-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathch6_2.tex
355 lines (292 loc) · 14.7 KB
/
ch6_2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
\section{Calculus of Sine and Cosine.}
The formulas for the derivative and integral of the functions $\sin$
and $\cos$ follow in a straightforward way from one fundamental limit theorem. It is
\begin{theorem} %( 2.1 )
$$
\lim_{t \rightarrow 0} \frac{\sin t}{t} = 1.
$$
\end{theorem}
%Figure 6
\putfig{4truein}{scanfig6_6}{}{fig 6.6}
\begin{proof}
It is convenient first to impose the restriction that $t > 0$ and prove that the limit from
the right equals 1; i.e.,
\begin{equation}
\lim_{t \rightarrow 0+} \frac{\sin t}{t} = 1.
\label{eq6.2.1}
\end{equation}
Since, in proving (1), we are concerned only with small values of $t$, we may assume
that $t < \frac{\pi}{2}$. Thus we have $0 < t < \frac{\pi}{2}$ and, as a consequence,
$\sin t > 0$ and $\cos t > 0$. Let $S$ be the region in the plane bounded by the circle $x^2 + y^2 = 1$,
the positive $x$-axis, and the line segment which joins the origin to the point $(\cos t, \sin t)$; i.e.,
$S$ is the shaded sector in Figure 6. Since
the area of the circle is $\pi$ and the circumference is $2\pi$, the area of $S$ is equal to
$\frac{t}{2\pi} \cdot \pi = \frac{t}{2}$. Next, consider the right triangle $T_{1}$ with vertices (0, 0),
$(\cos t, \sin t)$, and $(\cos t, 0)$. Since the area of any triangle is one half the base times the
altitude, it follows that $area(T_{1}) = \frac{1}{2} \cos t \sin t$. The line which passes through (0,0)
and $(\cos t, \sin t)$ has slope $\frac{\sin t}{\cos t}$ and equation $y =\frac{\sin t}{\cos t}x$.
Setting $x = 1$, we see that it passes through the point
$\Bigl(1,\frac{\sin t}{\cos t} \Bigr)$, as shown in Figure 6. Hence if $T_{2}$ is the right triangle with
vertices (0,0), $\Bigl(1, \frac{\sin t}{\cos t} \Bigr)$, and (1, 0), then
$$
area(T_{2}) = \frac{1}{2} \cdot 1 \cdot \frac{\sin t}{\cos t} = \frac{1}{2} \frac{\sin t}{\cos t}.
$$
Since $T_{1}$ is a subset of $S$ and since $S$ is a subset of $T_{2}$, it follows by a fundamental property of area [see (1.3), page 171] that
$$
area(T_{1}) \leq area(S) \leq area(T_{2}).
$$
Hence
$$
\frac{1}{2} \cos t \sin t \leq \frac{t}{2} \leq \frac{1}{2} \frac{\sin t}{\cos t} .
$$
If we multiply through by $\frac{2}{\sin t}$, we get
$$
\cos t \leq \frac{t}{\sin t} \leq \frac{ 1}{\cos t}.
$$
Taking reciprocals and reversing the direction of the inequalities, we obtain finally
\begin{equation}
\frac{1}{\cos t} \geq \frac{\sin t}{t} \geq \cos t.
\label{eq6.2.2}
\end{equation}
With these inequalities, the proof of (1) is essentially finished. Since the function $\cos$ is continuous, we have $\lim_{t \rightarrow 0+} \cos t = \cos 0 = 1$. Moreover, the limit of a quotient is the quotient of the limits, and so $\lim_{t \rightarrow 0+} \frac{1}{\cos t} = \frac{1}{1} = 1$.
Thus $\frac{\sin t}{t}$ lies between two quantities both of which approach 1 as $t$ approaches zero from the right. It follows that
$$
\lim_{t \rightarrow 0+} \frac{\sin t}{t} = 1.
$$
It is now a simple matter to remove the restriction $t > 0$. Since $\frac{\sin t}{t} = \frac{- \sin t}{-t} = \frac{\sin(-t)}{-t}$, we know that
\begin{equation}
\frac{\sin t}{t} = \frac{\sin |t|}{|t|}.
\label{eq6.2.3}
\end{equation}
As $t$ approaches zero, so does $|t|$; and as $|t|$ approaches zero, we have just proved that the right side of (3) approaches 1. The left side, therefore, also a pproaches 1, and so the proof is complete.
\end{proof}
It is interesting to compare actual numerical values of $t$ and $\sin t$.
Table 1 illustrates the limit theorem (2.1) quite effectively.
\medskip
%TABLE I
\begin{table}
\centering
\begin{tabular}{c|c}\hline
\centering
$t$ & $\sin t$ \\ \hline
0.50 & 0.4794 \\
0.40 & 0.3894 \\
0.30 & 0.2955 \\
0.20 & 0.1987 \\
0.10 & 0.0998 \\
0.08 & 0.0799 \\
0.06 & 0.0600 \\
0.04 & 0.0400 \\
0.02 & 0.0200 \\ \hline
\end{tabular}
\caption{}
\label{table 6.1}
\end{table}
\medskip
A useful corollary of (2.1) is
\begin{theorem} %(2.2)
$$
\lim_{t \rightarrow 0} \frac{1 - \cos t}{t} = 0.
$$
\end{theorem}
\begin{proof}
Using trigonometric identities, we write $\frac{1 - \cos t}{t}$ in such a form that (2.1) is applicable.
$$
\begin{array}{rcll}
1 &=& & \cos^{2} \frac{t}{2} + \sin^{2}\frac{t}{ 2},\\
\cos t &=& \cos (\frac{t}{2} + \frac{t}{2}) =& \cos^{2} \frac{t}{2} - \sin^{2} \frac{t}{2}.
\end{array}
$$
Hence $1 - \cos t = 2 \sin^{2} \frac{t}{2}$, and
$$
\frac{1 - \cos t}{t} = \frac{t}{2} \sin^{2} \frac{t}{2}
= \Bigl(\frac{\sin \frac{t}{2}}{\frac{t}{2}} \Bigr) \sin \frac{t}{2}.
$$
As $t$ approaches zero, $\frac{t}{2}$ also approaches zero, so, by (2.1), the quantity
$$
\frac{\sin \frac{t}{2}}{\frac{t}{2}}
$$
approaches 1. Moreover, $\sin$ is a continuous function, and therefore $\sin \frac{t}{2}$ approaches $\sin 0 = 0$. The product therefore approaches $1 \cdot 0 = 0$, and the proof is complete.
\end{proof}
In writing values of the functions $\sin$ and $\cos$, we have thus far avoided the letter $x$ and have not written $\sin x$ and $\cos x$ simply because the point on the circle $x^{2} + y^{2} = 1$ whose coordinates define the value of $\cos$ and $\sin$ has nothing to do with, and generally does not lie on, the $x$-axis. However, when we study $\sin$ and $\cos$ as two real-valued functions of a real variable, it is natural to use $x$ as the independent variable.
We shall not hesitate to do so from now on.
%EXAMPLE 1.
\begin{example} Evaluate the limits
$$
\mbox{(a)}\;\;\; \lim_{x \rightarrow 0} \frac{\sin 3x}{\sin 7x},\;\;\;
\mbox{(b)}\;\;\; \lim_{x \rightarrow 0} \frac{1 - \cos^{2} x}{x}, \;\;\;
\mbox{(c)}\;\;\; \lim_{x \rightarrow 0} \frac{\cos x}{\sin x}.
$$
\noindent We evaluate the first two limits by writing the quotients in such a form that the fundamental trigonometric limit theorem, $\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1$, is applicable. For (a),
$$
\frac{\sin 3x}{\sin 7x} = \frac{\sin 3x}{3x} \frac{7x}{\sin 7x} \frac{3}{7}.
$$
\noindent As $x$ approaches zero, so does $3x$ and so does $7x$. Hence $\frac{\sin 3x}{3x}$ approaches 1, and $\frac{7x}{\sin 7x} = \Bigl(\frac{\sin 7x}{7x} \Bigr)^{-1}$ approaches $1^{-1} = 1$.
We conclude that
$$
\lim_{x \rightarrow 0} \frac{\sin 3x}{\sin 7x} = 1 \cdot 1 \cdot \frac{3}{7} = \frac{3}{7}.
$$
\noindent To do (b), we use the identity $\cos^{2} x + \sin^{2} x = 1$. Thus
$$
\frac{1 - \cos^{2}x}{x} = \frac{\sin^{2} x}{x} = \sin x \frac{\sin x}{x}.
$$
\noindent As $x$ approaches zero, $\sin x$ approaches $\sin 0 = 0$, and $\frac{\sin x}{x}$ approaches 1. Hence
$$
\lim_{x \rightarrow 0} \frac{1 - \cos^{2}x}{x} = 0 \cdot 1 = 0.
$$
\noindent For (c), no limit exists. The numerator approaches 1, and the denominator approaches zero. Note that we cannot even write the limit as $+\infty$ or $-\infty$ because $\sin x$ may be either positive or negative. As a result, $\frac{\cos x}{\sin x}$ takes on both arbitrarily large positive values and arbitrarily large negative values as $x$ approaches zero.
\end{example}
% 294 TRIGONOMETRIC FUNCTIONS [CHAP. 6
We are now ready to find $\frac{d}{dx} \sin x$. The value of the derivative at an arbitrary number $a$ is by definition
$$
\Bigl(\frac{d}{dx} \sin x \Bigr) (a) = \lim_{t \rightarrow 0} \frac{\sin (a + t) - \sin a}{t}.
$$
\noindent As always, the game is to manipulate the quotient into a form in which we can see what the limit is. Since $\sin(a + t) = \sin a \cos t + \cos a \sin t$, we have
\begin{eqnarray*}
\frac{\sin(a + t) - \sin a}{t} &=& \frac{\sin a \cos t + \cos a \sin t - \sin a}{t}\\
&=& \cos a \frac{\sin t}{t} - \sin a \frac{1 - \cos t}{t}.
\end{eqnarray*}
\noindent As $t$ approaches 0, the quantities $\cos a$ and $\sin a$ stay fixed. Moreover, $\frac{\sin t}{t}$ approaches 1, and $\frac{1 - \cos t}{t}$ approaches 0. Hence, the right side of the above equation approaches
$(\cos a) \cdot 1 - (\sin a) \cdot 0 = \cos a$. We conclude that
$$
\Bigl (\frac{d}{dx} \sin x \Bigr) (a) = \cos a, \;\;\;\mbox{for every real number}\; a.
$$
\noindent Writing this result as an equality between functions, we get the simpler form
\begin{theorem} %(2.3)
$$
\frac{d}{dx} \sin x= \cos x.
$$
\end{theorem}
The derivative of the cosine may be found from the derivative of the sine using the Chain Rule
and the twin identities $\cos x = \sin \Bigl(\frac{\pi}{2} - x \Bigr)$ and $\sin x = \cos \Bigl(\frac{\pi}{2} - x \Bigr)$ [see (1 6), page 286].
\begin{eqnarray*}
\frac{d}{dx} \cos x = \frac{d}{dx} \sin \Bigl(\frac{\pi}{2} - x \Bigr)
&=& \cos \Bigl(\frac{\pi}{2} - x \Bigr) \frac{d}{dx} \Bigl(\frac{\pi}{2} - x \Bigr) \\
&=& \cos \Bigl(\frac{\pi}{2} - x \Bigr) (-1) = - \sin x.
\end{eqnarray*}
\noindent Writing this result in a single equation, we have
\begin{theorem} %(2.4)
$$
\frac{d}{dx} \cos x = - \sin x.
$$
\end{theorem}
%sec. 23 CALCULUS OF SINK AND COSINE 295
%EXAMPLE 2.
\begin{example}
Find the following derivatives.
$$
\begin{array}{ll}
\mbox{(a)}\;\;\; \frac{d}{dx} \sin(x^{2} + 1), &\;\;\; \mbox{(c)}\;\;\; \frac{d}{dt} \sin e^{t}, \\
\mbox{(b)}\;\;\; \frac{d}{dx} \cos 7x, &\;\;\; \mbox{(d)}\;\;\; \frac{d}{dx} \ln (\cos x)^2.
\end{array}
$$
These are routine exercises which combine the basic derivatives with the Chain Rule.
For (a) we have
$$
\frac{d}{dt} \sin(x^2 + 1 ) = \cos(x^2 + 1 ) \frac{d}{dx} (x^{2} + 1 ) = 2x \cos(x^{2} + 1 ).
$$
\noindent The solution to (b) is
$$
\frac{d}{dx} \cos 7x = - \sin 7x \frac{d}{dx} 7x = - 7 \sin 7x.
$$
\noindent For (c),
$$
\frac{d}{dt} \sin e^{t} = \cos e^{t} \frac{d}{dt} e^{t} = e^{t} \cos e^{t},
$$
\noindent and for (d),
\begin{eqnarray*}
\frac{d}{dx} \ln (\cos x)^2 &=& \frac{1}{(\cos x)^{2}} \frac{d}{dx} (\cos x)^2 \\
&=& \frac{1}{(\cos x)^{2}} 2 \cos x \frac{d}{dx} \cos x \\
&=& \frac{-2\cos x \sin x}{(\cos x)^{2}} = -\frac{2 \sin x}{\cos x}.
\end{eqnarray*}
\end{example}
Every derivative formula has its corresponding integral formula. For the trigonometric
functions $\sin$ and $\cos$, they are
\begin{theorem} %(2.5)
\begin{eqnarray*}
\int \sin x dx &=& -\cos x + c, \\
\int \cos x dx &=& \sin x + c.
\end{eqnarray*}
\end{theorem}
% 296 TRIGONOMETRIC FUNCTIONS [CHAP. 6
The proofs consist of simply verifying that the derivative of the proposed integral is the integrand. For example,
$$
\frac{d}{dx} (-\cos x + c) = - \frac{d}{dx} \cos x = \sin x.
$$
%EXAMPLE 3.
\begin{example} Find the following integrals.
$$
(a)\; \int \sin 8x dx, \;\;\;(b)\; \int x \cos(x^2) dx, \;\;\;(c)\; \int \cos^{5}x \sin x dx.
$$
The solutions use only the basic integral formulas and the fact that if $F' = f$, then $\int f(u) \frac{du}{dx} = F(u) + c$. Integral (a) is simple enough to write down at a glance:
$$
\int \sin 8x dx = - \frac{1}{8} \cos 8x + c.
$$
To do (b), let $u = x^2$. Then $\frac{du}{dx} = 2x$, and
\begin{eqnarray*}
\int x \cos(x^2) dx &=& \frac{1}{2}(\cos(x^2))2x dx \\
&=& \frac{1}{2} \int (\cos u) \frac{du}{dx}dx \\
&=& \frac{1}{2} \sin u + c \\
&=& 2 \sin (x^2) + c.
\end{eqnarray*}
For (c), we let $u = \cos x$. Then $\frac{du}{dx} = -\sin x$. Hence
\begin{eqnarray*}
\int \cos^{5} x \sin x dx &=& - \int \cos^{5} x (- \sin x) dx \\
&=& - \int u^{5} \frac{du}{dx} dx \\
&=& - \frac{1}{6} u^{6} + c \\
&=& - \frac{1}{6} \cos^{6} x + c.
\end{eqnarray*}
\end{example}
The graphs of the functions $\sin$ and $\cos$ are extremely interesting and important curves.
To begin with, let us consider the graph of $\sin x$ only for $0 \leq x \leq \frac{\pi}{2}$. A few isolated points can be plotted immediately (see Table 2).
%SEC. 21 CALCULUS OF SINE AND COSINE 297
\medskip
%TABLE 2
\begin{table}
\centering
\begin{tabular}{r|l}\hline
$x$ & $y = \sin x$ \\ \hline
0 & 0\\
$\frac{\pi}{6}$ & $\frac{1}{2}$ \\
$\frac{\pi}{4}$ & $\frac{1}{2} \sqrt 2$ = 0.71 (approximately) \\
$\frac{\pi}{3}$ & $\frac{1}{2} \sqrt 3$ = 0.87 (approximately) \\
$\frac{\pi}{2}$ & 1\\\hline
\end{tabular}
\caption{}
\label{table 6.2}
\end{table}
\medskip
\noindent The slope of the graph is given by the derivative, $\frac{d}{dx} \sin x = \cos x$.
At the origin it is $\cos 0 = 1$, and, where $x = \frac{\pi}{2}$ the slope is $\cos \frac{\pi}{2} = 0$.
Since
$$
\frac{d}{dx} \sin x = \cos x > 0 \;\;\;\mbox{if}\; 0 < x < \frac{\pi}{2},
$$
\noindent we know that $\sin x$ is a strictly increasing function on the open interval $\Bigl(0, \frac{\pi}{2} \Bigr)$. In addition, there are no points of inflection on the open interval and the curve is concave downward there because
$$
\frac{d^2}{dx^2} \sin x = \frac{d}{dx} \cos x = -\sin x < 0 \;\;\; \mbox{if}\; 0 < x < \frac{\pi}{2}.
$$
\noindent On the other hand, the second derivative changes sign at $x = 0$, and so there is a point of inflection at the origin. With all these facts we can draw quite an accurate graph. It is shown in Figure 7.
% Figure 7
\putfig{4truein}{scanfig6_7}{}{fig 6.7}
%298 TRIGONOMETRIC FUNCTIONS [CHAP. 6
It is now a simple matter to fill in as much of the rest of the graph of $\sin x$ as we like. For every
real number $x$, the points $x$ and $\pi - x$ on the real number line are symmetrically located about the point $\frac{\pi}{2}$. The midpoint between $x$ and $\pi - x$ is given by $\frac{x + (\pi - x)}{2} = \frac{\pi}{2}$. As $x$ increases from 0 to $\frac{\pi}{2}$ the number $\pi - x$ decreases from $\pi$ to $\frac{\pi}{2}$. Moreover,
\begin{eqnarray*}
\sin(\pi - x) &=& \sin \pi \cos x - \cos \pi \sin x \\
&=& 0 \cdot \cos x - (-1) \cdot \sin x \\
&=& \sin x.
\end{eqnarray*}
\noindent It follows that the graph of $\sin x$ on the interval $\Bigl[\frac{\pi}{2}, \pi \Bigr]$ is the mirror image of the graph on $\Bigl[0, \frac{\pi}{2} \Bigr]$ reflected across the line $x = \frac{\pi}{2}$ . This is the dashed curve in Figure 7. Now, because $\sin x$ is an odd function, its graph for $x \leq 0$ is obtained by reflecting the graph for $x \geq 0$ about the origin (i.e., reflecting first about one coordinate axis and then the other). This gives us the graph for $-\pi \leq x \leq \pi$. Finally, since $\sin x$ is a periodic function with period $2\pi$, its values repeat after intervals of length $2\pi$. It follows that the entire graph of $\sin x$ is the infinite wave, part of which is shown in Figure 8.
%Figure 8
\putfig{4.5truein}{scanfig6_8}{}{fig 6.8}
The graph of $\cos x$ is obtained by translating (sliding) the graph of $\sin x$ to the left a distance $\frac{\pi}{2}$. This geometric assertion is equivalent to the algebraic equation $\cos x = \sin \Bigl(x + \frac{\pi}{2} \Bigr).$ But this follows from the trigonometric identity
\begin{eqnarray*}
\sin \Bigl(x + \frac{\pi}{2} \Bigr) &=& \sin x \cos \frac{\pi}{2} + \cos x \sin \frac{\pi}{2}\\
&=& (\sin x) \cdot 0 + (\cos x) \cdot 1\\
&=& \cos x.
\end{eqnarray*}
%SEC. 2] CALCULUS OF SINE AND COSINE 299
The graphs of $\cos x$ and $\sin x$ are shown together in Figure 9.
%Figure 9
\putfig{4.5truein}{scanfig6_9}{}{fig 6.9}