-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathex_color_palette.py
122 lines (88 loc) · 4.08 KB
/
ex_color_palette.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# coding=utf-8
"""Simulating an indirect color scheme with matplotlib"""
import numpy as np
import matplotlib.pyplot as mpl
import matplotlib.animation as animation
import sys, os.path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from grafica.assets_path import getAssetPath
__author__ = "Daniel Calderon"
__license__ = "MIT"
# Extract the different colors from an image
def getColorPalette(image):
# 3 dimensions: row, column and color
assert len(image.shape) == 3
# color must have 3 components (RGB)
assert image.shape[2] == 3
# Here we will construct the indexed image, the index is only 8 bits long representing a positive integer number
indexedImage = np.zeros(shape=(image.shape[0], image.shape[1]), dtype=np.uint8)
# A helper dictionary to associate colors and indices easily
colorsDict = {}
# A list to associate indices and colors easily
colorsPalette = []
# Checking each row
for i in range(image.shape[0]):
# Checking each column
for j in range(image.shape[1]):
# The value image[i,j,X] corresponds to the pixel located at i,j.
# X could be 0, 1 or 2, refering to the color component Read, Green or Blue respectively.
# The color component value is float value between 0 and 1.
# converting the numpy array into a python tuple, which can be used as index in a python dictionary
pixelColor = (image[i,j,0], image[i,j,1], image[i,j,2])
# if the color is not in the palette, it is added
if pixelColor not in colorsDict:
# Getting an index for the new color
colorIndex = len(colorsDict)
# Storing the index in the dictionary for further queries
colorsDict[pixelColor] = colorIndex
# Storing the color associated with a given color index
colorsPalette += [image[i,j,:]]
# storing the index in the indexed image
#print("pp", colorsDict, pixelColor)
indexedImage[i,j] = colorsDict[pixelColor]
# returning indexed image and its colors
return indexedImage, colorsPalette
def assignColors(indexedImage, colorsPalette):
# 2 dimensions: row and column
assert len(indexedImage.shape) == 2
# Here we will construct the image
image = np.zeros(shape=(indexedImage.shape[0], indexedImage.shape[1], 3), dtype=np.float)
# Checking each row
for i in range(indexedImage.shape[0]):
# Checking each column
for j in range(indexedImage.shape[1]):
# Painting the image with the color in the palette
colorIndex = indexedImage[i,j]
image[i,j,:] = colorsPalette[colorIndex]
return image
def modifyPalette(colorPalette):
newPalette = []
for color in colorPalette:
# Generating a new color changing the RGB order...
newColor = np.array([color[1], color[2], color[0]], dtype=np.float)
newPalette += [newColor]
return newPalette
if __name__ == "__main__":
# Reading an image into a numpy array
originalImage = mpl.imread(getAssetPath("santiago.png"))
print("Shape of the image: ", originalImage.shape)
print("Example of pixel value:", originalImage[1,2,:])
# Removing alpha channel if present
if originalImage.shape[2] == 4:
originalImage = originalImage[:,:,0:3]
print("Alpha channel removed")
print("Shape of the image: ", originalImage.shape)
print("Example of pixel value:", originalImage[1,2,:])
# Obtaining all different colors in the image and the indexed image
indexedImage, colorsPalette = getColorPalette(originalImage)
# Modifying the color palette
newColorPalette = modifyPalette(colorsPalette)
# Reconstructing image
reconstructedImage = assignColors(indexedImage, newColorPalette)
# Arranging the original and modified images
fig, axs = mpl.subplots(2, 1)
axs[0].imshow(originalImage)
axs[1].imshow(reconstructedImage)
fig.suptitle('Indirect Color Example')
# Displaying the figure
mpl.show()