This is the code repo for the experiments presented in "Creation and Validation of a Chest X-Ray Datasetwith Eye-tracking and Report Dictation for AI ToolDevelopment". Please follow the instructions in DataProcessing and edit the data_path
, image_path
and heatmaps_path
in main and main_Unet.py accordingly.
The python version is python3.6.5
. Package requirements can be installed with one bash command:
pip3 install -r requirements.txt
i) Train a baseline model, save results in folder results_baseline
python3 main.py --output_dir results_baseline --epochs 20 --model_type baseline --scheduler --batch_size 16 --dropout 0.5 --hidden_dim 64 --hidden_hm 128 --gpus 3,4,5,6,7
ii) Train a temporal heatmaps model (Figure 13 in paper), save results in folder results_temporal
python3 main.py --output_dir results_temporal --epochs 20 --model_type temporal --scheduler --attention --brnn_hm --batch_size 16 --dropout 0.5 --hidden_dim 64 --hidden_hm 128 --gpus 3,4,5,6,7
These parameters are taken from the best performing hyperparameter search done by using the tune library.
To run another hyper-parameter search run tune_static.py
. Also see eye-gaze-results.pptx
for details
on the different hyper parameter searches and the best tuning experiment result ROC plots.
i) Train a baseline model, save results in folder results
.
python3 main_Unet.py --model_type baseline --dropout=0.0 --epochs 20 --gamma 1 --lr 0.006486 --model_teacher timm-efficientnet-b0 --step_size 8 --scheduler --resize 224 --gpus 7 --batch_size 32 --pretrained_name noisy-student
ii) Train a static heatmaps model (Figure 15 in paper), save results in folder results
python3 main_Unet.py --model_type unet --dropout 0.5 --epochs 35 --gamma 0.41731 --lr 0.0090552 --model_teacher timm-efficientnet-b0 --step_size 2 --scheduler --resize 224 --gpus 6 --batch_size 32 --pretrained_name noisy-student
We have done our best to ensure reproducibility of our results, however this is not always guaranteed.
The output for some of our experiments as well as ranges for the hyper-parameter tuning can be found in the resources
subfolder.