forked from cms-patatrack/pixeltrack-standalone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCAHitNtupletGeneratorKernelsImpl.h
606 lines (541 loc) · 23 KB
/
CAHitNtupletGeneratorKernelsImpl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
//
// Original Author: Felice Pantaleo, CERN
//
// #define NTUPLE_DEBUG
#include <cmath>
#include <cstdint>
#include <cuda_runtime.h>
#include "CUDACore/cudaCheck.h"
#include "CUDACore/cuda_assert.h"
#include "CondFormats/pixelCPEforGPU.h"
#include "CAConstants.h"
#include "CAHitNtupletGeneratorKernels.h"
#include "GPUCACell.h"
#include "gpuFishbone.h"
#include "gpuPixelDoublets.h"
using HitsOnGPU = TrackingRecHit2DSOAView;
using HitsOnCPU = TrackingRecHit2DCUDA;
using HitToTuple = CAConstants::HitToTuple;
using TupleMultiplicity = CAConstants::TupleMultiplicity;
using Quality = pixelTrack::Quality;
using TkSoA = pixelTrack::TrackSoA;
using HitContainer = pixelTrack::HitContainer;
__global__ void kernel_checkOverflows(HitContainer const *foundNtuplets,
CAConstants::TupleMultiplicity *tupleMultiplicity,
cms::cuda::AtomicPairCounter *apc,
GPUCACell const *__restrict__ cells,
uint32_t const *__restrict__ nCells,
gpuPixelDoublets::CellNeighborsVector const *cellNeighbors,
gpuPixelDoublets::CellTracksVector const *cellTracks,
GPUCACell::OuterHitOfCell const *__restrict__ isOuterHitOfCell,
uint32_t nHits,
uint32_t maxNumberOfDoublets,
CAHitNtupletGeneratorKernelsGPU::Counters *counters) {
auto first = threadIdx.x + blockIdx.x * blockDim.x;
auto &c = *counters;
// counters once per event
if (0 == first) {
atomicAdd(&c.nEvents, 1);
atomicAdd(&c.nHits, nHits);
atomicAdd(&c.nCells, *nCells);
atomicAdd(&c.nTuples, apc->get().m);
atomicAdd(&c.nFitTracks, tupleMultiplicity->size());
}
#ifdef NTUPLE_DEBUG
if (0 == first) {
printf("number of found cells %d, found tuples %d with total hits %d out of %d\n",
*nCells,
apc->get().m,
apc->get().n,
nHits);
if (apc->get().m < CAConstants::maxNumberOfQuadruplets()) {
assert(foundNtuplets->size(apc->get().m) == 0);
assert(foundNtuplets->size() == apc->get().n);
}
}
for (int idx = first, nt = foundNtuplets->nbins(); idx < nt; idx += gridDim.x * blockDim.x) {
if (foundNtuplets->size(idx) > 5)
printf("ERROR %d, %d\n", idx, foundNtuplets->size(idx));
assert(foundNtuplets->size(idx) < 6);
for (auto ih = foundNtuplets->begin(idx); ih != foundNtuplets->end(idx); ++ih)
assert(*ih < nHits);
}
#endif
if (0 == first) {
if (apc->get().m >= CAConstants::maxNumberOfQuadruplets())
printf("Tuples overflow\n");
if (*nCells >= maxNumberOfDoublets)
printf("Cells overflow\n");
if (cellNeighbors && cellNeighbors->full())
printf("cellNeighbors overflow\n");
if (cellTracks && cellTracks->full())
printf("cellTracks overflow\n");
}
for (int idx = first, nt = (*nCells); idx < nt; idx += gridDim.x * blockDim.x) {
auto const &thisCell = cells[idx];
if (thisCell.outerNeighbors().full()) //++tooManyNeighbors[thisCell.theLayerPairId];
printf("OuterNeighbors overflow %d in %d\n", idx, thisCell.theLayerPairId);
if (thisCell.tracks().full()) //++tooManyTracks[thisCell.theLayerPairId];
printf("Tracks overflow %d in %d\n", idx, thisCell.theLayerPairId);
if (thisCell.theDoubletId < 0)
atomicAdd(&c.nKilledCells, 1);
if (0 == thisCell.theUsed)
atomicAdd(&c.nEmptyCells, 1);
if (thisCell.tracks().empty())
atomicAdd(&c.nZeroTrackCells, 1);
}
for (int idx = first, nt = nHits; idx < nt; idx += gridDim.x * blockDim.x) {
if (isOuterHitOfCell[idx].full()) // ++tooManyOuterHitOfCell;
printf("OuterHitOfCell overflow %d\n", idx);
}
}
__global__ void kernel_fishboneCleaner(GPUCACell const *cells, uint32_t const *__restrict__ nCells, Quality *quality) {
constexpr auto bad = trackQuality::bad;
auto first = threadIdx.x + blockIdx.x * blockDim.x;
for (int idx = first, nt = (*nCells); idx < nt; idx += gridDim.x * blockDim.x) {
auto const &thisCell = cells[idx];
if (thisCell.theDoubletId >= 0)
continue;
for (auto it : thisCell.tracks())
quality[it] = bad;
}
}
__global__ void kernel_earlyDuplicateRemover(GPUCACell const *cells,
uint32_t const *__restrict__ nCells,
HitContainer *foundNtuplets,
Quality *quality) {
// constexpr auto bad = trackQuality::bad;
constexpr auto dup = trackQuality::dup;
// constexpr auto loose = trackQuality::loose;
assert(nCells);
auto first = threadIdx.x + blockIdx.x * blockDim.x;
for (int idx = first, nt = (*nCells); idx < nt; idx += gridDim.x * blockDim.x) {
auto const &thisCell = cells[idx];
if (thisCell.tracks().size() < 2)
continue;
//if (0==thisCell.theUsed) continue;
// if (thisCell.theDoubletId < 0) continue;
uint32_t maxNh = 0;
// find maxNh
for (auto it : thisCell.tracks()) {
auto nh = foundNtuplets->size(it);
maxNh = std::max(nh, maxNh);
}
for (auto it : thisCell.tracks()) {
if (foundNtuplets->size(it) != maxNh)
quality[it] = dup; //no race: simple assignment of the same constant
}
}
}
__global__ void kernel_fastDuplicateRemover(GPUCACell const *__restrict__ cells,
uint32_t const *__restrict__ nCells,
HitContainer const *__restrict__ foundNtuplets,
TkSoA *__restrict__ tracks) {
constexpr auto bad = trackQuality::bad;
constexpr auto dup = trackQuality::dup;
constexpr auto loose = trackQuality::loose;
assert(nCells);
auto first = threadIdx.x + blockIdx.x * blockDim.x;
for (int idx = first, nt = (*nCells); idx < nt; idx += gridDim.x * blockDim.x) {
auto const &thisCell = cells[idx];
if (thisCell.tracks().size() < 2)
continue;
// if (thisCell.theDoubletId < 0) continue;
float mc = 10000.f;
uint16_t im = 60000;
auto score = [&](auto it) {
return std::abs(tracks->tip(it)); // tip
// return tracks->chi2(it); //chi2
};
// find min socre
for (auto it : thisCell.tracks()) {
if (tracks->quality(it) == loose && score(it) < mc) {
mc = score(it);
im = it;
}
}
// mark all other duplicates
for (auto it : thisCell.tracks()) {
if (tracks->quality(it) != bad && it != im)
tracks->quality(it) = dup; //no race: simple assignment of the same constant
}
}
}
__global__ void kernel_connect(cms::cuda::AtomicPairCounter *apc1,
cms::cuda::AtomicPairCounter *apc2, // just to zero them,
GPUCACell::Hits const *__restrict__ hhp,
GPUCACell *cells,
uint32_t const *__restrict__ nCells,
gpuPixelDoublets::CellNeighborsVector *cellNeighbors,
GPUCACell::OuterHitOfCell const *__restrict__ isOuterHitOfCell,
float hardCurvCut,
float ptmin,
float CAThetaCutBarrel,
float CAThetaCutForward,
float dcaCutInnerTriplet,
float dcaCutOuterTriplet) {
auto const &hh = *hhp;
auto firstCellIndex = threadIdx.y + blockIdx.y * blockDim.y;
auto first = threadIdx.x;
auto stride = blockDim.x;
if (0 == (firstCellIndex + first)) {
(*apc1) = 0;
(*apc2) = 0;
} // ready for next kernel
for (int idx = firstCellIndex, nt = (*nCells); idx < nt; idx += gridDim.y * blockDim.y) {
auto cellIndex = idx;
auto &thisCell = cells[idx];
//if (thisCell.theDoubletId < 0 || thisCell.theUsed>1)
// continue;
auto innerHitId = thisCell.get_inner_hit_id();
int numberOfPossibleNeighbors = isOuterHitOfCell[innerHitId].size();
auto vi = isOuterHitOfCell[innerHitId].data();
constexpr uint32_t last_bpix1_detIndex = 96;
constexpr uint32_t last_barrel_detIndex = 1184;
auto ri = thisCell.get_inner_r(hh);
auto zi = thisCell.get_inner_z(hh);
auto ro = thisCell.get_outer_r(hh);
auto zo = thisCell.get_outer_z(hh);
auto isBarrel = thisCell.get_inner_detIndex(hh) < last_barrel_detIndex;
for (int j = first; j < numberOfPossibleNeighbors; j += stride) {
auto otherCell = __ldg(vi + j);
auto &oc = cells[otherCell];
// if (cells[otherCell].theDoubletId < 0 ||
// cells[otherCell].theUsed>1 )
// continue;
auto r1 = oc.get_inner_r(hh);
auto z1 = oc.get_inner_z(hh);
// auto isBarrel = oc.get_outer_detIndex(hh) < last_barrel_detIndex;
bool aligned = GPUCACell::areAlignedRZ(
r1,
z1,
ri,
zi,
ro,
zo,
ptmin,
isBarrel ? CAThetaCutBarrel : CAThetaCutForward); // 2.f*thetaCut); // FIXME tune cuts
if (aligned &&
thisCell.dcaCut(hh,
oc,
oc.get_inner_detIndex(hh) < last_bpix1_detIndex ? dcaCutInnerTriplet : dcaCutOuterTriplet,
hardCurvCut)) { // FIXME tune cuts
oc.addOuterNeighbor(cellIndex, *cellNeighbors);
thisCell.theUsed |= 1;
oc.theUsed |= 1;
}
} // loop on inner cells
} // loop on outer cells
}
__global__ void kernel_find_ntuplets(GPUCACell::Hits const *__restrict__ hhp,
GPUCACell *__restrict__ cells,
uint32_t const *nCells,
gpuPixelDoublets::CellTracksVector *cellTracks,
HitContainer *foundNtuplets,
cms::cuda::AtomicPairCounter *apc,
Quality *__restrict__ quality,
unsigned int minHitsPerNtuplet) {
// recursive: not obvious to widen
auto const &hh = *hhp;
auto first = threadIdx.x + blockIdx.x * blockDim.x;
for (int idx = first, nt = (*nCells); idx < nt; idx += gridDim.x * blockDim.x) {
auto const &thisCell = cells[idx];
if (thisCell.theDoubletId < 0)
continue; // cut by earlyFishbone
auto pid = thisCell.theLayerPairId;
auto doit = minHitsPerNtuplet > 3 ? pid < 3 : pid < 8 || pid > 12;
if (doit) {
GPUCACell::TmpTuple stack;
stack.reset();
thisCell.find_ntuplets<6>(
hh, cells, *cellTracks, *foundNtuplets, *apc, quality, stack, minHitsPerNtuplet, pid < 3);
assert(stack.empty());
// printf("in %d found quadruplets: %d\n", cellIndex, apc->get());
}
}
}
__global__ void kernel_mark_used(GPUCACell::Hits const *__restrict__ hhp,
GPUCACell *__restrict__ cells,
uint32_t const *nCells) {
// auto const &hh = *hhp;
auto first = threadIdx.x + blockIdx.x * blockDim.x;
for (int idx = first, nt = (*nCells); idx < nt; idx += gridDim.x * blockDim.x) {
auto &thisCell = cells[idx];
if (!thisCell.tracks().empty())
thisCell.theUsed |= 2;
}
}
__global__ void kernel_countMultiplicity(HitContainer const *__restrict__ foundNtuplets,
Quality const *__restrict__ quality,
CAConstants::TupleMultiplicity *tupleMultiplicity) {
auto first = blockIdx.x * blockDim.x + threadIdx.x;
for (int it = first, nt = foundNtuplets->nbins(); it < nt; it += gridDim.x * blockDim.x) {
auto nhits = foundNtuplets->size(it);
if (nhits < 3)
continue;
if (quality[it] == trackQuality::dup)
continue;
assert(quality[it] == trackQuality::bad);
if (nhits > 5)
printf("wrong mult %d %d\n", it, nhits);
assert(nhits < 8);
tupleMultiplicity->countDirect(nhits);
}
}
__global__ void kernel_fillMultiplicity(HitContainer const *__restrict__ foundNtuplets,
Quality const *__restrict__ quality,
CAConstants::TupleMultiplicity *tupleMultiplicity) {
auto first = blockIdx.x * blockDim.x + threadIdx.x;
for (int it = first, nt = foundNtuplets->nbins(); it < nt; it += gridDim.x * blockDim.x) {
auto nhits = foundNtuplets->size(it);
if (nhits < 3)
continue;
if (quality[it] == trackQuality::dup)
continue;
assert(quality[it] == trackQuality::bad);
if (nhits > 5)
printf("wrong mult %d %d\n", it, nhits);
assert(nhits < 8);
tupleMultiplicity->fillDirect(nhits, it);
}
}
__global__ void kernel_classifyTracks(HitContainer const *__restrict__ tuples,
TkSoA const *__restrict__ tracks,
CAHitNtupletGeneratorKernelsGPU::QualityCuts cuts,
Quality *__restrict__ quality) {
int first = blockDim.x * blockIdx.x + threadIdx.x;
for (int it = first, nt = tuples->nbins(); it < nt; it += gridDim.x * blockDim.x) {
auto nhits = tuples->size(it);
if (nhits == 0)
break; // guard
// if duplicate: not even fit
if (quality[it] == trackQuality::dup)
continue;
assert(quality[it] == trackQuality::bad);
// mark doublets as bad
if (nhits < 3)
continue;
// if the fit has any invalid parameters, mark it as bad
bool isNaN = false;
for (int i = 0; i < 5; ++i) {
isNaN |= std::isnan(tracks->stateAtBS.state(it)(i));
}
if (isNaN) {
#ifdef NTUPLE_DEBUG
printf("NaN in fit %d size %d chi2 %f\n", it, tuples->size(it), tracks->chi2(it));
#endif
continue;
}
// compute a pT-dependent chi2 cut
// default parameters:
// - chi2MaxPt = 10 GeV
// - chi2Coeff = { 0.68177776, 0.74609577, -0.08035491, 0.00315399 }
// - chi2Scale = 30 for broken line fit, 45 for Riemann fit
// (see CAHitNtupletGeneratorGPU.cc)
float pt = std::min<float>(tracks->pt(it), cuts.chi2MaxPt);
float chi2Cut = cuts.chi2Scale *
(cuts.chi2Coeff[0] + pt * (cuts.chi2Coeff[1] + pt * (cuts.chi2Coeff[2] + pt * cuts.chi2Coeff[3])));
// above number were for Quads not normalized so for the time being just multiple by ndof for Quads (triplets to be understood)
if (3.f * tracks->chi2(it) >= chi2Cut) {
#ifdef NTUPLE_DEBUG
printf("Bad fit %d size %d pt %f eta %f chi2 %f\n",
it,
tuples->size(it),
tracks->pt(it),
tracks->eta(it),
3.f * tracks->chi2(it));
#endif
continue;
}
// impose "region cuts" based on the fit results (phi, Tip, pt, cotan(theta)), Zip)
// default cuts:
// - for triplets: |Tip| < 0.3 cm, pT > 0.5 GeV, |Zip| < 12.0 cm
// - for quadruplets: |Tip| < 0.5 cm, pT > 0.3 GeV, |Zip| < 12.0 cm
// (see CAHitNtupletGeneratorGPU.cc)
auto const ®ion = (nhits > 3) ? cuts.quadruplet : cuts.triplet;
bool isOk = (std::abs(tracks->tip(it)) < region.maxTip) and (tracks->pt(it) > region.minPt) and
(std::abs(tracks->zip(it)) < region.maxZip);
if (isOk)
quality[it] = trackQuality::loose;
}
}
__global__ void kernel_doStatsForTracks(HitContainer const *__restrict__ tuples,
Quality const *__restrict__ quality,
CAHitNtupletGeneratorKernelsGPU::Counters *counters) {
int first = blockDim.x * blockIdx.x + threadIdx.x;
for (int idx = first, ntot = tuples->nbins(); idx < ntot; idx += gridDim.x * blockDim.x) {
if (tuples->size(idx) == 0)
break; //guard
if (quality[idx] != trackQuality::loose)
continue;
atomicAdd(&(counters->nGoodTracks), 1);
}
}
__global__ void kernel_countHitInTracks(HitContainer const *__restrict__ tuples,
Quality const *__restrict__ quality,
CAHitNtupletGeneratorKernelsGPU::HitToTuple *hitToTuple) {
int first = blockDim.x * blockIdx.x + threadIdx.x;
for (int idx = first, ntot = tuples->nbins(); idx < ntot; idx += gridDim.x * blockDim.x) {
if (tuples->size(idx) == 0)
break; // guard
if (quality[idx] != trackQuality::loose)
continue;
for (auto h = tuples->begin(idx); h != tuples->end(idx); ++h)
hitToTuple->countDirect(*h);
}
}
__global__ void kernel_fillHitInTracks(HitContainer const *__restrict__ tuples,
Quality const *__restrict__ quality,
CAHitNtupletGeneratorKernelsGPU::HitToTuple *hitToTuple) {
int first = blockDim.x * blockIdx.x + threadIdx.x;
for (int idx = first, ntot = tuples->nbins(); idx < ntot; idx += gridDim.x * blockDim.x) {
if (tuples->size(idx) == 0)
break; // guard
if (quality[idx] != trackQuality::loose)
continue;
for (auto h = tuples->begin(idx); h != tuples->end(idx); ++h)
hitToTuple->fillDirect(*h, idx);
}
}
__global__ void kernel_fillHitDetIndices(HitContainer const *__restrict__ tuples,
TrackingRecHit2DSOAView const *__restrict__ hhp,
HitContainer *__restrict__ hitDetIndices) {
int first = blockDim.x * blockIdx.x + threadIdx.x;
// copy offsets
for (int idx = first, ntot = tuples->totbins(); idx < ntot; idx += gridDim.x * blockDim.x) {
hitDetIndices->off[idx] = tuples->off[idx];
}
// fill hit indices
auto const &hh = *hhp;
auto nhits = hh.nHits();
for (int idx = first, ntot = tuples->size(); idx < ntot; idx += gridDim.x * blockDim.x) {
assert(tuples->bins[idx] < nhits);
hitDetIndices->bins[idx] = hh.detectorIndex(tuples->bins[idx]);
}
}
__global__ void kernel_doStatsForHitInTracks(CAHitNtupletGeneratorKernelsGPU::HitToTuple const *__restrict__ hitToTuple,
CAHitNtupletGeneratorKernelsGPU::Counters *counters) {
auto &c = *counters;
int first = blockDim.x * blockIdx.x + threadIdx.x;
for (int idx = first, ntot = hitToTuple->nbins(); idx < ntot; idx += gridDim.x * blockDim.x) {
if (hitToTuple->size(idx) == 0)
continue; // SHALL NOT BE break
atomicAdd(&c.nUsedHits, 1);
if (hitToTuple->size(idx) > 1)
atomicAdd(&c.nDupHits, 1);
}
}
__global__ void kernel_tripletCleaner(TrackingRecHit2DSOAView const *__restrict__ hhp,
HitContainer const *__restrict__ ptuples,
TkSoA const *__restrict__ ptracks,
Quality *__restrict__ quality,
CAHitNtupletGeneratorKernelsGPU::HitToTuple const *__restrict__ phitToTuple) {
constexpr auto bad = trackQuality::bad;
constexpr auto dup = trackQuality::dup;
// constexpr auto loose = trackQuality::loose;
auto &hitToTuple = *phitToTuple;
auto const &foundNtuplets = *ptuples;
auto const &tracks = *ptracks;
// auto const & hh = *hhp;
// auto l1end = hh.hitsLayerStart_d[1];
int first = blockDim.x * blockIdx.x + threadIdx.x;
for (int idx = first, ntot = hitToTuple.nbins(); idx < ntot; idx += gridDim.x * blockDim.x) {
if (hitToTuple.size(idx) < 2)
continue;
float mc = 10000.f;
uint16_t im = 60000;
uint32_t maxNh = 0;
// find maxNh
for (auto it = hitToTuple.begin(idx); it != hitToTuple.end(idx); ++it) {
uint32_t nh = foundNtuplets.size(*it);
maxNh = std::max(nh, maxNh);
}
// kill all tracks shorter than maxHn (only triplets???)
for (auto it = hitToTuple.begin(idx); it != hitToTuple.end(idx); ++it) {
uint32_t nh = foundNtuplets.size(*it);
if (maxNh != nh)
quality[*it] = dup;
}
if (maxNh > 3)
continue;
// if (idx>=l1end) continue; // only for layer 1
// for triplets choose best tip!
for (auto ip = hitToTuple.begin(idx); ip != hitToTuple.end(idx); ++ip) {
auto const it = *ip;
if (quality[it] != bad && std::abs(tracks.tip(it)) < mc) {
mc = std::abs(tracks.tip(it));
im = it;
}
}
// mark duplicates
for (auto ip = hitToTuple.begin(idx); ip != hitToTuple.end(idx); ++ip) {
auto const it = *ip;
if (quality[it] != bad && it != im)
quality[it] = dup; //no race: simple assignment of the same constant
}
} // loop over hits
}
__global__ void kernel_print_found_ntuplets(TrackingRecHit2DSOAView const *__restrict__ hhp,
HitContainer const *__restrict__ ptuples,
TkSoA const *__restrict__ ptracks,
Quality const *__restrict__ quality,
CAHitNtupletGeneratorKernelsGPU::HitToTuple const *__restrict__ phitToTuple,
uint32_t maxPrint,
int iev) {
auto const &foundNtuplets = *ptuples;
auto const &tracks = *ptracks;
int first = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = first, np = std::min(maxPrint, foundNtuplets.nbins()); i < np; i += blockDim.x * gridDim.x) {
auto nh = foundNtuplets.size(i);
if (nh < 3)
continue;
printf("TK: %d %d %d %f %f %f %f %f %f %f %d %d %d %d %d\n",
10000 * iev + i,
int(quality[i]),
nh,
tracks.charge(i),
tracks.pt(i),
tracks.eta(i),
tracks.phi(i),
tracks.tip(i),
tracks.zip(i),
// asinhf(fit_results[i].par(3)),
tracks.chi2(i),
*foundNtuplets.begin(i),
*(foundNtuplets.begin(i) + 1),
*(foundNtuplets.begin(i) + 2),
nh > 3 ? int(*(foundNtuplets.begin(i) + 3)) : -1,
nh > 4 ? int(*(foundNtuplets.begin(i) + 4)) : -1);
}
}
__global__ void kernel_printCounters(cAHitNtupletGenerator::Counters const *counters) {
auto const &c = *counters;
printf(
"||Counters | nEvents | nHits | nCells | nTuples | nFitTacks | nGoodTracks | nUsedHits | nDupHits | "
"nKilledCells | "
"nEmptyCells | nZeroTrackCells ||\n");
printf("Counters Raw %lld %lld %lld %lld %lld %lld %lld %lld %lld %lld %lld\n",
c.nEvents,
c.nHits,
c.nCells,
c.nTuples,
c.nGoodTracks,
c.nFitTracks,
c.nUsedHits,
c.nDupHits,
c.nKilledCells,
c.nEmptyCells,
c.nZeroTrackCells);
printf("Counters Norm %lld || %.1f| %.1f| %.1f| %.1f| %.1f| %.1f| %.1f| %.1f| %.3f| %.3f||\n",
c.nEvents,
c.nHits / double(c.nEvents),
c.nCells / double(c.nEvents),
c.nTuples / double(c.nEvents),
c.nFitTracks / double(c.nEvents),
c.nGoodTracks / double(c.nEvents),
c.nUsedHits / double(c.nEvents),
c.nDupHits / double(c.nEvents),
c.nKilledCells / double(c.nEvents),
c.nEmptyCells / double(c.nCells),
c.nZeroTrackCells / double(c.nCells));
}