-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathch5_4.tex
344 lines (275 loc) · 12.5 KB
/
ch5_4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
\section{Other Exponential and Logarithm Functions.} \label{sec 5.4}
If $m$ and $n$ are integers and $n > 0$, then
$$
2^{m/n} = \sqrt[n]{2^{m}}.
$$
\noindent Hence, for any rational number $r$, the number $2^r$ is defined. But what is $2^x$ if $x$ is not rational? More generally, how should $a^x$ be defined for an arbitrary real number $x$ and a positive number $a$?
If $x$ is a rational number and $a$ is positive, we have shown that $\ln a^{x} = x \ln a$, and therefore $a^{x} = e^{x \ln a}$. However, $e^{x \ln a}$ is defined for every real number $x$. We shall take advantage of this fact, and, if $x$ is real but not rational, we \textit{define} $a^x$ to be $e^{x \ln a}$.
Consequently, for every real number $x$, we have
$$
a^{x} = e^{x \ln a}, \;\;\; a > 0.
$$
This function, so defined, has all the familiar properties of an exponential function:
\begin{theorem}
\label{thm 5.4.1}
$$
\left \{
\begin{array}{l}
a^{x} > 0, \;\;\; -\infty < x < \infty,\\
\\
a^{0} = 1,\\
\\
a^{1} = a,\\
\\
a^{x} \cdot a^{y} = a^{x + y},\\
\\
a^{-x} = \frac{1}{a^x},\\
\\
\frac{a^x}{a^y} = a^{x-y}.
\end{array}
\right.
$$
\end{theorem}
The proofs follow readily from the properties of the functions $\ln$ and $\exp$. For example,
$$
a^{1} = e^{1 \ln a} = e ^{\ln a} = a,
$$
$$
a^{x} \cdot a^{y} = e ^{x \ln a} \cdot e ^{y \ln a} = e^{x \ln a + y \ln a}
= e^{(x + y)\ln a} = a^{x + y}.
$$
The derivative of $a^{x}$ is easily computed from its defining equation. Since
$$
\frac{d}{dx}a^{x} = \frac{d}{dx} e^{x \ln a} = e^{x \ln a} \frac{d}{dx} (x \ln a)
= a^{x} \ln a,
$$
we have the formula
\begin{theorem}
\label{thm 5.4.2}
$$
\frac{d}{dx} a^{x} = a^{x} \ln a.
$$
\end{theorem}
More generally, if $u$ is a differentiable function of $x$, the Chain Rule implies that
\begin{equation}
\frac{d}{dx} a^{u} = a^{u} \ln a \frac{du}{dx}.
\label{eq5.4.1}
\end{equation}
%EXAMPLE 1.
\begin{example}
Compute the derivative of each of the following functions:
$$
(a)\; 2^x, \;\;\;(b)\; 2^{(x^2)}, \;\;\;(c)\; 2^{(2^x)}.
$$
\noindent For (a) we get
$$
\frac{d}{dx} 2^{x} = 2^{x} \ln 2;
$$
\noindent for (b),
\begin{eqnarray*}
\frac{d}{dx} 2^{(x^2)}
&=& 2^{(x^2)} \ln 2 \frac{d}{dx} x^2 = 2^{(x^2)} (\ln 2) (2x) \\
&=& x 2^{x^{2} + 1} \ln 2;
\end{eqnarray*}
\noindent and for (c),
\begin{eqnarray*}
\frac{d}{dx} 2^{(2^x)}
&=& 2^{(2^{x})} \ln 2 \frac{d}{dx} 2^{x} = 2^{(2^{x})} (\ln 2) 2^{x} \ln 2 \\
&=& 2^{2^{x} +x} (\ln 2)^2.
\end{eqnarray*}
\end{example}
If $a = 1$, then $a^{x} = e^{x \ln 1} = e^{0} = 1$ for every real number $x$. Hence $1^{x}$ is the constant function 1.
%264 LOGARITHMS AND EXPONENTIAL FUNCTIONS [CHAP. 5
If $a > 1$, then the graph of the function $a^{x}$ resembles the graph of $e^{x}$. The slope of the tangent line to the graph is always positive, for if $a > 1$, then $\ln a > 0$, and, since $a^{x} > 0$, we see that
$$
\frac{d}{dx} a^x = a^{x} \ln a > 0.
$$
This means that $a^x$ is a strictly increasing function (see Problem 10 at the end of this section). The second derivative is also always positive, since
$$
\frac{d^2}{dx^2} a^x = \frac{d}{dx} (a^{x} \ln a) = a^{x}(\ln a)^2 > 0.
$$
\noindent Hence the graph is concave upward for all $x$. Moreover, there are no extreme points, critical points, or points of inflection. The graph is drawn in Figure \f{5.7}. It is relatively flat on the left, passes through $\Bigl( -1, -\frac{1}{a} \Bigr)$, (0, 1), and $(1, a)$, and goes upward to the right. For greater values of $a$, the graph is flatter on the left and steeper on the right.
\putfig{3.25truein}{scanfig5_7}{}{fig 5.7}
If $0 < a < 1$, the function $a^x$ may be studied by considering it in another form, $\Bigl( \frac{1}{a} \Bigr)^{-x}$. Since $\frac{1}{a} > 1$, the graph of the function $\Bigl( \frac{1}{a} \Bigr)^{x}$ is of the type described in the preceding
paragraph, and the graph of $a$, which is equal to $\Bigl( \frac{1}{a} \Bigr)^{-x}$ , is the same curve reflected across the $y$-axis. It is steep on the left, passes through $\Bigl( -1, \frac{1}{a} \Bigr)$, (0, 1), and $(1, a)$, and flattens out as it goes to to the right. It is drawn in Figure \f{5.8}.
%SEC, 4] OTHER EXPONENTIAL AND LOGARiTrIM FUNCTIONS 265
Every derivative formula has a corresponding integral formula. Since
$$
\frac{d}{dx} \Bigl( \frac{a^x}{ \ln a} \Bigr) = \frac{1}{\ln a} \frac{d}{dx} a^{x} = a^{x},
$$
\noindent the integral formula corresponding to (4.2) is
\begin{theorem} %(4.3)
$$
\int a^x dx = \frac{a^x}{\ln a} + c.
$$
\end{theorem}
As always, the Chain Rule provides a generalization. If $u$ is a differentiable function of $x$, then
\begin{equation}
\int a^{u} \frac{du}{dx} dx = \frac{a^u}{\ln a} + c.
\label{eq5.4.2}
\end{equation}
\putfig{3.25truein}{scanfig5_8}{}{fig 5.8}
%EXA MPLE 2
\begin{example}
Compute each of the following indefinite integrals:
$$
(a) \int 3^{y}dy, \;\;\; (b) \int x 10^{x^2 - 7} dx, \;\;\; (c) \int\frac{1}{x}\; (2.31)^{\ln x} dx.
$$
\noindent A direct use of (4.3) gives for (a)
$$
\int 3^{y} dy = \frac{ 3^y}{\ln 3} + c.
$$
\noindent Since $\frac{d}{dx}(x^2 - 7) = 2x$, integral (b) can be written
$\frac{1}{2} \int 10^{x^2 - 7} \cdot 2x \cdot dx$, which by (2) is equal to
$\frac{1}{2} \frac{10^{x^2 - 7}}{\ln 10}
+ c$. Hence
$$
\int x 10^{x^2 - 7} dx = \frac{10^{x^{2} - 7}}{2 \ln 10} + c.
$$
% 266 LOGARITHMS AND EXPONENTIAL FUNCTIONS [CHAP. 5
\noindent For part (c) we note that $\frac{d}{dx} \ln x = \frac{1}{x}$, and therefore that the integral is of the form in (2). Thus
$$
\int (2.31)^{\ln x} \frac{1}{x}dx = \frac{(2.31)^{\ln x}}{\ln 2.31} + c.
$$
\end{example}
It was proved on page 241 that $\ln a^r = r \ln a$, for every rational number $r$ and every positive real number $a$. We are now in a position to remove the restriction that $r$ be rational. Let $x$ be an arbitrary real number. Then $a^x = e^{x \ln a}$, and so $\ln a^x = \ln e^{x \ln a} = \ln \exp(x \ln a)$. Since $\ln$ and $\exp$ are inverse functions of each other it follows that
$\ln \exp(x \ln a) = x \ln a$. We have therefore proved that
\begin{theorem} %(4.4)
$\ln a^x = x \ln a$, for every real number $x$ and every positive real number $a$.
\end{theorem}
Another of the well-known laws of exponents now follows easily:
\begin{theorem} %(4.5)
$(a^x)^y = a^{xy}$ for all real numbers $x$ and $y$ and every positive real number $a$.
\end{theorem}
\begin{proof}
If we let $a^x = b$, then $(a^x)^y = b^y = e^{y \ln b}$. Replacing $b$ in the last expression, we have
$$
(a^x)^y = e^{y \ln a^x},
$$
and, using (4.4),
$$
e^{y \ln a^x} = e^{y(x \ln a)} = e^{xy \ln a}.
$$
Since $e^{xy \ln a} = a^{xy}$, it follows that $(a^x)^y = a^{xy}$, and the proof is complete.
\end{proof}
In particular, $(e^x)^y = e^{xy}$ for all real numbers $x$ and $y$.
Let $a$ be any real number, and consider the function $f$ defined for every positive real number $x$ by
$$
f(x) = x^{a}.
$$
\noindent Hitherto in this section we have considered the function $a^x$. Now we reverse the roles of constant and variable. One of the basic rules of differentiation proved in Chapter 1 states that, if $a$ is a rational number, then
$$
f'(x) = \frac{d}{dx} x^a = ax^{a - 1}.
$$
\noindent We now remove the restriction that $a$ be rational. Observe first that $x^a$ is certainly a differentiable function, since it is the composition of differentiable functions:
$$
x^a= e^{a \ln x} = \mbox{exp} (a\; \ln x).
$$
% SEC. 4] OTHER EXPONENTIAL AND LOGARTTHM FUNCTIONS 267
\noindent Knowing this, we use implicit differentiation to compute its derivative. Let $y = x^a$. Then $\ln y = \ln x^a = a \ln x$, and so
\begin{eqnarray*}
\frac{d}{dx} \ln y &=& \frac{d}{dx} a \ln x,\\
\frac{1}{y} \frac{dy}{dx} &=& a \frac{1}{x},\\
\frac{dy}{dx} &=& \frac{ay}{x}.
\end{eqnarray*}
\noindent Since $y = x^a$, it follows that $\frac{ay}{x}=\frac{ax^a}{x}= ax^{a-1}$. Thus we have proved that
\begin{theorem}
\label{thm 5.4.6}
$$
\frac{d}{dx}x^a = ax^{a-1}, \; \mbox{for any real number $a$}.
$$
\end{theorem}
The technique of taking logarithms and differentiating implicitly,
which was used in proving \thref{5.4.6},
can also be used to compute the derivative of a positive differentiable function which is raised to a power which is itself a differentiable function. For example, to compute $\frac{d}{dx} x^{x}$,
we let $y = x^{x}$. Then
$$
\ln y= \ln x^{x}= x \ln x,
$$
\noindent and it follows that
\begin{eqnarray*}
\frac{1}{y} \frac{dy}{dx} &=& \frac{d}{dx} (x \ln x) = x \frac{1}{x} + \ln x = 1 + \ln x, \\
\frac{dy}{dx} &=& y( 1 + \ln x) = x^{x} ( 1 + \ln x), \;\;\;(x > 0).
\end{eqnarray*}
\noindent This technique is known as \textbf{logarithmic differentiation} and is a basic tool for finding derivatives. We can use it to derive a formula for $\frac{d}{dx} u^{v}$, where $u$ is a positive differentiable function of $x$ and $v$ is any differentiable function of $x$. Let $y = u^v$, and then $\ln y = v \ln u$. Hence
\begin{eqnarray*}
\frac{1}{y} \frac{dy}{dx}
&=& \frac{d}{dx} (v \ln u) = v \frac{1}{u} \frac{du}{dx} + \ln u \frac{du}{dx},\\
\frac{dy}{dx} &=& y \Bigl( \frac{v}{u} \frac{du}{ dx} + \ln u \frac{dv}{dx} \Bigr),\\
\frac{dy}{dx} &=& u^{v} \Bigl( \frac{v}{u} \frac{du}{dx} + \ln u \frac{dv}{dx} \Bigr),
\end{eqnarray*}
% 268 LOGARITHMS AND EXPONEN7IAL FUNCTIONS [CH^P 5
\noindent and finally, therefore,
\begin{equation}
\frac{d}{dx} u^{v} = vu^{v - 1}\frac{du}{dx} + u^{v} \ln u \frac{dv}{dx}.
\label{eq5.4.3}
\end{equation}
\noindent We do not suggest that the reader memorize this formula. It is more important to be able to use the method of logarithmic differentiation.
\medskip
%EXAMPLE 3.
\begin{example}
Find $\frac{d}{dx} (x^2 + 1) ^{e^x}$. Letting $y = (x^{2} + 1)^{e^x}$ and taking natural logarithms, we have
$$
\ln y = \ln (x^2 + 1)^{e^x} = e^x \ln (x^2 + 1).
$$
\noindent Differentiating, we obtain
\begin{eqnarray*}
\frac{1}{y} \frac{dy}{dx} &=& e^{x} \frac {1}{x^{2}+1} 2x + e^{x} \ln (x^{2} + 1),\\
\frac{dy}{dx}&=& ye^{x} \Bigl[ \frac{2x}{x^2 + 1} + \ln (x^2 + 1) \Bigr).
\end{eqnarray*}
\noindent Hence
$$
\frac{d}{dx} (x^2 + 1)^{e^x} = e^{x}(x^2 + 1)^{e^{x}} \Bigl[ \frac{2x}{x^2 + 1} + \ln (x^{2} + 1) \Bigr].
$$
\end{example}
The function $a^x$ is strictly monotonic if $a$ is positive and not equal to 1, increasing if $a > 1$ and decreasing if $0 < a < 1$. Moreover, it has a nonzero derivative at every $x$. It follows by Theorem (3.4), page 261, that $a^x$ has a differentiable inverse function. Even as the inverse function of $e^x$ is the natural logarithm, we call the inverse function of $a^x$ the \textbf{logarithm to the base} $a$. Hence
$$
y = \mbox{log}_{a}x \;\;\; \mbox{if and only if} \;x = a^{y}.
$$
We emphasize that $a$ must be a positive number different from 1 and that $\log_{a}x$ is defined only for positive values of $x$. The so-called \textbf{common logarithm}, usually denoted by simply log and
encountered in the usual tables of logarithms, is the logarithm to the base 10. Thus $\log 100 = \log_{10} 100 = 2$, since $10^2 = 100$. The logarithm to the base a has the same algebraic properties as the natural logarithm:
\begin{theorem} %( 4.7 )
$$
\left \{
\begin{array}{l}
\mbox{log}_{a} 1 = 0, \\
\\
\mbox{log}_{a} a = 1,\\
\\
\mbox{log}_{a} pq = \mbox{log}_{a}p + \log_{a}q,\\
\\
\mbox{log}_{a}\frac{p}{q} = \log_{a}p - log_{a}q,\\
\\
\mbox{log}_{a}p', = b \log_{a}p.
\end{array}
\right.
$$
\end{theorem}
%SEC. 41 OTHE ~ EXPONENTIAL AND i OGARITHM FUNCTIONS 269
The above properties hold for every positive real number $a$ different from 1, for all positive real numbers $p$ and $q$, and for every real number $b$. Each one may be proved by considering the corresponding exponential function. Note that since $a^x$ and $\log_{a}x$ are inverse functions of each
other,
$$
\left \{
\begin{array}{ll}
\log_{a}a^x = x,\;\;\; &\mbox{for all real}\; x, \\
a^{\log_{a} x} = x,\;\;\; &\mbox{for all positive real}\; x.
\end{array}
\right.
$$
\noindent For example, if we let $x = \log_{a}p$ and $y = \log_{a}q$, then we have $p = a^{x}$ and $q = a^{y}$, and so
\begin{eqnarray*}
\log_{a}pq &=& \log_{a}(a^{x} a^{y}) = \log_{a}a^{x + y} = x + y\\
&=& \log_{a}p + \log_{a}q.
\end{eqnarray*}
\noindent The other properties are proved in the same way.
To compute the derivative of $\log_{a}x$, we let $y = \log_{a}x$. The equivalent exponential equation is $x = a^y$, from which it follows that $\ln x = \ln a^y = y \ln a$. By implicit differentiation, therefore,
\begin{eqnarray*}
\frac{d}{dx}(y \ln a) &=& \frac{d}{dx} \ln x,\\
\ln a \frac{dy}{dx} &=& \frac{1}{x}.
\end{eqnarray*}
\noindent Solving for $\frac{dy}{dx}$, which equals $\frac{d}{dx} \log_{a}x$, we obtain
\begin{theorem} %(4.8)
$$
\frac{d}{dx} \log_{a}x = \frac{1}{\ln a} \frac{1}{x}.
$$
\end{theorem}