-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTB_elph.py
371 lines (265 loc) · 11.3 KB
/
TB_elph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import numpy as np
import os
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from mpl_toolkits.axes_grid1 import make_axes_locatable
from numba import jit, prange
from tqdm import tqdm
import time
def kmesh_preparation(kmesh, cell_vec):
num_kpoints = kmesh[0] * kmesh[1] * kmesh[2]
rec_vec = np.zeros((3,3))
k_vec = np.zeros((num_kpoints,3))
rec_vec[0] = (2 * np.pi / np.linalg.det(cell_vec)) * np.cross(cell_vec[1], cell_vec[2])
rec_vec[1] = (2 * np.pi / np.linalg.det(cell_vec)) * np.cross(cell_vec[2], cell_vec[0])
rec_vec[2] = (2 * np.pi / np.linalg.det(cell_vec)) * np.cross(cell_vec[0], cell_vec[1])
q = 0
for q1 in range(-int(0.5 * kmesh[0]), int(0.5 * kmesh[0])):
for q2 in range(-int(0.5 * kmesh[1]), int(0.5 * kmesh[1])):
# to avoid divergence
if(q1 == 0 and q2 == 0):
k_vec[q] = (rec_vec[0] * q1/ kmesh[0]) + (rec_vec[1] * q2 / kmesh[1]) + np.array([0.01, 0.0, 0.0])
else:
k_vec[q] = (rec_vec[0] * q1/ kmesh[0]) + (rec_vec[1] * q2 / kmesh[1])
q +=1
print('... kmesh is ready')
return k_vec
def energy_contour_preparation(ncol, nrow, e_fermi, e_low, smearing):
# prepare the energy contour for integration
num_freq = ncol + 2 * nrow
de = complex((e_fermi - e_low) / ncol, smearing / nrow)
freq = np.zeros(num_freq, dtype=np.complex128)
d_freq = np.zeros(num_freq, dtype=np.complex128)
e_const = complex(e_low, 0)
idx_x = 0
idx_y = 1
idx = 0
for i in range(num_freq):
if (i == nrow):
idx_x = 1
idx_y = 0
idx = 0
e_const = complex(e_low, smearing)
elif (i == nrow + ncol):
idx_x = 0
idx_y = -1
idx = 0
e_const = complex(e_fermi, smearing)
freq[i] = e_const + complex(idx * idx_x * (de).real, idx * idx_y * (de).imag)
d_freq[i] = complex(idx_x * (de).real, idx_y * (de).imag)
idx = idx+1
return freq, d_freq
@jit(nopython=True)
def calc_exchange(index_temp, num_freq, cell_vec, k_vec, E, dE, Ham_K, selfen):
num_kpoints = k_vec.shape[0]
weight = 1/num_kpoints
corr_greenK = np.zeros(2, dtype=np.complex128)
r = index_temp[0] * cell_vec[0] + index_temp[1] * cell_vec[1]
exchange = 0.0
phase = np.zeros((num_kpoints), dtype=np.complex128)
for e in range(num_kpoints):
phase[e] = np.exp( 1j * np.dot(k_vec[e],r) )
for num in range(num_freq):
delta_i = 0
greenR_ij = 0
greenR_ji = 0
for e in range(num_kpoints):
for z in range(2):
#G = 1/(E - H)
corr_greenK[z] = 1/((E[num] - Ham_K[e, z]) - selfen[z, e, num])
delta_i += weight * (Ham_K[e, 0] - Ham_K[e, 1] + selfen[0, e, num] - selfen[1, e, num])
greenR_ij += weight * phase[e] * corr_greenK[1]
greenR_ji += weight * np.conj(phase[e]) * corr_greenK[0]
dot_product = delta_i * greenR_ij * delta_i * greenR_ji
exchange -= (2/np.pi) * (dot_product * dE[num]).imag
return exchange
@jit(nopython=True)
def calc_green(freq, k_vec, Ham_K, selfen, smearing):
num_kpoints = k_vec.shape[0]
num_freq = freq.shape[0]
greenR = np.zeros((2, num_kpoints, num_freq), dtype=np.complex128)
greenR_corr = np.zeros((2, num_kpoints, num_freq), dtype=np.complex128)
for num in range(num_freq):
for e in range(num_kpoints):
for z in range(2):
#G = 1/(E - H)
greenR[z, e, num] += 1/(freq[num] - Ham_K[e, z] + 1j*smearing)
greenR_corr[z, e, num] += 1/((freq[num] - Ham_K[e, z]) - selfen[z, e, num])
greenR *= -(1/np.pi)
greenR_corr *= -(1/np.pi)
return greenR, greenR_corr
def calc_electron(t, delta, e_fermi, cell_vec, k_vec):
num_kpoints = k_vec.shape[0]
el_k = np.zeros((num_kpoints, 2), dtype=np.complex128)
Ham_r = np.zeros((3, 3, 2))
# nn hopping t
Ham_r[0, 1, 0] = t
Ham_r[1, 0, 0] = t
Ham_r[1, 2, 0] = t
Ham_r[2, 1, 0] = t
Ham_r[0, 1, 1] = t
Ham_r[1, 0, 1] = t
Ham_r[1, 2, 1] = t
Ham_r[2, 1, 1] = t
Ham_r[1, 1, 0] = -0.5 * delta - e_fermi # spin_up
Ham_r[1, 1, 1] = 0.5 * delta - e_fermi # spin_dn
#vectorized version of Fourier transform
for i in range(-1, 2):
for j in range(-1, 2):
r = i * cell_vec[0] + j * cell_vec[1]
k_dot_r = (k_vec @ r).reshape(num_kpoints, 1)
phase = np.exp(-1j * k_dot_r)
el_k += phase * Ham_r[i + 1, j + 1, :]
return el_k
#Model of phonons and elph coupling g
def calc_phonon(model, lambda_elph, dos_fermi, v, hw0, k_vec, verbose):
num_kpoints = k_vec.shape[0]
kB = 8.61733e-5 # eV/K
if(model == 'D'):
v = v * 1e10 #(m/s - > A/s)
hbar = 6.582e-16 # (eV * s)
a = 5 # unit cell parameter A
if(verbose):
Tc = np.pi * hbar * v / (kB * a)
print("Debye model of phonons is used")
print("Speed of sound (m/s):", v / 1e10)
print("Debye temperature (K):",Tc)
ph_q = np.zeros((num_kpoints, 2))
g = np.zeros(num_kpoints)
for q in range(num_kpoints):
q_abs = np.linalg.norm(k_vec[q]) # 1/A
ph_q[q, 0] = hbar * v * q_abs # eV
ph_q[q, 1] = hbar * v * q_abs
g[q] = np.sqrt(lambda_elph * hbar * q_abs * v / dos_fermi) # eV
elif(model == 'E'):
if(verbose):
Tc = hw0 / kB
print("Einstein model of phonons is used")
print("Phonon frequency (eV):", hw0)
print("Einstein temperature (K):",Tc)
ph_q = hw0 * np.ones((num_kpoints, 2))
g = np.sqrt(lambda_elph * hw0 / dos_fermi) * np.ones(num_kpoints)
else:
print("Set the correct model!!!")
return None
return ph_q, g
@jit(nopython=True, parallel=True)
def elph_selfen(g, kT, kmesh, freq, el_k, ph_q):
def bose(kT, E):
return 1.0 / (np.exp(E / kT) - 1)
def fermi(kT,E):
return 1 / (np.exp(E / kT) + 1)
num_freq = freq.shape[0]
num_kpoints = kmesh[0] * kmesh[1]
selfen = np.zeros((2, num_kpoints, num_freq), dtype=np.complex128)
weight = 1 / num_kpoints
delta = 0.005 # 50K
el_k = el_k.reshape(kmesh[0], kmesh[1], 2)
ph_q = ph_q.reshape(kmesh[0], kmesh[1], 2)
g = g.reshape(kmesh[0], kmesh[1])
for k1 in prange(kmesh[0]):
for k2 in prange(kmesh[1]):
k = k2 + (k1 * kmesh[1])
for q1 in range(kmesh[0]):
for q2 in range(kmesh[1]):
kq1 = (k1 + q1) % kmesh[0]
kq2 = (k2 + q2) % kmesh[1]
for z in range(2):
bose_term = bose(kT, ph_q[q1, q2, z])
fermi_term = fermi(kT, el_k[kq1, kq2, z])
el_energy = el_k[kq1, kq2, z]
ph_energy = ph_q[q1, q2, z]
g2_const = g[q1, q2]**2
for w in range(num_freq):
selfen[z, k, w] += g2_const * ((bose_term + fermi_term) / (freq[w] - el_energy + ph_energy + 1j*delta) + \
(bose_term + 1 - fermi_term) / (freq[w] - el_energy - ph_energy + 1j*delta))
selfen *= weight
if(np.any(np.isnan(selfen))):
print("There is a divergence!!!")
return selfen
@jit(nopython=True, parallel=True)
def elph_selfen_highT(lmbda, kT, kmesh, freq, el_k, dos_fermi):
num_freq = freq.shape[0]
num_kpoints = kmesh[0] * kmesh[1]
selfen = np.zeros((2, num_kpoints, num_freq), dtype=np.complex128)
weight = 1 / num_kpoints
delta = 0.005 # 50K
el_k = el_k.reshape(kmesh[0], kmesh[1], 2)
for k1 in prange(kmesh[0]):
for k2 in prange(kmesh[1]):
k = k2 + (k1 * kmesh[1])
for q1 in range(kmesh[0]):
for q2 in range(kmesh[1]):
kq1 = (k1 + q1) % kmesh[0]
kq2 = (k2 + q2) % kmesh[1]
for z in range(2):
el_energy = el_k[kq1, kq2, z]
for w in range(num_freq):
selfen[z, k, w] += 1/ (freq[w] - el_energy + 1j*delta)
selfen *= weight * 2 * kT * lmbda / dos_fermi
return selfen
@jit(nopython=True)
def plot_dos(freq, energy_k, kT):
def dirac_delta(kT,E_tot):
E = E_tot.real
if(np.abs(E/kT) < 20):
delta = (np.exp(E/kT)/kT)/(1 + np.exp(E/kT))**2
else:
delta = 0
return delta
num_kpoints = energy_k.shape[0]
num_enpoints = freq.shape[0]
dos_F = np.zeros((1000, 2))
for spin in range(2):
for en in range(1000):
for k in range(num_kpoints):
dos_F[en, spin] += dirac_delta(kT, freq[en] - energy_k[k, spin])
return dos_F/num_kpoints
#############################################################################
t = -0.1 # hopping (in eV)
delta = 0.4 # spin splitting (in eV)
e_fermi = 0 # Fermi energy
smearing = 1e-3 # smearing for integration
ncol = 500
nrow = 10
num_freq = ncol + 2 * nrow
kmesh = np.array([60, 60, 1])
num_kpoints = np.prod(kmesh)
print('kmesh: ', kmesh)
cell_vec = np.array([[5.0, 0.0, 0.0],
[0.0, 5.0, 0.0],
[0.0, 0.0, 20.0]])
k_vec = kmesh_preparation(kmesh, cell_vec)
el_k = calc_electron(t, delta, e_fermi, cell_vec, k_vec)
e_low = np.min(el_k.real) - 0.2*delta # min energy for integration
e_max = -e_low
en_line = np.linspace(e_low, e_max, 1000)
dos = plot_dos(en_line, el_k, 0.01)
dos_F = dos[500]
print("Occupation:", np.sum(dos[:499, 0]) * (en_line[1] - en_line[0]))
print('DOS on Fermi', dos_F)
freq = np.linspace(e_low, e_fermi, ncol)
index_temp = np.array([1, 0])
E, dE = energy_contour_preparation(ncol, nrow, e_fermi, e_low, smearing)
T = np.linspace(10, 300, 50)
lambda_target = np.array([0.05, 0.1, 0.2, 0.5, 1.0])
v = 3000
for i in range(5):
data = np.zeros((50, 2), dtype=np.float64)
ph_q, g_q = calc_phonon('D', lambda_target[i], dos_F[0], 500, 0.05, k_vec, False)
for j in range(50):
selfen = elph_selfen(g_q, T[j] * 0.00008617, kmesh, freq, el_k, ph_q)
selfen = np.pad(selfen, [(0, 0), (0, 0),(nrow, nrow)])
J = calc_exchange(index_temp, num_freq, cell_vec, k_vec, E, dE, el_k, selfen)
selfen_highT = elph_selfen_highT(lambda_target[i], T[i] * 0.00008617, kmesh, freq, el_k, dos_F[0])
selfen_highT = np.pad(selfen_highT, [(0, 0), (0, 0),(nrow, nrow)])
J_highT = calc_exchange(index_temp, num_freq, cell_vec, k_vec, E, dE, el_k, selfen_highT)
data[j, 0] = J
data[j, 1] = J_highT
results_dir = 'results'
filename = 'J_' + str(lambda_target[i]) + '.dat'
if not os.path.exists(results_dir):
os.makedirs(results_dir)
with open(os.path.join(results_dir, filename), "w") as fp:
for i in range(50):
print('{0.real:.4f}'.format(T[i]), '{0.real:.4f}'.format(data[i, 0]), '{0.real:.4f}'.format(data[i, 1]), file=fp)