-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdaskdecorators.py
44 lines (33 loc) · 1.22 KB
/
daskdecorators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from functools import wraps
import matplotlib.pyplot as plt
import numpy as np
import dask
def dask_hist(func):
'''
Using dask, send the partitions of dataframe to a function that defines,
fills and returns a Hist histogram. Then sum the resulting histograms and
return it.
'''
@wraps(func)
def send_to_dask(dataframe):
return dask.dataframe.map_partitions(func, dataframe).compute().sum()
return send_to_dask
def profile_plot(func):
'''
This is a temporary decorator. Currently, the Hist class doesn't know how
draw itself if it contains a .Mean() or other accumulator. This returns the
approriate matplotlib errorbar plot. It should go away when this
functionality is enabled.
'''
@wraps(func)
def create_plot(dataframe, **kwargs):
dask_histogram = func(dataframe)
centers = dask_histogram.axes.centers[0]
results = dask_histogram.view()
mean = results.value
error_on_mean = np.sqrt(results.variance/results.count)
ax = kwargs.pop('ax', None)
if ax is None:
ax = plt.gca()
return ax.errorbar(x=centers, y=mean, yerr=error_on_mean, fmt='.', markersize=3, **kwargs)
return create_plot