This repository has been archived by the owner on Aug 31, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathpack.js
457 lines (395 loc) · 13.1 KB
/
pack.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"use strict";
const fs = require("fs");
const COLS = 48;
const ROWS = 24;
const MIN_DEPTH = 3; // Minimum recursion depth to allow lossy compression.
const MAX_DEPTH = 10; // Maximum recursion depth (forcing lossy compression).
const EPS = 1e-6; // Epsilon value for floating-point equality checks.
// NOTE: This value (~0.01°) is arbitrary and ported from a prior version. It
// could easily be tuned smaller or larger if appropriate.
const URBAN_HACK_RADIUS = 720/49152;
const tz_geojson = require("./dist/combined.json");
const urban_geojson = require("./ne_10m_urban_areas.json");
// Make the geojson files consistent.
for(const geojson of [tz_geojson, urban_geojson]) {
for(const feature of geojson.features) {
// Ensure all features are MultiPolygons.
switch(feature.geometry.type) {
case "MultiPolygon":
break;
case "Polygon":
feature.geometry.type = "MultiPolygon";
feature.geometry.coordinates = [feature.geometry.coordinates];
break;
default:
throw new Error("unrecognized type " + type);
}
// geojson includes duplicate vertices at the beginning and end of each
// vertex list, so remove them. (This makes some of the algorithms used,
// like clipping and the like, simpler.)
for(const polygon of feature.geometry.coordinates) {
for(const vertices of polygon) {
const first = vertices[0];
const last = vertices[vertices.length - 1];
if(first[0] === last[0] && first[1] === last[1]) {
vertices.pop();
}
}
}
// Add properties representing the bounding box of the timezone.
let min_lat = 90;
let min_lon = 180;
let max_lat = -90;
let max_lon = -180;
for(const [vertices] of feature.geometry.coordinates) {
for(const [lon, lat] of vertices) {
if(lat < min_lat) { min_lat = lat; }
if(lon < min_lon) { min_lon = lon; }
if(lat > max_lat) { max_lat = lat; }
if(lon > max_lon) { max_lon = lon; }
}
}
feature.properties.min_lat = min_lat;
feature.properties.min_lon = min_lon;
feature.properties.max_lat = max_lat;
feature.properties.max_lon = max_lon;
}
}
// HACK: Add custom urban areas in order to fix reported errors.
for(const [lat, lon] of [
[ 36.8381, -84.8500],
[ 37.9643, -86.7453],
[ 58.3168, -134.4397],
[ 36.9147, -111.4558], // fix #7
[ 44.9280, -87.1853], // fix #13
[ 50.7029, -57.3511], // fix #13
[ 29.9414, -85.4064], // fix #14
[ 49.7261, -1.9104], // fix #15
[ 65.5280, 23.5570], // fix #16
[ 35.8722, -84.5250], // fix #18
[ 60.0961, 18.7970], // fix #23
[ 59.9942, 18.7794], // fix #23
[ 59.0500, 15.0412], // fix #23
[ 60.0270, 18.7594], // fix #23
[ 60.0779, 18.8102], // fix #23
[ 60.0239, 18.7625], // fix #23
[ 59.9983, 18.8548], // fix #23
[ 37.3458, -85.3456], // fix #24
[ 46.4547, -90.1711], // fix #25
[ 46.4814, -90.0531], // fix #25
[ 46.4753, -89.9400], // fix #25
[ 46.3661, -89.5969], // fix #25
[ 46.2678, -89.1781], // fix #25
[ 39.6217, -87.4522], // fix #27
[ 39.6631, -87.4307], // fix #27
[ 61.7132, 29.3968], // fix #36
[ 41.6724, -86.5082], // fix #38
[ 27.9881, 86.9253], // Mount Everest
[ 47.3525, -102.6214], // Dunn Center, North Dakota
[ 19.7500, -88.7000], // fix #40
[ 21.1000, -87.4833], // fix #40
[-31.6750, 128.8831], // fix #45
[54.39447, -6.978715], // fix #47
[54.59160, -7.733996], // fix #47
[54.54842, -7.834725], // fix #47
[54.15168, -7.357061], // fix #47
[54.75062, -7.560825], // fix #47
[54.20568, -6.738351], // fix #47
[54.54842, -7.834724], // fix #47
[ 45.6504, -67.5790], // fix #48
[ 46.4392, -67.7450], // fix #48
[ 45.3238, -116.5487], // fix #51
[-37.3786, 140.8362], // fix #52
[ 44.6972, -67.3955], // fix #53
[ 67.9333, 23.4333], // fix #54
[ 67.8167, 23.1667], // fix #54
[ 68.1375, 23.1447], // fix #56
[ 67.8000, 23.1133], // fix #56
[ 67.9458, 23.6242], // fix #56
[ 68.0168, 23.4515], // fix #56
[ 68.1133, 23.3214], // fix #56
[ 41.1426, -86.89009], // fix #59
[ 40.7608, -87.12402], // fix #59
[ 41.1938, -86.48956], // fix #59
]) {
urban_geojson.features.push({
properties: {
min_lat: lat - URBAN_HACK_RADIUS,
min_lon: lon - URBAN_HACK_RADIUS,
max_lat: lat + URBAN_HACK_RADIUS,
max_lon: lon + URBAN_HACK_RADIUS,
},
});
}
// Build up a tree representing a raster version of the timezone map.
function box_overlap(feature, min_lat, min_lon, max_lat, max_lon) {
return min_lat <= feature.properties.max_lat &&
min_lon <= feature.properties.max_lon &&
max_lat >= feature.properties.min_lat &&
max_lon >= feature.properties.min_lon;
}
function clip(polygon, min_lat, min_lon, max_lat, max_lon) {
const p = Array.from(polygon);
const q = [];
let b;
b = p[p.length - 1];
for(let i = 0; i < p.length; i++) {
const a = b;
b = p[i];
if((a[0] >= min_lon) !== (b[0] >= min_lon)) {
q.push([min_lon, a[1] + (b[1] - a[1]) * (min_lon - a[0]) / (b[0] - a[0])]);
}
if(b[0] >= min_lon) {
q.push(b);
}
}
p.length = 0;
b = q[q.length - 1];
for(let i = 0; i < q.length; i++) {
const a = b;
b = q[i];
if((a[1] >= min_lat) !== (b[1] >= min_lat)) {
p.push([a[0] + (b[0] - a[0]) * (min_lat - a[1]) / (b[1] - a[1]), min_lat]);
}
if(b[1] >= min_lat) {
p.push(b);
}
}
q.length = 0;
b = p[p.length - 1];
for(let i = 0; i < p.length; i++) {
const a = b;
b = p[i];
if((a[0] <= max_lon) !== (b[0] <= max_lon)) {
q.push([max_lon, a[1] + (b[1] - a[1]) * (max_lon - a[0]) / (b[0] - a[0])]);
}
if(b[0] <= max_lon) {
q.push(b);
}
}
p.length = 0;
b = q[q.length - 1];
for(let i = 0; i < q.length; i++) {
const a = b;
b = q[i];
if((a[1] <= max_lat) !== (b[1] <= max_lat)) {
p.push([a[0] + (b[0] - a[0]) * (max_lat - a[1]) / (b[1] - a[1]), max_lat]);
}
if(b[1] <= max_lat) {
p.push(b);
}
}
return p;
}
function area(polygon) {
let sum = 0;
let b = polygon[polygon.length - 1];
for(let i = 0; i < polygon.length; i++) {
const a = b;
b = polygon[i];
sum += a[0] * b[1] - a[1] * b[0];
}
return Math.abs(sum * 0.5);
}
function polygon_overlap(feature, min_lat, min_lon, max_lat, max_lon) {
let total = 0;
for(const polygon of feature.geometry.coordinates) {
total += area(clip(polygon[0], min_lat, min_lon, max_lat, max_lon));
for(let i = 1; i < polygon.length; i++) {
total -= area(clip(polygon[i], min_lat, min_lon, max_lat, max_lon));
}
}
return total / ((max_lat - min_lat) * (max_lon - min_lon));
}
function by_coverage_and_tzid([a, a_coverage], [b, b_coverage]) {
const order = b_coverage - a_coverage;
if(order !== 0) { return order; }
return a.properties.tzid.localeCompare(b.properties.tzid);
}
function contains_city(min_lat, min_lon, max_lat, max_lon) {
for(const feature of urban_geojson.features) {
if(
box_overlap(feature, min_lat, min_lon, max_lat, max_lon) &&
(
// HACK: If there's no geometry, it's OK: these were manually added
// box-shaped zones and we don't want or need the polygon.
feature.geometry === undefined ||
polygon_overlap(feature, min_lat, min_lon, max_lat, max_lon) >= EPS
)
) {
return true;
}
}
return false;
}
function maritime_zone(lon) {
const x = Math.round(12 - (lon + 180) / 15);
if(x > 0) { return "Etc/GMT+" + x; }
if(x < 0) { return "Etc/GMT" + x; }
return "Etc/GMT";
}
function tile(candidates, etc_tzid, min_lat, min_lon, max_lat, max_lon, depth) {
const mid_lat = min_lat + (max_lat - min_lat) / 2;
const mid_lon = min_lon + (max_lon - min_lon) / 2;
const subset = [];
for(const candidate of candidates) {
let overlap = polygon_overlap(candidate, min_lat, min_lon, max_lat, max_lon);
if(overlap < EPS) {
continue;
}
subset.push([candidate, overlap]);
}
// No coverage should not happen?
if(subset.length === 0) {
return etc_tzid;
}
// One zone means use it.
if(subset.length === 1) {
return subset[0][0].properties.tzid;
}
subset.sort(by_coverage_and_tzid);
// If the first zone has max coverage OR we hit the maximum recursion depth
// OR this is a rural area that doesn't matter, then we're going to return a
// leaf node rather than recurse further.
if(
subset[0][1] > 1 - EPS ||
depth >= MAX_DEPTH ||
(depth >= MIN_DEPTH && !contains_city(min_lat, min_lon, max_lat, max_lon))
) {
const a = subset[0][0].properties.tzid;
// If the second zone in the list has nearly the same coverage level as the
// first, then sort out how to favor one over the other.
// NOTE: We assume that no more than two zones ever conflict! This is true
// as of 2018i, but...
if(subset[0][1] - subset[1][1] < EPS) {
const b = subset[1][0].properties.tzid;
// Xinjiang conflict. We select Asia/Urumqi in order to make it clear
// that there is, in fact, a conflict.
if(a === "Asia/Shanghai" && b === "Asia/Urumqi") { return b; }
// Israeli-Palestinian conflict. We select Asia/Hebron in order to make
// it clear that there is, in fact, a conflict.
if(a === "Asia/Hebron" && b === "Asia/Jerusalem") { return a; }
// Sudan-South Sudan conflict. We select Africa/Khartoum arbitrarily and
// will tweak it if anyone complains.
if(a === "Africa/Juba" && b === "Africa/Khartoum") { return b; }
// These are just conflicts that occur due to the resolution of our data.
// Resolve them arbitrarily and we'll tweak it if anyone complains.
if(a === "Europe/Amsterdam" && b === "Europe/Berlin") { return a; }
if(a === "Australia/Sydney" && b === "Australia/Melbourne") { return a; }
throw new Error("unresolved zone conflict: " + a + " vs " + b);
}
// Otherwise, we just care about the top zone.
return a;
}
// No easy way to pick a timezone for this tile. Recurse!
const subset_candidates = subset.map(x => x[0]);
const child_depth = depth + 1;
const children = [
tile(subset_candidates, etc_tzid, mid_lat, min_lon, max_lat, mid_lon, child_depth),
tile(subset_candidates, etc_tzid, mid_lat, mid_lon, max_lat, max_lon, child_depth),
tile(subset_candidates, etc_tzid, min_lat, min_lon, mid_lat, mid_lon, child_depth),
tile(subset_candidates, etc_tzid, min_lat, mid_lon, mid_lat, max_lon, child_depth),
];
// If all the children are leaves, and they're either identical or a maritime
// zone, then collapse them up into a single node.
if(!Array.isArray(children[0]) &&
!Array.isArray(children[1]) &&
!Array.isArray(children[2]) &&
!Array.isArray(children[3])) {
const clean_children = children.filter(x => x !== etc_tzid);
if(clean_children.length === 0) { return etc_tzid; }
let all_equal = true;
for(let i = 1; i < clean_children.length; i++) {
if(clean_children[0] !== clean_children[i]) {
all_equal = false;
break;
}
}
if(all_equal) {
return clean_children[0];
}
}
return children;
}
const root = new Array(COLS * ROWS);
for(let row = 0; row < ROWS; row++) {
const min_lat = 90 - (row + 1) * 180 / ROWS;
const max_lat = 90 - (row + 0) * 180 / ROWS;
for(let col = 0; col < COLS; col++) {
const min_lon = -180 + (col + 0) * 360 / COLS;
const max_lon = -180 + (col + 1) * 360 / COLS;
const etc_tzid = maritime_zone(min_lon + (max_lon - min_lon) / 2);
// Determine which timezones potentially overlap this tile.
const candidates = [];
for(const feature of tz_geojson.features) {
if(box_overlap(feature, min_lat, min_lon, max_lat, max_lon)) {
candidates.push(feature);
}
}
root[row * COLS + col] = tile(
candidates,
etc_tzid,
min_lat,
min_lon,
max_lat,
max_lon,
1
);
}
}
// Generate list of timezones.
const tz_set = new Set();
function add(node) {
if(Array.isArray(node)) {
node.forEach(add);
}
else {
tz_set.add(node);
}
}
add(root);
const tz_list = Array.from(tz_set);
tz_list.sort();
// Pack tree into a string.
function pack(root) {
const list = [];
for(const queue = [root]; queue.length; ) {
const node = queue.shift();
node.index = list.length;
list.push(node);
for(let i = 0; i < node.length; i++) {
if(Array.isArray(node[i])) {
queue.push(node[i]);
}
else {
node[i] = tz_list.indexOf(node[i]);
}
}
}
let string = "";
for(let i = 0; i < list.length; i++) {
const a = list[i];
for(let j = 0; j < a.length; j++) {
const b = a[j];
let x;
if(Array.isArray(b)) {
x = b.index - a.index - 1;
if(x < 0 || x + tz_list.length >= 3136) {
throw new Error("cannot pack in the current format");
}
}
else {
x = 3136 - tz_list.length + b;
}
string += String.fromCharCode(Math.floor(x / 56) + 35, (x % 56) + 35);
}
}
return string;
}
const tz_data = pack(root);
console.log(
"%s",
fs.readFileSync("tz_template.js", "utf8").
replace(/__TZDATA__/, () => JSON.stringify(tz_data)).
replace(/__TZLIST__/, () => JSON.stringify(tz_list))
);