-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathfvm_examples.py
126 lines (104 loc) · 5.02 KB
/
fvm_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from fvm_classes import *
import numpy as np
from scipy.sparse import linalg
from clint.textui import progress
# matplotlib for movie export here
# http://matplotlib.org/examples/animation/moviewriter.html
comment = "In all these example numerical instabilities are exist, this is to illustrate the\n\
difference between second order central difference, first order upwind and exponentially\n\
fitted discretisation schemes. The Peclet number is around 20 which means that central\n\
discretisation are numerically unstable (they are only stable with Peclet number below\n\
2). Upwind scheme do not have any restriction on Peclet number for stability, however\n\
they introduce numerical (artificial) diffusion to the solution. Exponentially fitting\n\
guarantees stability (with regard to Peclet number) because it is a hybrid\n\
discretisation scheme which combines an weighted averages the central and upwind\n\
approaches. The the Peclet number is large the discretisation is weighted in favor of\n\
the upwind scheme, and when the Peclet number is low a central scheme is favored."
def hundsdorfer_examples(faces, export_filename="movie.mp4"):
a = 1 # Advection velocity
d = 1e-3 # Diffusion coefficient
k = 0.01 # Time step
log = "Comparison of central, upwind and exponential fitting schemes."
print log
central = Model(faces, a, d, k, discretisation="central")
central.set_boundary_conditions(left_value=1., right_value=0.)
A1 = central.A_matrix()
M1 = central.M_matrix()
b1 = central.b_vector()
upwind = Model(faces, a, d, k, discretisation="upwind")
upwind.set_boundary_conditions(left_value=1., right_value=0.)
A2 = upwind.A_matrix()
M2 = upwind.M_matrix()
b2 = upwind.b_vector()
exponential = Model(faces, a, d, k, discretisation="exponential")
exponential.set_boundary_conditions(left_value=1., right_value=0.)
A3 = exponential.A_matrix()
M3 = exponential.M_matrix()
b3 = exponential.b_vector()
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import matplotlib.animation as manimation
print manimation.writers.__dict__
FFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title=log, artist='https://github.com/danieljfarrell/FVM', comment=comment)
writer = FFMpegWriter(fps=24, metadata=metadata)
fig = plt.figure()
l0, = plt.plot([],[], 'k-', lw=1)
l_central, = plt.plot([],[], 'r-o', label="central", markersize=6, alpha=0.5)
l_upwind, = plt.plot([],[], 'g-o', label="upwind", markersize=6, alpha=0.5)
l_exp, = plt.plot([],[], 'b-o', label="exponential", markersize=6, alpha=0.5)
plt.xlim(-0.1, 1.1)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.05), fancybox=True, shadow=True, ncol=3)
plt.ylim(-0.2,1.2)
# # Analytical solution for Dirichlet boundary conditions
mesh = central.mesh
analytical_x = np.linspace(0,1,2000)
import sympy
a_s, h_s, d_s= sympy.var("a h d")
f = (sympy.exp(a_s/d_s) - sympy.exp(a_s*h_s/d_s))/(sympy.exp(a_s/d_s)-1)
analytical_solution = [f.subs({a_s:a, d_s:d, h_s:x}) for x in analytical_x ]
analytical_solution = np.array(analytical_solution)
w_init = np.sin(np.pi*mesh.cells)**100
w1 = w_init
w2 = w_init
w3 = w_init
#exit(1)
with writer.saving(fig, export_filename, 300):
iters = 251
for i in progress.bar(range(iters)):
w1 = linalg.spsolve(A1.tocsc(), M1 * w1 + b1)
w2 = linalg.spsolve(A2.tocsc(), M2 * w2 + b2)
w3 = linalg.spsolve(A3.tocsc(), M3 * w3 + b3)
if i == 0:
l_central.set_data(mesh.cells, w_init)
l_upwind.set_data(mesh.cells, w_init)
l_exp.set_data(mesh.cells, w_init)
l0.set_data(analytical_x, analytical_solution)
writer.grab_frame()
if i % 1 == 0 or i == 0:
l_central.set_data(mesh.cells, w1)
l_upwind.set_data(mesh.cells, w2)
l_exp.set_data(mesh.cells, w3)
l0.set_data(analytical_x, analytical_solution)
writer.grab_frame()
if __name__ == '__main__':
hundsdorfer_examples(np.linspace(0, 1, 50), export_filename="uniform_grid.mp4")
faces = np.concatenate((np.array([0]), np.sort(np.random.uniform(0, 1, 48)), np.array([1])))
hundsdorfer_examples(faces, export_filename="random_grid.mp4")
def geo_series(n, r):
total = 0
series = []
for i in range(n):
if i == 0:
total = 1
else:
total = total - total*r
series.append(total)
series = np.array(series)
norm = series / (np.max(series) - np.min(series))
series = norm - np.min(norm)
return np.abs(series - 1)
faces = geo_series(50, 0.15)
hundsdorfer_examples(faces, export_filename="geometric_grid.mp4")