-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathload_data.py
executable file
·180 lines (150 loc) · 6.11 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import torch.utils.data as D
import cv2
import numpy as np
import torchvision.transforms.functional as TF
from torchvision import transforms
import random
import os
from PIL import Image
from config import Configs
class Read_data(D.Dataset):
"""
The data loader class for 1 set (for example train)
Args:
base_dir (str): the data path
file_label (list of str): the names of the data instances
set (str): the set (train, valid or test)
split_size (int): the image (patch) size
augmentation (bool): whwther to apply augmentation
flipped (bool): whether the data is flipped
"""
def __init__(self, base_dir, file_label,set, split_size, augmentation=True , flipped = False):
self.base_dir = base_dir
self.file_label = file_label
self.set = set
self.split_size = split_size
self.augmentation = augmentation
self.flipped = flipped
def __getitem__(self, index):
img_name = self.file_label[index]
idx, deg_img, gt_img = self.readImages(img_name)
return idx, deg_img, gt_img
def __len__(self):
return len(self.file_label)
def readImages(self, file_name):
"""
Read a pair of images (degraded + clean gt)
Args:
file_name (str): the index (name) of the image pair
Returns:
file_name (str): the index (name) of the image pair
out_deg_img (np.array): the degraded image
out_gt_img (np.array): the clean image
"""
url_deg = self.base_dir +'/'+ self.set+'/' + file_name
url_gt = self.base_dir +'/'+ self.set+'_gt/'+file_name
deg_img = cv2.imread(url_deg)
gt_img = cv2.imread(url_gt)
if self.flipped:
deg_img = cv2.rotate(deg_img, cv2.ROTATE_180)
gt_img = cv2.rotate(gt_img, cv2.ROTATE_180)
try:
deg_img.any()
except:
print('###!Cannot find image: ' + url_deg)
try:
gt_img.any()
except:
print('###!Cannot find image: ' + url_gt)
deg_img = Image.fromarray(np.uint8(deg_img))
gt_img = Image.fromarray(np.uint8(gt_img))
# apply data augmentation
if self.augmentation:
# random crop
i, j, h, w = transforms.RandomCrop.get_params(deg_img, output_size=(self.split_size, self.split_size))
deg_img = TF.crop(deg_img, i, j, h, w)
gt_img = TF.crop(gt_img, i, j, h, w)
# random horizontal flipping
if random.random() > 0.5:
deg_img = TF.hflip(deg_img)
gt_img = TF.hflip(gt_img)
# random vertical flipping
if random.random() > 0.5:
deg_img = TF.vflip(deg_img)
gt_img = TF.vflip(gt_img)
deg_img = (np.array(deg_img) /255).astype('float32')
gt_img = (np.array(gt_img) / 255).astype('float32')
# normalize data
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
out_deg_img = np.zeros([3, *deg_img.shape[:-1]])
out_gt_img = np.zeros([3, *gt_img.shape[:-1]])
for i in range(3):
out_deg_img[i] = (deg_img[:,:,i] - mean[i]) / std[i]
out_gt_img[i] = (gt_img[:,:,i] - mean[i]) / std[i]
return file_name, out_deg_img, out_gt_img
def load_datasets(flipped=False):
"""
Create the 3 datasets (train/valid/test) to be used by the dataloaders.
Args:
flipped (bool): whwther to flip the images of the val dataset (was used
in 1 experiment to check the effect of flipping)
Returns:
data_train (Dateset): train data
data_valid (Dateset): valid data
data_test (Dateset): test data
"""
cfg = Configs().parse()
base_dir = cfg.data_path
split_size = cfg.split_size
data_tr = os.listdir(cfg.data_path+'train')
np.random.shuffle(data_tr)
data_va = os.listdir(cfg.data_path+'valid')
np.random.shuffle(data_va)
data_te = os.listdir(cfg.data_path+'test')
np.random.shuffle(data_te)
data_train = Read_data(base_dir, data_tr, 'train', split_size, augmentation=True)
data_valid = Read_data(base_dir, data_va, 'valid', split_size, augmentation=False, flipped = flipped)
data_test = Read_data(base_dir, data_te, 'test', split_size, augmentation=False)
return data_train, data_valid, data_test
def sort_batch(batch):
"""
Transform a batch of data to pytorch tensor
Args:
batch [str, np.array, np.array]: a batch of data
Returns:
data_index (tensor): the indexes of the source/target pair
data_in (tensor): the source images (degraded)
data_out (tensor): the target images (clean gt)
"""
n_batch = len(batch)
data_index = []
data_in = []
data_out = []
for i in range(n_batch):
idx, img, gt_img = batch[i]
data_index.append(idx)
data_in.append(img)
data_out.append(gt_img)
data_index = np.array(data_index)
data_in = np.array(data_in, dtype='float32')
data_out = np.array(data_out, dtype='float32')
data_in = torch.from_numpy(data_in)
data_out = torch.from_numpy(data_out)
return data_index, data_in, data_out
def all_data_loader(batch_size):
"""
Create the 3 data loaders
Args:
batch_size (int): the batch_size
Returns:
train_loader (dataloader): train data loader
valid_loader (dataloader): valid data loader
test_loader (dataloader): test data loader
"""
data_train, data_valid, data_test = load_datasets()
train_loader = torch.utils.data.DataLoader(data_train, collate_fn=sort_batch, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(data_valid, collate_fn=sort_batch, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
test_loader = torch.utils.data.DataLoader(data_test, collate_fn=sort_batch, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
return train_loader, valid_loader, test_loader