-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbacktestv2.py
119 lines (96 loc) · 3.44 KB
/
backtestv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import pandas as pd
import numpy as np
import copy
class backtest:
"""
Entry from current close +/- input percent (market order sim) \n
Use high/low to calculate stop exits \n
"""
order = {
"type": None,
"entry": 0,
"exit": 0,
"entryTime" : 0,
"exitTime": 0
}
dataColumns = {}
i=0
def __columnCtrl(self):
for column in self.mainData:
try:
tmp = self.dataColumns[column]
del(tmp)
except:
self.dataColumns[column] = self.i
self.i += 1
def parseCondition(self, condition):
self.__columnCtrl()
try:
arr = condition.split()
except AttributeError:
return condition
for i in range(len(arr)):
try:
tmp = str(self.dataColumns[arr[i]])
arr[i] = "row['" + arr[i] + "']"
except KeyError:
continue
return ' '.join(arr)
def __genSig(self, row):
print(eval(self.orderCondition['longEntry']))
def __init__(self, candles, marketEntryPercent=0, marketExitPercent=0, stopLoss=0):
self.candles = candles
self.marketEntry = marketEntryPercent
self.marketExit = marketExitPercent
self.stopLoss = stopLoss
# PREPPING DATA
# float conversion
for column in self.candles:
if column == 'openTime':
continue
self.candles[column] = pd.to_numeric(self.candles[column], downcast="float")
# date conversion
self.candles['openTime']=pd.to_datetime(self.candles['openTime']/1000, unit='s')
self.mainData = copy.deepcopy(self.candles)
def addData(self, data):
try:
self.mainData = pd.concat([self.mainData, data.drop(['openTime'], axis=1)], axis=1)
except KeyError:
self.mainData = pd.concat([self.mainData, data], axis=1)
def setEntryExit(self, orderCondition):
"""
Enter order Conditions in the below format
orderCondition = {
'longEntry': None,
'longExit': None,
'shortEntry': None,
'shortExit': None
}
"""
self.orderCondition = orderCondition
for condition in self.orderCondition:
self.orderCondition[condition] = self.parseCondition(self.orderCondition[condition])
def generateSignals(self):
self.mainData['longEntry'] = False
self.mainData['longExit'] = False
self.mainData['shortEntry'] = False
self.mainData['shortExit'] = False
self.Signals = self.mainData[['longEntry', 'longExit', 'shortEntry', 'shortExit']]
self.mainData = self.mainData.drop(['longEntry', 'longExit', 'shortEntry', 'shortExit'], axis=1)
self.mainData.apply(self.__genSig, axis=1)
if __name__ == "__main__":
df = pd.read_csv('test/testData.csv').drop(['Unnamed: 0','closeTime'], axis=1)
obj = backtest(df)
from indis.panda_hccp import HCCP
hccp = HCCP(obj.candles)
obj.addData(hccp)
conditions = {
'longEntry': 'open > close or close > open',
'longExit': None,
'shortEntry': None,
'shortExit': None
}
obj.setEntryExit(conditions)
obj.generateSignals()
print(obj.mainData)
# print(obj.parseCondition('open > close'))