{=)CZ z@al|U)B<(Zs62**tnD;E;j!Hu25*R9z_T%)dAzMeV|)$dxaN-0vg%}I-HRy~pRD?c zJ&2KemxbZGLWFGQ3`-`_)732GXcVEnBB(&QnUh7Ss;swsxb|MaHqqXQ>Q&?GYp zxjh&4;6Z6p--cKG;~^!Tvaq|pM||#+6omQyc)f^E8?4K(yg({+G@X7RXMf}>K-aNm z^U~1#DG7%xg$QPvuh5;@#{&r+>y7mKm{Rc7Z z@8qC9-->q@hJSKTgjWrGsCwj&pV)luUH^zYJLQHW=R7U1P1;@A9{P_~m;wV>x)*N+ zor}*Nh}I1u$9hR?Mf>P+5KnEX(S+4X-vJQhnQqd363-bU5>?s5THX_UfZy{h z7hUU0x_mLh`_zE?=?3UICGJm?X%~16N_~;`n5lYRV3TIygd6XMSqg*-g!hWQTigzu zIt23J10B|ZtflX{5QIpv_tU%A$TqDts_LzaOHZGzBiTMPM%%X20WAH~-NyL>@>Q4C z^+URRj`Hcp;mzFuSEgI?FKdT$_00|4Icphf@a#=^cyZ{F6d9c^)M`>w=SRi0W9UWg zHwI?s?vGP4ZJD~)aKW^P)ni^DsJZVW(=sy|Wc0A*dhp0%OGy3j$qTaXrn@?|H<}q- zpc5lNzxzl-rlT&d2EUr-_gUh&SZE)lWs+j+ib+zoHGd-u<>m|1v{s(_+R;2JjR?$Y z8aBsjEaIvHqqg@C-Bn;`gh*SwV!3I1i~IHhWcnPn(+d>3iPg(1ud(D-(KkS$#ZzCs zoRc6vm@oX$R~eL={$$M7HT<_5#xv0Q0y!P4gT|b{o3F{)eEw$dnVe}cTsI&xFZnhw(jC{AJwAFEFN7;@Wtr6d6#SjMlW{E|!8p~M;co>XAoe&d+5Mxo)Z zLrjrsjNBUMpgFcy5On<2*C1_&hPwcvo2h)Bm7r!ffPRX^IA;V~b% z-*Ae`cNP}bXLa@r)^?C-JES@mWn`=j?y~muO|o3GznXtX5c%ax#*ZHoIv$%9fY==N z$GaOD6O-+AcDQypWmA1v?_c&Yi94o+q?YkfD|hN2=l zF5?~rP>jvGF5<6!E9tkOO3EzughY)kpv*SS!ZV z&25JxPb~hf6p7Oo75`RN{_Ap%yQYw5?kUrlEVt`lx{+>-hV=Aj5kMn?*tp2e%>`mn*i7_8Z}k_|3+H0@AfJtI(;3?wD;3qt>qz31_$!FZ$x z;ek+N{xB~pc~bF9aZ{q9j2|iFSDgI6phO8k;>hWH(x7_;463{BYc!M37;F+Tg7ddp zngumT3YfJ`h5~le78{+)_WCeJaY1_RPQ|qo z&_bxI398UF>i~~sd__3HFUJBY^J}T0dAnGvuNWPdf?}qXK@aoxXFbG zv@IZVWPj~G4@4e?XU4Avq}LuqP>ehf{&3w+j0F&Iwt@Qd5aat_hgem zfKGi+rgs)BP%h8yyzK}xzBk}U*u_F{rvdr~$R;=d9t)lQ>(aXpm#RFXBNTOioh7>| zqCCv3T@=ENkBdfl1~e=0Ijem*KoR#ID5w(IZ@}J5{=4qvKWZ5N9|fP;g)QU|2oDwm zXm3DIA|=~+X&)wVZT=3xOW*%b^mj8UXw^&pi~g3M{1^JWnK~NF-N~s!*KL_(#&K9y z09c(<*MsaFfK)-|3|Syc3I(gn!07a&1!4WR zmJ?c!mKGNmlOCeqV@QCCw#*rsEH9sz!J+##xU zF2f5Z2rzWq9&-@W3kennQlGl-_3}nV41Lr51JGW1#l<#ucVIAEB~QgiE2 zFffp4YE>DLbsdohn<=yt&ZBi3IjF(XXg>N7s4Vh*t}Y=$SilK2l9ys*Q6*_$kY1=m z^Cuq(xX1Uu<+KtpY+rst!o)jV#yJ3l{{0n~Ez6E!blChI0IdQE-3UWZo#UFpfigJ6 zAKho~v)ynMnUYcr04_YxP4L`52La$g48(4S$>T^SKd6_lyMSG_RC$y zG<#(!7a@S3PYq?o+rLiCWcvO6bv2P|FxV%lK5-L|i9Z#*|0U(M7;JwGgV9#Hr9*Pl zH9+zIk1Fb4o~b^kYuTug+%G^N%I$OMnH{_si$a+<0E@3(`sN!w;i9@Nfh6zKHPmcF9fW$T>v@f?8Srm4`(bF+yOtK!tWYF*9ZsNz zvVwuCDm##v8CC3akq;1Veqht(;D(Tp6YP$x{rnMvclU|ubhRBoWrrSQC#FArhh?_A z)H&JY(=;sUAS_em9qI&8`%kRm1ssv7;1R)-=0GAvpd%;)tCcCkULyf|^{B>+LpYRl zAfVu2r-Q~~w%$#SY}lU0^Ov8!y?tbCY>q{7gPNI{*(6Xf?C$QCgNA0t`)pH=Y>*S6 z)WdJD;YI?q9nzoz+yMfu@7mP=W^=)k)k8lkJNORq;Xm1u&g3iW>*oI(jYA^)*L*kk z>}sIsg6FFjBMPf#^Q5TVBp_D@*1POjN(tb1e6P!sRSI6~#K{VaG1s%Ji@B>cy~|}i z6(yx~Adg&2bm+4yiA3b(=MSH(rW6BrNA~+%mSGW4vr2>f{~Pt-XgXJ-@i{LA4fvw1 zbW*AJg}c+%v?l2LZS2oL*Y9{Rs?Ng5D4F7OSpy_W+X~kW#l5^5*cdu&t}>H(TR^3(j<6XOK8%I*fB?1U}>1a~IT z3kd2^cHmL+DU9j3=zMt;lL^FUDD|e(D26pqXE~;uR=QnX9D!%hGdn-t2?bI&P#&Fb z+W6$x)(Vi^zRjoc%mk8(bpX%+@)ZbqX?ceY=7SykB`KVgRU;LMyUYjEB{$SB<^NUk z!42nl?>6Q3cz}RPAQKcbYd?cI5TU%YNJl#Z-A7BZSN4!h>z{>R?|yLn3%6yPB?%BO zvuYexQDK5x3P74L+!lBTQgGo@3*~@z8R&g=*T;&-&QJC#4BBo06_}uokfG~t1QJp* zgHjHXbG59c|ELEd`$EmK=b)LS;J42lZYx!RRL4A1S;@fMzsQT!>~J0{f}UyC>qy7Q z*ceq%)(4Qbuw1a7p!gao))Vc=pZW03X_At-s8DH z@3cCw?e`||TAb`I*8-^@&_i=%2NUm6yDbrI0t$_o>D2(xz9q7UWdRFjkOt=7JDU<8 zKY2_}X?OhV^^E6U@99DS&3-cmfott=!t9B21&yHNveTT`Q4)h0m|Gxm8-?&L5Rw{B zRuWKCRmD(30uLb?3mn@_{ld zYnlUHVZuuNukX0-sN8IB(*asY%QN_p?j{isI(nTtT1|YD1X76%>*@up?BJzXDnVyt zAan8nA~znfKTLh+kL|vyyjkX zb3ZYW63Ck?j&}g76_FW0?f$~&>TK=+Gznd+TxAY)L$&+})M!4)XRLVSkHmb=7ipp* zB5oDZwHN4j3#qWwfBW|M&H9W5z;C$?+iw=?)T!0f)FjWgK8^S)mjt|vwKrK96o)@D z=U0t^3NZ9Fb!1Xfp>BhFZgsVWk&#i?AAi`UzBjftN|mamcJBzI+C96t7ZWb@s~N+6 z-Vb{}VeY)Wf^EpOfJCptJPL^6N1J?n3iXAYpg@d*x*oDt9TX!U?ZB_d4wemIpNqSC%Ch^voJ zJR&kVd3NKXW$MDa$;#;QXBG@$r3|TXwe8u4@VbVaoEPv)%R&Ct#Eh~&0U0uFTR)7f zV7z>_!l95mT#hSoCQph44}+kd0FsG6v6{?GOiW}tvYIT<-Qm=Ac8t{nU7tJ14?@D$ z)IdW1!`NmHV0}SBL5^)C>Nx;)LQRxq_c8|KwY+ZN00NxqGpND`AR{9)vj^&|{YLVv z22)OIs@QP0{Ly~<JsKE?is>plU!AN&Z0S4)_ zqiuEZ*3W(MQ7r0D&SFz8HcXyl*D_ozF^djD?^yt08}eXGZ)~A805YE$hkjuo*LA9O zh2*9w47quEFXe@HB+A0qCd!zBR07!L8koXCps3BeIxW5$`cp=f3xsvhTNO}-9+q?z zuAK(2U-?#Le?^Dst)-u8!@L2|Lam~!TLdOC4@mtL3HHZy zJ!DTkknMuAF@~IIcftE%>Cj;De0BzlS96tC z3GcGd>fcG*iG@snIr;i3E*%(49=yt$Ld3H=nnQ2awSKeoaBC+28ZN16Pb{avdO;av zaR+O|QlNvK1VF1@cnXj@{LZTnA3OjG|5|kRUQ&N!!ZbIN7``ifzBQb{l;pB*ATf$&sY;sbM)n6yB zPr1MTyjXv}rDXQ)(@V}DS7TsgFH0WSrE1QlYL^$}D2IHMV$B-WE*HO;JDxFWr5}<0 zCda5Ey%dd8Qjxj;PG>OWs%<#cTUrZS<@b!dF2BE6J!2bW2|L^8uik^puXS~Wj z#mdU6%Pyp#&%PvW#zeBQHOPkx-`_4>`N2!q8#eEKLWxhwZ(~_`cXfYVL&ISFFn>7A z5AW*#)0g7NF=7~u-k?9MUZ=vi443S&=`pACkm*gUHOqV5cH}63LTXs#Gw?C$#gQQO zgCbRV`4Di{REbwoi0c|pttI*rc;t~?NaBP=1*ND?mj}3dY_WAKmeB2fuu8gtA$@v@ zOV)(ouwQVjQ8%FA&XspT^bX@-M!V3Rn%(Xz*~YF zgGGj7N2fjox>XxF%R?h0tKq&U8D_o71!X;gPx0{KgOA#&GVHxqb+J>MKH16-2G{w( zYK(t#@}5w0ggemV0hMMk>dD2U8wz$5sCx+U#?`{w-9a^_+{{d=nwpw*(anr-(Vty$ zTzlDKr*iGoZi!~y@mZDwh}`mWb-qc50EALXp)CD%r+FNhKHq+M1j=RFd9S1AGpUNA zE5a^`FG*vA_vS!lMKFzrY;zFtz-&`Mh4YH)l+W?HttdMem)gOMZ)0KgFGACoFS$j0 zM)ch*w-c*AErDM*U}@*r2OM`|M>hv$7c0bPyM?YDywmS_baY%gLUFY}K=G zavHMB%LgO!esy+qblJUO?f=)(yFYf^z3yr~T5L>EYw!)vduOQ|wbgc;$D;3!$o}XH z72g>!SYjKEUqeGfx%v6ez}#-X7B=H+=l%1Ie=Xp+duje>v5hCvV%Yw0=*g0ilOui4 z&s2Qv>4I6W|Crz6->;|m?}cr`V52gbSJZ%98OY9a+ni=%VHx~%SMs_Gh<#M-cm1bt zE%`JW1_lNaB&oq*cPMVrpbMJ44u8)*F}x1*%e*l_g~bfzRd^q}%Kc0h@uZit9?tI{ zF3@F=i@LAybKytS9#~J31KCPiwzdU50?Smklhs=}Bb36gi@}4Zu|CFu`I!*yu1{30 zj+v*}ZfUEiM1+Kd&{Gqx{D@-A13$E)q9QVLImNf3dqnVft&G4K217kWh#S^8W@#4c zjjimoh0_*^-?`e!0E3C&bPxldQ~8PG!@lBN{{Q~vouRc$Fuy3W_0c?y+q}%m*VHT7 zCAIWj)7p}Gf3BG|`RDZEe7z$rw2ui}Ty;*ZlYjW|A))#Om-cNJrty-IHAIs?7&XWD zfA4g(Rzc@tB%g>v9a>I{fJ$cWUB0Fhc=gOJsr_re9ym#UTATDk)cYS;0J7h^VQO2gcDiI`HKB ztn6i`f1JhtRS+qhTGmomx0w4DD0s9GH3XJmlGpYRooa_PCMG5mJAM#F=@1$lZc{F? z^78V7wQlx{OH0Vi%*?6fO977+;<@E&UDtoQFDGR`Wv^GSb=w>cA!FWMO0dUd#TrD8 zbl$xJgE`AQBg0CPh-4m2dn&cIwlY0T{b z+sf{freEv2(u7a@A$JZ2n|=2M*ZbRB0Xvob9A^ zZXQ^#k5`09(UoxHf%RmDPOtv;%fx$s%$$XLQrJg^J8&fD|_;+xj_iU`0+Hk$1b8mEs<-i{g zKYr?MH8L+x4V>ucQ^?xNf5W8A9omKSa>t1_?PE#(A3MGi)!(h~0?F*TACBXZ2&anQNu}U2d%(cZ`rQns!aQE0<;G%|jkl;FFDIvxN|z%PQ=|qGq8T4C zOpsJ9u)$-`%66tfKeF7smqzYqJdbs`%c`c_&rG=}Zujk%az9UwcJ^k@PiH)SH{tJ1 zdv03pqWj0|J*y1d7s-+wJ08Z1`T7V?<6pfA_E8MjPHZD-y(qTWr_;OK1>?nWOw@i^ zt)%FQD*KVLUeSqPCF$vOWMpJ=k(WqlCP~o-MOwbtft2#sTPC*S<#M`Jb{ckeg-cy= z8RsXx=L=MB+VZJ%qohk8L0ax$4!B=&8J2!SEwxCmMwMBs@B{W}Y-|h#Qh;->$U%#v zz#Ze0=LR6pTV2C|%?fs(f(;qWIqWzMubXs1Ngd=3%OjZ~;$&PL0}w5!wY ze7T(3&0}Z9++c58vK@e6xzp`wo;i06IV1A6JDVd5VF4VzH z;#etW6CjT7=lb%PGd>K*juajoy*`gnEv5k>Y5Wn_<^-~^VBW@e6c?bRb$;u?t$3kR ziK8<93EJUy5Kz!xb8ZA#Y`e8Fv$A%tAz;+$68{*arC*8PB>i{%T+p+J#YhCgrE)FW z4In@S|Lj!A2U|^(z)vp+>&<;&U|e`4foZCydV+H84I%YA)l|CgHPdoIwFOOzm!0p( zpRuqndoWULR9+Ig+vop)?9T)TIn_s9cGC?=x{4P6{P(OD8jK~bCb2;Gc?%8V&wSD_ zx{l)VgCB>oU9rl_&i=9J$V>`fHFEh_m=bO7I^dU~oQ5aMUu%Q2U}s%?157A^c{Z!x zq%E=Q<3RYGxl!E9EwujsdLg+1yIy$5H+@69q0n+PsntyXMexNySz+k1cJi;IW2TSq zUJoav_Io&rd+W9k>jNnh5ZY0Jb2BX_kME90eY$%fOP{Wgzzabf!L!489;2@?@A=y^ zeJ&&V+2LYm{MQs(V<+)6A<9pTe7e$2)?s418(*@7@SY1wn2{s=3?cWkzFwoRQL^Eqy z{hnBeN%$Dk|#ffr1zr^gqMc0p4 z2(@fS^Fg9=Eah@(&KGWPnAwm=JiObC=Y4*5N*LTsDdcJs$`PCS{syBJ$Q#&Sq3j>* zF2V2)%jyJ`4Tk6jo9BMd4Xw649lmJ7^5BDFsrM|G*LNtq0ssWEimIupX=qXX$#!RC z=GJ`s?I|MIB@WNSk+o~M+6iQcx7UCCCKO?0lxf5c747C3p31*y`_M0aQ$Mq->)HBP znM_gR8LF^uTVCI(nAOz;sbSTVmh5u4`D)tJ|RFZlk#Onz?yLcF#A-i5RLu4=uMl&Vqf zteFNvbtVRB!eB`mk>s3batk6bRa}2@`fE2mHfom3jhb*ZG&Fcbc+I+QO}S3kg8ZVF zJ<|x%OQ1xWVoLDg#L-#1$IGdw@|!CWor|jcRGKcfNlS{2${C8cOk8(9wH%H~$@uKe z`sSu@&#KTKmU>a3oX!@53}^lVmO+NuDiXNfKOz~h-S$2i33e#CSVNzh6Q4#XZ|d6B zNS_}!p64;9c&Vx(o~``mNz_h@jgEfE$EQUT-oCcvY_U-gUaosl#Ib$yZDp(CsTqUf zM%7Y=%vb|a_lJ3OMAUJ&tmaCUo2yT%H1ja?y?XP3Yt10*q1<~+32qxddl_hV`04nz zeO+4ZW`nNNQdj@ph~doc;b_T=3ZGMtk2E4WS8lScarY&8tV)Epzc@P3q{vsXvI-{; zuhFy9pw53(uw&v)GJ+bXzSNtk+ARIv z%@#R=%e!IZ4SOpCGK|Tu)2H2+slAUDV=+^;RsG$MiMkAa5Zz*ptK?-!csYK}=#c54 zP5Ropt%9{z;vCB=rzZoK5xrtbm>sA z#!(OBf(kzAjdsGbIfVPB?5dJ|&)h|@=nU-Xrf(6zyap~VE|`&`6of(o;^Gx@bjuAT zZWINq@BZ++uMe*~9uES@ZFP2X1Z6imHvAT{D~QB`JH95N^N%Ixis70gXzX)$kVDat zZ$U&VW+s0oKx-{EOG=R2hf^y*oZw4;8{CN?r_Uc=Y((g%527Ld$@6K%>A}ZubH%0J z22nZ}V74Ihz#Venu-ZHSIS)+_Yk!rWHz-cWTkF5!9D}00JT$}pzg~c(Wb{Z==WQGGajFD9ON&)#A3v77n1sps zt3>|mbCF z9PKwl`?FPT@C(}1WP+%!4h_<^P7GNwsGI>FVU-Y}g42pR<8#o04_h#QeaInn)yU<7 zAnNUe<@f*;BZ_EF*iRjru6Ls>a~Z_^o_mvsw$FaU+;WtO)vgcu)(`6Vp>(p<==67W z(?p$xJ(bNLjYj=p%o!4YpP&hX>Co#Bc(1$pTf((ifo`+ve)pbu9@2%VWsQ`o#eA{zec1n1e)AWdw^!@j(3?`OI zsZx;ABfmb+2pjQB?1U=UtgI~QJrPDKK3So&8LsF&g_m3~sW~y<_@Wos0~ITz?lrmGTs!K4 z#_+S9>?1S20!cG!Sk!lF9FCx=5kvY+iEx1Ei;et~JunZ6sRh;D-Q7F7x(3Ztyb)E? z9#0t<7zCHTytv*^`qi}yc?-(@2UCtN0|k0z-Ua|1*u1i3*5opqd=n#7A`k%Gk-pFO zcwz>Vo1OeK|9P47X8l3Ox@*;;hoqz=T|CaH#LlPuyrPjFZ@=#zU@%s!26ft!K}7u^8iWx#$;m62 zGSPktquKUstd?R(@h%KON;WE+2v}8ZWmboD1jx&&Bs9M(A>wf)`hCrn1eeO>AfSwh zWETo5_;9K|0ES5k1IsN3?z8Hn)blh8el~a?e`pXkVlI%}?(=7}TW3G5TM^JF4zW-S z31vtmD7m*rbAi8QgKzdx9rtv}i}tiDSqMy`Q%`>|tthcMU+A{^X;*-0PSk%>*raU`;0vD?k96SbrbYh zP@dWyu=KzlX=xa^D??c(;Yj}@jR5!3d077j(|i18ywgzjhEMb&C%>C1d8|HH+Ki=N zyY~cLe=t1&AtLZIv?YV#U?u4f&8>cpiD4oobUCCFVq#|IswJo#jP`+Y>UedHY;=>= z5$8|mmB8~f6-J^*g|DVQVPcq=NO%KZ&KQV#Z~LZn&dX`+&2^-qDiyV!QD#R*qT#Ov zcH?;*YxIx>BD+_3so>0=vHiQ01w|9XPCB&~C%OMg)*-pJuKi=Z6Ml(A`YtQ(&^Kx{ zS($na>;*jS9q>!sKW3*G-8z6ipW?Qb4{bL&wMVSe}0If^{HAdu(&J308NCDZxB&D{;aE|m0eoO2`cN3`K>QgR1;{c z#`?0I0P<)xeyZUnj1IJMlXx(P7s{)xb*lJC;dyI2c$lcD0-D@hP`+81O;^g{#xuiPA2aI?;Gop*=rrS24^hDjESB zYGKb~C|ij(BjF8w3+BbLRs9f~wtgPTK`ci6C_>s#^ZfUvmZ&*@QD?L=L=!?kU9-qw z>X-G?ST+rJ_Zk4gTMV3UecPB&?rRvb z)3hkYjCutYkmLz=K{&-!j2H}v986|3o-DGDmzstGl7Pp0nC0}>%|_*!2JajFMD!1Z zdWbWe3O12Tz1u6*FYt5LLLKEI-uk>Q`xUn@D@t&CSrmlKa+B5&DSfzK^Peag;{}-C za2k=_(ext%Vm0Oz%kYJ7Ej(B8m`d+;)!j}cL#S0hx|07!93S;AWbJa<@i)SOhpv;9 z1m>Jx(L%G_lcsBzv2O|@is87_XgY8a`by=KZ-SSdQ$usUho!QIbuAur^r+8curCvR z{Exm!;-hj3hK7EiX5t$7TL_(wU}S=Q(&{f|`fmEUfEw&kDxJ`q23S7CrT>FYLf+c+ zir<`CoRh9^?txhfs~w})Z=A%yyKel1=Akm#TLHcP+e}%RncUvLL52lH9L~FIWFFUL z5%M3(S~Hqi#c-C>B;2ZB=C$za3JXHl28)BYx8E%FX!Xwpkjx5SKs7VyGMFuwwT6OR zKg7qbb~ahdvx>+H3QGs1gage|A9YX4;*kF~l01zD9!!Ft%r&-Uvn5s3V}CNclOV%q zaUdodL-%v5IsE;x%XQYc;ZRtCN}3Q=^cRsYJUpsuT18PZME$wWw0=*|U%Qw%*cO(LlYT@2$wJV~rm11%v0832m2EOF^*_-Cz(6Hn0xW{n*^o*aHWCNu({ZjcJS$`d^ zkp1Gzjq`W$QqObsYCPK0kw6UIkNOWS5{|)mmL9#ke?4hSCR8H2W|X3 zYvc@xz?sRLDVWQcw? zWxkhW((urBW8tZ<^Yt&cF9?#aPx`tjtk2D^d)bY#4LPO*mO#5AdUz8;cnS|OB_-;jAlfZ?vcw6s6$tH){R-;w$vZ&AB?itVV3bBLK)?Tn?! z!}NHNSx9Z{xxrqC;O@av_;DF$0?p1Y+SqmHg+ywzvu5(`w~r!Cr4a5FUa55$2ec*) zO{wU~K?pL2%;jd@Vo?V(vCqw=ZA3OT;doo0E#b7J@4nUkYu7TrefNRr$VgBG-Uty7 zUKzcasJF&TcY`pHM57@EKkR~2=-u_DaE*t`267dX@|>ETW_S9G1%)=RJQ)G(*YiCW z;&J`$63lH0d6!zA9ADaInV0ceo%W}v=PQA+RS%V~eV$nV`QA`Wb9y(K6}i~9uC^GB zAEztIGHx}Nu%u$^68*%>yBd42n)G?7l;Rn|EB%E539O+g%BV_8ck*&?J zI;uYq3z-)xuUr~(47K7HQu8r1(?c!-0y6sZXN$hC4SX{S!8>qOUfAsqVh#Yj40> z)et8wP3F}35lnM1xlhHlwqV+9ogkI#~ZHF;rr| zyLJyy3va#{WFQdtdkQ$U{+6q<4|H7=l5m5W7sRE1_oYNPA=Db+r}bObO^9VpbqzIE z+NEyUsF`J3!U@T9A<~9~bFAAQIs%D8d3b9WWXbZU(}+w8B7A92kA4V+BV$%E7Nh%d;?ntAElsZ2;D$!R@iHtn1?UvyV{sEOQnc!=-Il-E;- zTD^{rXR+*D`eShvKu+U7IoOr-J)rTKjGbQFq}Vpi%#{h>_bnjv-OdG2u4B>BQhdfB z5^fvO1wacZEo={t^G|lnOn*$<1JD4(#iyft08c|=LBsLJ0LYwq{TVXtCxSo+{a~2E zawlHtj9-WDxS+u5=<8hcuz#~t_hN9~a@#-`Cx#S#-VWQ&9%XuPhYB*=)g1+G!v?wH-Et%W`?VmZ|TS%o}T3-SGlh1C?pGyeMe}^4>Vl~xU_{w8`u^- zYMSDk>wB_u&;2K-x`uc48#|)a4rIoggy>P3mznN^ohd`4)$5zj_o+p->D2(Y($OXR zbUb?WMCc>&sTsVPc^B~bghKiUyKBUh-HJbVqJy?SRb zw`OO3e4w2gtjeeEdBx;F6tdLUyNz8tioUbk!iWuE`LtjftDUW}GV{FZYHhLeqh0~* z&=a}{*@4OJe$SZjNmgWmRa`;=RYY8btHpQ03C6}=>(>=)<@$84CRGXjUmL0go<y8ZX?tsnV(`Qwnl{GdZ4&H zLyT3;)+^+qq^jCfaC7ykRZXi%YyzBOrA|lmG;Y+wM+P#fv+c>K+q92@V@egb@$}(i&JiGB=PGxqyy=L*!=O;f~NEY#5 z^bkgx_6Ul;u@%`GFyQeVP|CIxR}4xU33ExVF58^PqrIB6K)7p$)9+zdqveVyEfZ|8 zlrCC(W_nx~Rv6R$wKDn8vMAmg)Rry-`48_`vGI0`{RWzhI$%ih8X6u`tcYlozhKu8 zbkJ61Pz#&M)=%)YPN-RY*#uqL7+_gs2KeBHBzYMT#^vrCayGh1Z={#GT|c z((n{VrgvM>5t16JssIF_7?ML7$420cbbzR_w8nlTIFJk<`6ahs(VTnB5#Q*_#|)BS zrtNotk$*ur7q(x4=lUcN{*`xJS9mP?t}}ERfJv3ZLw9$zmwy#-Y}y6#enml7TI*9w z*xNITKR#=5E!yhoA#n!EH3S4dfBuXhAqG`g+c|MX##TURoULC4KxH-sd6MXou2!+r zlRQLkE!RPK561#r%0EqUHN^CCeI7nVv=$9O7j|3P>C01b$1>)Cj8xX7v08&NggYPQL`1i9B(!GRyS4$;s8|gzApnH_Fhn8pJ z6k&-#;1cXl641%RM+{`&@O$~~lhD;b?O?$InlD>*0dW!e!nQct7s&*T?&R6?ls0!* z<|*mIG#{tpT`Ki3x^L2{<@Vfr9JiP-Xc7l+%s4M%NJ~){IuMdc;Jh?zL=NsdG-jNf zGQ(c{Ci9k~IUHWh4sP-L_@ZV6seca@RboESxxfnHTKgz6cjVn0CfkqWjX~IgH<6_t*1)Bwl~`E7W7F_2wR+rqPj4 z*&d-NVv++S9XU)yDf%<~TXtkaqHp~ta9rF&XrdA|q>0di>GRIU_(1>`* zMo!vQ#dX7o+J99PK5`N=*fB)MO>^rDpQ#g5az8+fV9?DmNde8dYYoJMW2QzZ_J1TY;Yz3lvxbAp<)5e6jLT=yc z>Z(gO&qz*Xr6$nKJ=MuP6ciM2bz=AdqtALKr0vw;z_6TQ0k?)hx|{Q2`&e|ZkQa9{IW@lsDx z9?RAT1;pb0Ppf&ZRSa1PN&5W-prlX^y+@$+{)`Rr%@q3Njs-*oPJPF)) z7*Q$A8EanWFKj3EGCPbayeKSDyWh_HG-8vpKPH5#ljUn7`1Hl9cZG?+|4^2bllwMK zR+LgzIXwe3;FiS-hKEC}8tOE{R)Mc$dPmQ&Bg=+N(hpf_oNDy2C!Kh&>g{w#A~H*R z8=s+j1NztYk6EY1-2Q@Sq2@P)KKF?Ok~f~uKAG2MH1*`f3-F!Xm`!Sahg5&or*$Zl zAaFVSTecc~vg2cYS^m*!;k$)2S?>Ch4z#R1b0wwFYaaoSyM>*p^qrX|RHquVB8NkqWyWNK02uM= zDz^c|eD1hRj~)3Z`_1E16Xg+1wP!wDtIKQ#0OA96A8@t>z$W#_xcB4qzYeKg@R0zQTb$6ih+aftnu@tX!}2)>Ll;Y8gygR0?%-|>+6RqiUc zb>#lE<@jIX7um1B#jm+5QD*wDwp5O>dDg4D^OiST_RNv%tAnd;%xqyRg8#^tJu~bw zt(vhnJDqHO3d#rfFTUr;Gb8rC$GV!8858*)IUxgD<&2oqxDx83J6*C*P|3JmFzS$d?XAGCZ^&b>Bp-<{12cwT&jJ5s zP`70}7k}c}-Ru32g!^u?8|0fOyFZDGixb?ao-cp-BQhhI%kn3Ek_RUD3ExHd%T}cU zO=^L6H?teXgdDNKEK=>i#b+9Q8|ibANO{198Yc8o2*2j=hqo7FzCW(xKRq40Mq7GE z?hkkBdM{FCUU?c|Zkq~=7MopN$fq}&J430I%nT@wiDiw)4ep^eYlHTRCYb&raXN>V z`;q=+*(sm25!9!I^tduMxU%HxXb0}fojc?oGayns8WUpC6W(BsrNB)xrYHRC!_+*T zFpMmj#*j|ANqv@#%dPisqypi=FNDJPwCf{nM3Fb(!N8(9SeD)XGehu$)MLO$IoK>) z8fv}aF}Q0Je5^3>O1(YI_Q}bk1-Oj$B$s#2AFs!N>YQ;*AyI#u6aNVOAfa-;esz7+ z46+uqLrRQDC0ek+_mCX?MP-sWJveZ_)2LOm&`yE$5zY9rl@gp-(6ywwns%VRExzTLVqWl)KNb0a0(v zI3aeZ&s*$gx&n`tIBmmyR4|1mV4tgn_ibvkYTU40Q`ze34@{%^y-^amp z1CuUb1bLf`AHoEIcVtvt*xs1%Yush$ub22)E{dD~UtegG;@_fA4jo-{q5ny1RdWm9EuEk}1>L%GdKydcwzRWI?wkR#AS8rPPE}J=Gr{oS$cu@Ub^VW0_G_H2 z?B9OB^aFqn$}L(wOfwHY(`%>?p*LjCo<=$k=ghzGnS!$Xip%Zrih{zzp$e|X&PFxa z^qKgl3zWDMYm)4&tQrqUIcq6iX=!Sj{c)wQPJ$f#IsKiLHOZ-}OO2i?e?FNtucdg; z;-kim|CPW*1h}%6yrY?}NC?eIztL-~a6C{4(&%CkTL< zX{*@*01=oZP^}|C{AoDZe)^Gu3o$VA3NwuVmjFbMEpQU>nNe|?`WQaorr!((2YC>^ zqK|~G&BytjWaVi(zcbLYc^deCMtx!kSUh$Tih90$bPd`Gc^NvFM^PuVSjV2f?0 zJxj%6J(3*05ug@hbU&x0q`bQi%%v6t6P2!Q6y_GddiowkW#s-bxZ%RTO_4A8sl>ak zyB@247%yaMs*2DjL* zbjaUc!Ht~a7jv|qv_V9Zqa^Wug$yG<6FBn5GXwF?=rZ{k&U+A3IWAl|_iHivPVIL$ z(sV9`tmM`s0hKg74k=ESlQKH;d-vIyoV5v~1Izfm|N7KjC9Rn=hsAH>#Uqn#x;|ry zM0>b1ZRoYAoBr_5)KVC#2pHbp4Dl$Wfg%3K(3o)zT};GuCG}YQ!82S_nMY-qwz0!fRz#uNsqmcLFlnxLG$I_W_!YX@vB zFn+%@e;T4okVi@1eKA^a{sY%wqpvS9jj;AjL$4BEyGe_MEF73DQxLqy9=KFT^qf9A zIy&wGmz5fDQuPBTPa#-crwfc?{S)?$1q@GPZjD`l!6M%PYc41)+G&0DK%asJkkjI6 z8bR3FE3o%|3haE9*ji$h85Y%82W&c1#x zCPD%D^B;bxd{Fpk0a%HigSTHF0V-bkK_-xgHG$C_D%&Wa!z$0lf_(sFvhGb5!OoHR z=G;&ceuUi2&CPvOt?^z%OKaqpl2q`2+FvHF0lPCnt)~2)tM8omGmV>rR)CE#1S@^z z$`u};lSAIdebDi-0(F!Cmjn`G?ttau1BT~deFC(Mkh#2o>iXbv|bazL$&p-Mr zM+E&nvTiCBKm+ZE6g@9{va{SfLco}q3cQgI85y&m&ZK-d4wV81!7y+8C+UAT_W;Xv zj5fh@(kioV%I*X{rF&04^np}3n5~o|rAH3h8H``278%r|q`!cHkD#C8!ag|@=`WtO z-L|&?E-PRMhdkfOuYbMINOtOYm~8=En14SR?mn^8T{UUCVDf%3V0^a~T@GO`gu0Z_ z_a*TFA-WPT>Wzwsg~28uuQMgb~5kA!3d=rc%|lK0VExp2cSh@71TxvW8HFuxn_JYnY_Zn;Y0x^kQWP$I4oS9 zSgeot*HKIH)}N!IGVFo%J)YAvMD+Z`3H0P(7{!j>Px~C(vOX_uSu=}Y0$@wsz#v(e zCcNSNbd#Bx`6+0*0WSBL{mq%8)uP7fwfj0f|C}!@PKL!G(2UjY(bSDcDSk`D>CxB?O3Ta z#MHbm;Fgh;4CoQwc@`ZLg8@)*I7cOeUJjJnsM$AHcISd=G3!+`!@uX673^{=Y=BQ5 z5(27U&Fcs^*iP_zZ+gzCnVBJ`eb2r3*2V@h$#o1Lkp6UQ*r5ixy9KcGju#sT{PF9% zFU6Vhb#L8rtoj0c_>dtIwbLWS<1i~;mhi$dJJB%&?Al?vE{0sgMjz}}xG#&G$7(@U zmqq*v;1d3VgrHqyoOCI2Vduzs{v#g}h+(V41zaV8!`!AFpECehZ2OBoS_N%Y5Pd|z zS{4q`TLASzT$DhsNYiEKD*~^7r$RP=rycc{tF!oUS`!2-@#j(~Ba09bNP&kh>-Y9CgT69(?C zmGv@#-U!f*#!)MPc&A*j$RG!`c7T>Q4bYimUl;$5o(vw$>jTV!oP*Oi zjWe`EJHv(gd7zK&_QV(ZCxLc2Hy9NM!F+~!)B%BOqSAI?B|D`M5Q}o=NiH!21!WD; zD5mS&p;094Ut_EV%_zDg!oU51vCUCE)qborYej%xXNTh)tRtl_GRAEmC_wrIyNm4R z&DHc!Hq{hSZ|>K>XD?K-)F`Lvj-p&vxxxIyV^+R`Ha#BSGcSnk1+fKk6^|*Dz6}bx z^rwFSvPVLFirL8?$jli0POxHDs^`PFYO;o}!-MzAQcj=s3h#V?Jeo778*cInSsU+% z*2c>Az$$hue)i^f6ybyi*l66~E2QbJ0Z6W>B)rw4(krm|SuN7>9Xk(?MrSO$76@`| z4TmO+i;F*&cXEr1l~cU7-}@YO8eU(r)vkM8lI*@j0iG!ae7E%udKPpM@_38m=D!sW zw)MuYWQRz>i8)06onU1<#A7o-=+QL){)d-F_n-g-{M@2P3pdIV zaKD=HW65MC{KdrqkEibHS_$ICjgb*HX6AtyR^8o=+D(k_*|KlB=Ybul2ra=A^FXHs z|MFmk$pE|cb&bC@{(RV~pJCE)c+?%|&&f^Z;2 zM(>Tj2#=d$`ML#?`zs!hnYzC`%2+wyoU9pW8HW7`kbdRYx;E2jsAcF~5hk?3Pkf6* z926r1^WkFC&UvH5qGyLMSb;wQYS5HpOv>~*#ae>s+tJxMu+*Ip?r{blE05LS136VW zx%a@b7kbWv1i1~wOATe^RC}-a+t~4u21Jqfy0zePq7$I%u3rpzEIBRaH+tf$O-KdT U3qdAlcI1 zUX}>k)hK#aJTa(lR`e&%WW1lD=lA*NQ==bGk1=2RK0}{MKHN(Jzkm zx_8p#8V5&O--JNQpSd;>gFCwz4kd!LUA*K3fmr$d{~!Oqj6>Uj|Muajih{zu)_HnV zW<06$O}c&X8sXY_D74W{Sxe?5X<=<0=6YQwq~UVJ33#pF`P0Tb9M|vW|I4Yk%Q<%e zvRLAUA!pUD(3}%UtK=eDKPhU-+sTXVXjF&5*sEa+W-G`##CB(|veNY3xL!uv6nR&6 zo!s4htwrr;5CjE2ZFsFyr$tU)PS2K&FZ0(~8}QL$J$THX?G6M@=1(fIH-7v=pKjTu zQAGIX zQjUjD3xQDI{qwO4{A=ZJMF0-8Ell7~(t#1PKW(%YT*9^peyBA`L*cDUB`{-h%d>6ah~(b$r2(SMEwk>fhJrjXvc+r!+j z607C3UB6aXUjBwILZUa86}fZL&>%4DbGjw4o*kvEuAUzyCm>lj@6))kv2mY`4+7z1 z$YeY8L^Z3$#KiRU_9`hTe0jpm?AbKFwr9S({B!E7eOAlqENUZ|xfGTwn}j}Eia@?6 z6M;?Jww9osOxOt^9M`Vbzj_59GTLf?G zahQ(h7B^-$u6494jC%jagNT>Pb`Xf&>zDpM;I1u>elIlZz{kgPDRjLQ?%cU^vcm2= zxl*5oMd$6h33;sN#Ep)RlS^_!AW$MPrcUeWTG>Wd)VPLeiu21l4-1RJhcfZ$+Kny+ znVH{z7(gI;o`Gyy)8K{}%$I+BnH3SW7|n+{e>+Egnny+CUzL@W)y8(*8%Ay4Y1)QF&Vg$l`A;N-!jnivfTwINBDF#Zl8%L+6sO&Wg3k&aKH5;>RzGwM> zm&dEw52lAFlCNJQDxO;s_FA!UIU!&lTS^NGBvn*Yo;-P?=-}WGEp2T5&yMox4JoM* z8X6jr*;7+fHfd#LWhe)2K7y^<*K%^<=J24HH@pi9qTnU`r=!eXn56wT`<>K>%@?{S zJgG&AAdrPSbO^D)t3%!NzAR~FNR4ryR$b(H$;jt>Vg>?T5Qrb`9V!G{oU~G&oQjy( zdpfV*-`EB*+peuqaOBu%fzpaYeJBfXKD87>lqbaOP3aLLC$A%`-St}ZHYFY2SM!!%l4t$oS^;SrHp_UB+XJ^9nhl97$gO=2MhBR% zZJj0=V6i$H%^-T_gaQUQQzRuX9Wy+1(IRNovT;Kym?@ z_l(w%Yy9}Mx!)prARlRfA<)Ae3Wo-nmuHhe?gL}-Onvwwb`tmKK?iV+S(C;nUJ`aDsK!Q zOP5lvBM@=GhC8)ehbZ$PMPyr@GnPd7CQ`{wzF)g0@BlVsT740GTg81dyh`g$UdsI| z8*1pOX~_9-#x=FrX>63o>GD1>;r8v9^D+X$MY6adSwqC5qF3=UxbSJcyFPGGhH)-n zah(mVgo`Ap@<;;5L4ML^O+x6DK2(+_%O2)Bq<0gIzfUg)y_ET{OAx*cCl@#g7>9(u zWWRQeUlRe5d9QQ#t^;`R_$$p&sL_8m#@C{tww9J7Ju%GAJDn8BuS?;$&EwQ{#}pB( zWixcJHEpOs2(Sw4Lw{_ME=Ef9Y=LZl&=;!|#UwvY!aI|07|#D{Q1ra%pc@km;vQ0WF5z zq!;kJ{eYRdbzl&)aU=lS^?P*J$|tojB&pmke-I$TD9{QEB70z^vO+*k31v z{2VXio%gD`NJdv&@3^*+V48Ya*asNWg5qKsNlD3OA2NU{hAerxxt))12K{sIIVxhZ zb91{kYu@UV)%7DNG|Kh-fn|9<>wzq3IN2y#*>S73UwSob-%WecEsD)BP4iZbd+Q)M zfl^RV$QU12%?h~!fhsdFFqi?G%;_oIPJn4XoEyoB(nv&*0^x{U@E7qpbCcXk z`T@L+i~IIUoUW?4cmVKNd3}8{St0lkKkGYlD?XFPaqE+&X=770md+>ZdC2d?>{r7Q zT2Hqdr6eVXn%wt7*>J|y#4VkPfdR1(*M;Ad7s|jbArH(xd~9?y`}_A7+U_eciGr@B za(oMfSs{23zmiTPS`R6y;MKl_EPlt;j>Q!S-`oGIK@+p56M$$v)@>EX0j$KSi}i2W z+>u@lo;y!t%I0sNGVucM!|*10hHn=EEB2(W5wq04<-#n?sv@mc91c*D;dKPWs`DQP zja`lr-{3uzNRJt8*bDgnY!P5(8k^>J7rca80ZVITtU1YWOohpKV@pD~Y>BqioXqBn zyUL*|V^UA>@oH7gsqI+-BMxTaOt1ygyQhBuHkcQuXj?9fPs>s8%WCTvVHx;WcQEw@ z-@XB8JbIlbh|RSvJHCV@UG$RE|M=luRgL4{=JNezdx%E|%OPF)+e;>GR@M-2apGob znr#qnP~kUIvryne)Jgp3NMeccAjN@D)WzNa2t-vZ-Sz#-3kal0Kh~4?zVM8H!VbjG z?HHPidTz)RCi%nfeAYcJO0EE?8Sg*QfPlp^W#TgM3ctXGmIA5dB+?(49JPrHm5b2IeWMhB zOdHfQB!2)Cqs0>UAqqDWAuEw~H}GlwtSjE$kb99%P|iA@*De{qLfTfF-10W^4t4psygLB3<@ZdE1OecN@N``DUAqUcY#`t8q;O?f;#448 z2Hhn>frm?NR$uW5Hh=zRJM8Lu)t@G+``}e53~aveOOBFKGDeT)d(`O+S&QW_f;Ld! z!&z4qC8eyNQA|ZOH7d+%rK8^ih-;kI6;+g#DKWbr@nXBxiFx(>gzwBf(`ohbJ|$*+ zxRLBQFchcjbH`&~%f%Ax%Z9@_Pfv`9PpfDq+}6TkW0#5algVr-^W*WwMxWu8ir44; zecwx41(&3PossgTqkCoN;x+q3(JB0|tI9CGRBDPe2lJazgSCMz51Ac5=f2&gC1LNW z)yBMhukGua*(tdnm6%9X1$S_7p5u9-tG7K zS%+TMlf@8r^zU{u_joM&}Wp!$AoT;j;WRP6y3PavljZ{`t%)I{KReomX3!O4Gx`@1P6c}^^c$=^a<;emQ&XCDSq8Ebb$1hO4O`ohXMfUT~k5+Wk6#HG!wTa^;GF3Sq~auWZs?O#0RS+kxFS9_5+wbZJ-CF2Rj| z9x;USz_vb44p6Fg$ULLGKXchCRQ^6WDg9o=KAfQ96)|n#U(FydK`biv0a*6&QiPFm`#fVPs z&5*jiqWp0~)TEmLXW%d#C03CD!Ly8R0gU~(Nu64PUwx+jKx2`D21ypn#Wz0av+US87e~YFZ63LnfVi%O>Qixbw<~ zCyH(dUR-pqeA`6YcA2+bC(``9f5L=9RU$o$xG1z)(_ABVL@pNjn3CShAmB{4KNrJW zHQdhvqivWO3Q+0NA$s}@rsZn)`}jP*5$ejOSt>6wZSiAJPfhs3Qml1MF5Q5BlD0an ze>mHs@WGVYm)cwpYNoA|CS^D*-#w!BJD-Ip`c|k#RDo8TYJI{5j~8)*;d%jVi?4$& z;u@ZL-Gx1=n=XltHtJG1&B&WYhtmto_(R*O+xd5rQIMAe{-n~uM#QQGhq1y-`2=t! z4yj)bE zwVVSEQJCAC)~{deN6peNSkamI`evQS-wLvsbdCy}dx&xNX(^HI>7mJTSW=GEl=*qNSLs<=a%nWGEj}TsI@s8jNv)F1 zcS5sv{o-D*Z#>CZY%MbwMOG%;%Illq=yC2JjByr7Dn$5)624=MwQ2YjG{_;P%^yb7 zsqY4-dOO$5c^%%wc(+rWoalOvB19=siwVI|ypzBDs3uaP=I32j^Vtpoyu!elZ4ZyU zR9ElbURlY%%dRDUOm};ArTRPprJ%2K>MMTC-!u4AQ8BW)Xy9j(6=CB80{?NCp_9aS zx#Tl!EthBBu>OIvXS;~5nlIFOp9sBj;2Y39u;TC-9#xRp6ka|!sGx7tEerJl?`{%k zDbwD^iYG;O8#l6kX`%=EsU9Sk5b!mu*k`h(wEz6#`Zf)&P^`Wc7D=>P} z^I4fq$uKwH^66GEd_N^6IUjk?Yb>zrf&8J_TSm0!Ggw_t3lM10qyZ)Q4R!a+G*S`qwq zWp_%fgtxz+b*iyd)w8gSJdSTKK=T>w&%X*-*PFVTh8(Q{R#zoCX<%4JKp>tircGUKkQu}UeS$5DRiY* zv*}W=Ypkk@^ML=^YSP=UyUE2h$4Oxw%6T9=e zMX|Bt<@4-1iHTa(dr96?$NeojWwP?pTV}I$^1GHwNg`$W%3bNta&j4%IXRyLn82&+ zYJOFUj=DPe8Zp{MJZ@~hj?g0%gcioeR~1#e?uOBEKHIDT4Y_Mb3a8+lExOt_srJa` zE)jO06*cc$SXzb*$q$KwTx?6>*(+TYpPL5_(mq~sm0TlaC2OeoQMKqa#}0?qvt%pA zhg70-^p7>=K3>Q}yL1MFuIw+Paj8SsS?4&0^%U2+p}Lm+61Q9J=oy>3U5Co(xF|+i zYV1^Otm;-#!Inv+uI!_u_fe33uR|Rzl#+F`ysp>S>8i*vzlOx-A{=|T2@5^XJfm4L zGVSp4ZdK8eQ{A?4%KVjj`P(&%KWT-*)XUc^H%@sTt@^h(BUNX8&oNT+@^OQvVN#Xv zIywkR*nW)tdN-p}woh+0oN7_#vOSm8uT@vjACr%%5!sql%Mu=|nHniz`sF8i_!XB> zn8VcI7SMTKS-VbBeEc<+NZqwo)7(69#ecybS_~$gs#mNS z?Qg%zGa!Z|Di%*`tKu)7WQvDWn~yvMfw-q;lbbz@F4grO%IMtC1#>EXuh$bukfU5K zvAop3j1u~3EAMP=W__OOtpmoNYim^`4ExXa!~6xj(};@cKlhd ziNT(4{Q71hU7cJ!H+$)7^q8lR0XZUx*LM8ucyE6%?ffkx<9I#|I;D3-QO+e7WW$`# z^7Zx0tgWq8YQVNXwQ%ZwXR4yDRJIyRPHSZ`^exu}{86;DgkHY9{eV=GGpZqwpwN;p z-PfnN2yVIOP+4t`JUD=%s*~n3TI=QsJN7u}i(Gl}hxAtHBH{@>q@_b}8AndTE;E3w zE8HaG)j@<|Hgj^I0e712yiHRlJTW@cQZLWTifQ-6ry@OC!es3~a*K~Rv5S{~ZgZd? zbtYiFHf=6?zS)PMTQvm3*|u(Q13@NwR?cHRmEC%_!Y&nTr)%FTT1ke?&CO-=UA)FM z+W$4uVD==6dH)RQt6+@*VKwRSrsa8BSIn&-Z2z9{ot{G@#D}2;EiBkN2U}%Z@e^xf za~qmlle*ItNxI#Jrin-z*v8^|WO0zI`wiz07cXxhBZ>R2Eu$ zWmgES8&YAN__&g@8LOPU{T2#uT`a2rS37DD>a{yL4jW92;eQQ}!8Q)ic)nF`ac$b@ z`jPfHu^8JpLSG?7^c^H&Nwk}qKrRRDLHCCB+@u%MV+`h9p?5S}yxh~`NMDBfdFx0X1`n%OwBnSM|C%52RnqAS`2nSAShnNht~>-;|Y=vzM2b z@nXK&fV6&MVq&%Dp$%hRZm*Vax-_#dZVA($H=iP_yO)EGX@2vrxABe@p5->cEgdVL zDu0fn-8dnuIcpSJ1y=VK$i=}UTSdu)nicC)i`n)r3=b>r=aKOs7WbF}F;gwo@0NDv zsD2FIvh+HjZ2t|N2WfEz5G0+lDuCpmm*lWCdvi8OqJPCjIW{57%SPdCn|RJ6TmXLE z6F+_;l6!cv?iDY;rhP^#Iys0AIv(ZD&n?Y>_j}LS#0hDvQz?GV`*wjpsOwPBx(cn?8%y%|3WZ%On0eI5etyDX{QEA-lWs1H}! zm}w0DRWkJaIreZ?M8vS`Dy~!`3aST_C%3Ox><*Zi7d#eN&3{4bsH{JM6rf*q%wN$R z+48}fi1g*v=b(a)uS&^YF4oX^;|93P3)&APJOfoj~u(vKdbs7$p~9rk;_3p#evo=?j<2_!ff@$^+v zebq3m7+KR=o6*~^lTH0GzW%n=zN`X=9iaeAZ(m7{n_c5<&%V(UfXpI?7J|ybZC2Gy zQEN{7B8*zaB#sm7MNU29BSu9S9L8i1k=0SJf*u~EczIO>1I*OZs{kCO3Vif2z#-lJ z-hFddYIk!VQGWe;;Utn#8svr}-I|50+WJZutB@#tk*%atw?>+k#-c(^UA1jhF~g_> zP@=K04KpX(`!dDEI?hvvn2iu2_S9Z$_i9L5KEx0|H0y8h%`d1IuTPcH{Ki3|i702O zs*Byc&&{aO9(c=a;`2MUh*OLYNItvp&oH^g%bQuXHjKzZ0YX{QqZg!EjY^CxjySL2 zewM*Lu{+p5@VT)>oXHI%VDUNwJcB;j9$uzDG{~6K#7qRk-Cb1uG_8`0S8w{H9)9yO)D-g0|c?^N(It1)YKGOs6X=Mx9$6 z^zpco@YCr?UK=)#@nep(xo6zGb*P2;`kZ;r)mEmj6@%CVQKWZR7lp_R00pN|C2$ZR z>6anB;s-Obyc|hS8@oTZd+CXQBJxie>A5}^M}1=eJq0Z6TEeN4=aDrn1U_4{zGehz zzb3GA7;V?%>8e4?FYR96rRAhH5v!t=IrHu*zWS*W>+dI;`-4GcIWi%(sdH&{@i(16 zK(2@-U$5J;IcTV@Dv-_rmn zZHpBfF6r})`u#>?10{wK0|(YRkhW2!!qBx0?os(Pe4>+mqJQ3fB<(Djg^_`wBON^; z{%^OjSv-}O-9fl@ma7TwVvPGpx!$wvV7qK=B2wWh9{N3~hWXgkKE0Up=t1Y0vE=+h zVv^Pr9OcTgMr^%XHCQA(#!c&MOMhNg#0!@DT*F0oBvo~df$0Pi2kRUwl>xwQVNzN* zm!#s{d_+QiP#0Q8&n(Bc|-7 zwV6v;5QF+6Bt&OH_^l&YOb}{KS7nQPUti?BuyDM!un@!`;5HWg=beYs^5E@Wn|@#~ zO}O*8vDmVaqOS85KGN0os!@6nR3}d=Eo0Z~TVBw+%HcAt2rq4w28GFlb@Lt>`H_6X z6Z?31vZ%9nRp(m{@$#yx>7`X?g7hm%6g2093eRn7Z`>^5os&;*f7(|)+SdavP08<7 zURuBWwz+=Q(E6z91&C(=CRftZ@{DVwts7l&UH=W1w(j)saG`~*cHD|r#tycf=Xhs4 z!Ob!4grKlUG@ZRJNVKne#bN#1v`_K6nl5Elq&Sg3X)ni!B3F@MlSDemg*0OiG*h0L zd;k-803Tg1N>OpBpP{mM`m$9E`Y7$Gcs9DxSd!1E+LO$02F3k>0x(993R;9Ogc(v?fIm6{(aTWa-kbT3!nzxm(^^H{n(N}Q4pq8SCm^jSIO0O-Mdc)Mc>F0 z@zUuU;$y|_PE}h*jRG!3XE>Xn>?-CS5?pv+OZP%1!zWA!jFi3ju@C23+wB} z!S4QKQ}@IbrQ%{DFk47ErX9DVv}Xe-3M~HoM2JwRL?5B3S0EWHj6xS9ec7h&En6J0 zr^_MVuiACpSYnPmaqaQClEtwG!PUv*FK@$EfA);VFJ?u96a#QOV18(S6Y&{-+PQ6x znJ($&`|7bIy2=Ji35i95x&zgTM;|}b6i^v*_ktprn3b5q?__X3h!|JeTfO>~+oVpf zJn=PhUQWA9+twnxA@Ehd=h} z+dHef9?jM}Y#+Y-l@bSeK8_qvVQ%EhHK=R2JWyF$a`+fHH&8Vrc|>`?Ag$fhnn>VX zf8o8`0}J~%w@&I32hI-^le}68ETW`cXP=HK?87KrPB%G;8)o#WO(>JIMV>UtV9zA0TfkSf9baV9@!S6Ak!7>pR`_@Wa+~?-ZwD z$tRBMNs%1634r0x~%C5xzzm|+PWMm-Qex@{ln!%KKsn^VvQ_ZL4Q<9p1a`@REE#n zfzt2jBQpDIb~b|~$X~q>3b}rr6yH7&x1WhpbqYMv(tOt_mxM2(j*e*+AFw+sdHr7 z^lg9^8^`eT%&8LsT0m3Eh0N_kvtS>c$->$mGR+2&4c;LN3XD0b&T+8_Ms{R z;8s<ZhtPlS&L zDkjpnAg2bdGo8l~mz^ON^a}0qYUXlnwbc6h`v&hBDWqJAL)=;02y+Y)1ec`d<^?As zMAS|@$2UFC8gf^m2*0oaUCSEZwbvd@C*Oa}(-*aNC-2S$-`Y0}jlbxjrIlndm|Ak1 zSv4OpCx|K7HuvD9)zkO+`S~rh>FZPbY{)Wy>>H^&P`8_nhu!(FnpXVZ0h_3+oJ*jK z+E&!`R_yew2!j#m=s$*VRAVJ(VMmyXUeCU5REdA4PbRZTP!%CQ-mKGzERGoG)OlOY z>}MpS#Ad$n?PBiQ*w?(C^|k2vF}L!c!{-C4!c3`$lrUdT$x#3glWbcw05@<1FdIsl z(!7Qvxu)N5I=zU#`I3s%G+bD&D%VRsl?90v)N*FloHK-;1G)p9RYL38Zg0b8WiJ}6 zKMjGt_v)5bv|p?a6#qR5-`|XNkj8py9VfftP6fMUZ*36X%idZX8hSO1PFRzeoP}>O z5tLw&(Moch4Ug=~u^+^KQ}$IyGt@6DT5G=t#hkuK)(&&ys0Ny~sejdUK$#rxGbOv!U|^Nf^52Fr-N2M)>Di&a?xq#wQ{q>>M@IhM!$QtbMR zyAi0PCq*c5tqT+-ka(2Ms8) zD%%W8C*s7vk9}4W{gr&;n3OWaifFHU8LR%?oCiF>y&|tR@kZ+LC!%#Dl-^lm?$Sn| z7?Vw2rW0JR{7#g7ed$c~s6OQff||9c?}6RZE|~u%jfLVJZ0O#hbC=KWH6M>-t->j- zlH}s6vUSHSuFM}hWxT2eAJ_@t9<9o^ZNG-Pw)JM=JI`5Q)GQ{-^`&HGxzTG-RI%Or z%YfA47q;&#b}MgSqK>+1UhlhlXa)h#IDE&(q?BMBOfC5QNv7{DQ8B1oss}68Y0`dd zacZxud93GM4b#6PH*3L7t{zFKPS5J3e(`2qsBy=KCmzav6ZdcjQ@$FHy;*i*yIYHJ z2r}lgUyO|jy2F=3{E-!a*o6*Oi4vM%xh(~}#Q*^K{~Q(@`Xu}WD#RH`Ds4X{r|vzw z&Z_t-e6Z>k=|@&gP*J|a-=~K@YP#vE?B|vlKpG$ag~+DE;7fc_viS5FW;`Hv!WOdnJe`32 zM!)mAj3yTav+aFC$Mjy>^3P@wo?PbrLVQIK0&!y6@@qVn73>cm8>9p3%?rxIT6UXp zjyIs6d%|I!(gsgsI_;|h{SB_tmdCeuH}mI?(uK~vyfgqP&E(xih5no)?t3zd9Z=W` zsX9$m!ToMU&WX#cPHl@5JFE`E`!;>P1_4(bs$_>Oh)#mZ1@!D?a)aNxHdBKlamjpB zn5rNPlZiieJuhvehq-K&vzsOhSm}+Xy@8RUvKFeMI3lYM+WGtNS;Yzv@IB(@fBd9z z2e0B*6x$)0$PpBf6#yY@9B0Uii&;uEYotc<o{)oM1`SPgsF+i21V;pfTpHqwbkTP z9HVO%NApZgbPdsQN0SP3qsTG4OvZhZevE*<3#frH47l{Fgb;<-Cg8+8YoLU{n7~n$ zJ0gK}n{xEr7Nge(0S#_tWo5shcNTRhfj;>+-m*(+nmuEurWahkL1;W}@U9?S_8DJ+ zkD`*2;elo#k%zW+3d3V&=Au75X7F64I<15MMP=syzfzfDKfXLLJn)E}R5wAuGOl}T z|65k|QC!ay$g1Y2fmf;mj;GwkAq0ERx~C_NvD@F@7p|QXq&BM)2fSyQMv>zG#<`OZ zCJs+=<(1ps_fXN+p4~bE6n2ClAOdby4aPE*XjH9!TzeOBp$rcK`NAm#Yu!shnRR@; z?y*$^2dtMs*b?Xi$7TQl=Kg#7v$nr^k`Wn94of|8Fu6}Dk>_4ek+MasW6O^|C|6L8l4Iod`GXRiL*$G{DEWS6e zeB=geZ8$<1j;V*PR<575`J1UXaG&VpBOt)tf9J3EM=){wN)x!sqIPw@dV_)Uqdvx; z|Hj#~1e$}8a?fAj^o%stA6qU(wR04CH}J**8-iT_ux;<3Ok^%$KB z4%q~c<6&pL-dePy7iE1YN2JFN*vs#^y6N&jy?{xcJSYId0VEQ5`k}%;AJ{~EGr@LP z(!K?`6!J$c@!#Ya|5>E*Km6KeZdo4o-)CAP1>f!}$iw3D@J@$|#)SpepLjv@~ zDcF?&i*tvK3erL7PpSnbwq|%lamA(XT&nTk^e-KO8UEXQ$7o;<5e>-F5nviizr822 z1mcJWL}myYEWANSktfw}^?Kg5j-bbAEE zGyC-CJM;nzA8wwYx&LtU0FMC2&CB?QP-89oL{e5ZY|^s6Nyk>pmLiOXU-9%1h1%oQ z2CPQF;-1(7yu-s}oB9><6o;P2xKJ(n%TS%hkK4Cz13A@};~fa(W8Q}kgy77lCS~wE zat{zQP*G8xoXLg+2RC@1fyicfrry!{`(-9XgzuSQTKn6`KvLSNHA_KD3kyXRm6+h* zV8G_489FRy#%Z;fgf{X_aoUgw&XZe+A$4XfVDwoGB=ZYkkCtj2R-{%|R}YX#qABYy z;H;5SGUk6ikp$+Yn#{w_=A*@sL}AZbP@c<*VO9h698q$1Vu+t1z~6sJY#i*59&wy7 z;z8_a#7yg3L7^82Ho`&S4n(4a!h3yO5^o&=*$fH#=BdOP$kYt~7RNQYnwlEji1s{(n@v(aD}a~+(LfHDAYBhxzQWdF|3>(L3=K?++ z37wF7Ua~`QX)D%aYo?xSPP|G;tj>qK5yv-8=2tQ|H{U(>+F_G>>kW2E1Bm!zl9Gy0 zUTcC4Ab78KMd{#Ri70j_VjrXxEWf?Gu)~(SAaeAJASO2U2|vFEpqAEGR#sM9j6IP} z6VVoQ*@O-H98|ecaN4ALY&>SwtbX0u*(q>1fs0AciY2O?7{TtFbL< z%P38N?YiB1?gJQ(g4im?d_V(nTpJj}v1q|V;JSM7Kn$mr3ZnPP@9B}E1$PT>B!}N4 z?<;VD+U(8fNSl^plUdh!Z(w#BpSf<&xKS{(@z~7dgCgeJIBl1N$jHbS5va*3iSq;7 z^IUKd;HqEcrMPI)NShbq@?J=-`C;6EuZf;(751tX9E5+ke6vBQ#b#DO8^o|ZKYqa0(tJxn4vQ}aMx&{v<%~UE>s@g$AI(?L ztS|_`DUEPl1iKC`Zr~CJC3SO!e^Z3{43Kbe2aFE|8p8PX!nYjQ+1dZ_?LD{aCB%YA z!(8nbx0j>j$79rVCK>w}3xGmS6xbsMNqV0neW74-E>!DzOUuayv$lQb?F^7C09=2} zB1P*PKo*E))gte{(FJD&=JX{HXn@;(X219nQ25ONM6`dDP|pG;DT&8=7|5bFT9fAeE5gR=8nTsQo5PTYkJum%X6*w$A|n8Un=g zSA~H#iraBjX4Vtcyz?a0ny)mV#brwq=R6v~vv3=9d~~DeMsGKwM6BnUG?a2>hAuND zUqdZY7M7OEMMlTOjBV{DBqU^5!b^40$2g2oDExszs!0VG`jq1(?&r!{Za+^KcRw zusLz$1*g>n(~UrC8;%oCfuaT>ExZSrp zkWz$GuHbmTfF^&vaH5$d zdj`~pA``^y)KP$x!M9kyx@rQJ{Uc%FS%oy-S9a*Gr_XWeF|ZP7 znkzyXnt_%I=PYr)6)Y-XIymOUgA2g!NU`s_Gu7-__eTQ>;6h}B4U3YFPU%pVM0b7m z&h<-#AU(&s4#LxMoHsc?DLXgVvST;ti_ci;jjO5%%?A7Et>t*}&|+uEKG>}s=p&%5 z%|Au8>KYpxdu$ZsEvmmjF3nz&90r>#4+w&AhW+M48H7vMI#5YiA-BJGbi8EMX;KHH zfWwE%V6_3$h4VSOzL**x5cTl$^f8)a&yGEgSK@H`3vhR?f=yiRyUVb!Yp_WWb`}$} zeT7z;4vyozieZGXDm9N44BSK+h_=>KJ-0u(US|a&WCnAf@c@-XRI&TN06~Rwy7VxB zhStrPgXu(G+tfL?B@%94UL?>7!)aY-GJtDyqhK#}*_^m1X<=pt6C)EI-Qosh6DHVD z$=`hUhI8!czUcX$C~k8DJNC@`#0e)8R(}5cc~gj)yHh<*KRu9|cm?7o`wzM2|NK$? z2N)q1VByMIu>y1AczRE*Fjx3K1Mw?hU__^+lmNZit9?%(XfOwv;uG|U{60>biW9X0 z!qA_DKR^f(8Welcome to datascience’s documentation!