-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathenumerative.ml
1512 lines (1282 loc) · 45 KB
/
enumerative.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(**************************************************************************)
(* *)
(* Cubicle *)
(* *)
(* Copyright (C) 2011-2014 *)
(* *)
(* Sylvain Conchon and Alain Mebsout *)
(* Universite Paris-Sud 11 *)
(* *)
(* *)
(* This file is distributed under the terms of the Apache Software *)
(* License version 2.0 *)
(* *)
(**************************************************************************)
open Options
open Format
open Ast
open Types
open Util
module H = Hstring
module HT = Hashtbl.Make (Term)
module HI = Hashtbl.Make (struct
type t = int
let equal = (=)
let hash x = x
end)
module HLI = Hashtbl.Make (struct
type t = int list
let equal = (=)
let hash = Hashtbl.hash
end)
module SI = Set.Make (struct
type t = int
let compare = Stdlib.compare
end)
module SLI = Set.Make (struct
type t = int list
let compare = Stdlib.compare
end)
module TMap = Map.Make (Term)
type state = int array
type state_info = int HT.t
let equal_state a1 a2 =
let n = Array.length a1 in
let n2 = Array.length a2 in
if n <> n2 then false
else
let res = ref true in
let i = ref 0 in
while !res && !i < n do
res := a1.(!i) = a2.(!i);
incr i
done;
!res
let hash_state st = Hashtbl.hash_param 100 500 st
module HST = Hashtbl.Make
(struct
type t = state
let equal = (=)
let hash = hash_state
end)
(* This is a queue with a hash table on the side to avoid storing useless
states, the overhead of the hashtable is negligible and allows to reduce the
memory occupied by the queue (which is generally a lot larger than the state
table for BFS) *)
module HQueue = struct
type t = (int * state) Queue.t * unit HST.t
let create size = Queue.create (), HST.create size
let add ?(cpt_q=ref 0) x (q, h) =
let s = snd x in
if not (HST.mem h s) then begin
incr cpt_q;
HST.add h s ();
Queue.add x q;
end
let is_empty (q, _) = Queue.is_empty q
let take (q, h) =
let x = Queue.take q in
HST.remove h (snd x);
x
end
type st_req = int * op_comp * int
type st_action =
| St_ignore
| St_assign of int * int
| St_arith of int * int * int
| St_ite of st_req list * st_action * st_action
exception Not_applicable
type state_transistion = {
st_name : Hstring.t;
st_reqs : st_req list;
st_udnfs : st_req list list list;
st_actions : st_action list;
st_f : state -> state list;
st_vars : Hstring.HSet.t;
st_args : Hstring.t list;
}
type env = {
model_cardinal : int;
var_terms : Term.Set.t;
nb_vars : int;
max_id_vars : int;
perm_procs : (int * int) list list;
perm_states : ((Hstring.t * Hstring.t) list *
(int * int) list * (int * int) list) list;
first_proc : int;
extra_proc : int;
all_procs : Hstring.t list;
proc_ids : int list;
id_terms : int HT.t;
id_true : int;
id_false : int;
st_trs : state_transistion list;
low_int_abstr : int;
up_int_abstr : int;
pinf_int_abstr : int;
minf_int_abstr : int;
proc_substates : int list HLI.t;
reverse_proc_substates : int list HI.t;
partial_order : int list list;
table_size : int;
mutable explicit_states : unit HST.t;
mutable states : state list;
}
let empty_env = {
model_cardinal = 0;
var_terms = Term.Set.empty;
max_id_vars = 0;
nb_vars = 0;
perm_procs = [];
perm_states = [];
first_proc = 0;
extra_proc = 0;
all_procs = [];
proc_ids = [];
id_terms = HT.create 0;
id_true = 0;
id_false = 0;
st_trs = [];
low_int_abstr = 0;
up_int_abstr = 0;
pinf_int_abstr = 0;
minf_int_abstr = 0;
proc_substates = HLI.create 0;
reverse_proc_substates = HI.create 0;
partial_order = [];
table_size = 0;
explicit_states = HST.create 0;
states = [];
}
let build_state_procs_map id_terms procs var_terms proc_terms =
let build_int_perms sigma lt =
List.fold_left (fun acc_s t ->
let t_s = Term.subst sigma t in
if not (Term.equal t_s t) then
(HT.find id_terms t, HT.find id_terms t_s) :: acc_s
else acc_s
) [] lt
in
let d = Variable.all_permutations procs procs in
List.rev_map (fun sigma ->
let p_vars = build_int_perms sigma (Term.Set.elements var_terms) in
let p_procs = build_int_perms sigma proc_terms in
sigma, p_vars, p_procs
) d
exception Found of term
(* inefficient but only used for debug *)
let id_to_term env id =
try
HT.iter (fun t i -> if id = i then raise (Found t)) env.id_terms;
raise Not_found
with Found t -> t
(* inefficient but only used for debug *)
let state_to_cube env st =
let i = ref 0 in
Array.fold_left (fun sa sti ->
let sa =
if sti <> -1 then
let t1 = id_to_term env !i in
let t2 =
if sti = env.minf_int_abstr then Elem (Hstring.make "-oo", Constr)
else if sti = env.pinf_int_abstr then Elem (Hstring.make "+oo", Constr)
else id_to_term env sti in
SAtom.add (Atom.Comp (t1, Eq, t2)) sa
else sa
in
incr i; sa)
SAtom.empty st
let print_state env fmt st = SAtom.print fmt (state_to_cube env st)
let swap a i j =
if i <> j then
let tmp = a.(i) in
a.(i) <- a.(j);
a.(j) <- tmp
let swap_c a (i,j) = swap a i j
let apply_perm_state env st (_, p_vars, p_procs) =
let st' = Array.copy st in
List.iter (swap_c st') p_vars;
for i = 0 to env.nb_vars - 1 do
try let v = List.assoc st'.(i) p_procs in st'.(i) <- v
with Not_found -> ()
done;
st'
(* Applying substitutions in place is tricky because some idexes of the array
encode terms like A[#1,#2]. We proceed by swapping here, and remember the
shifting introduced thanks to the mapping rho. *)
let apply_subst_in_place env st sigma =
if not (HI.length sigma = 0) then begin
let proc_subs = ref SLI.empty in
let rho = HLI.create env.nb_vars in
(* First apply substitutions in the values of the state variables *)
for i = 0 to env.nb_vars - 1 do
(try st.(i) <- HI.find sigma st.(i)
with Not_found -> ());
try
(* collect process domains (like (#1, #2) ) *)
let proc_domain = HI.find env.reverse_proc_substates i in
proc_subs := SLI.add proc_domain !proc_subs;
with Not_found -> ()
done;
SLI.iter (fun proc_domain ->
try
(* sigma(proc_domain) *)
let sigma_proc_domain = List.fold_left (fun acc j ->
try HI.find sigma j :: acc
with Not_found -> acc
) [] proc_domain |> List.rev in
(* rho(proc_domain) *)
let rho_proc_domain =
try HLI.find rho proc_domain with Not_found -> sigma_proc_domain in
(* encoding in terms of indexes *)
let sigma_proc_sub = HLI.find env.proc_substates sigma_proc_domain in
let rho_proc_sub = HLI.find env.proc_substates rho_proc_domain in
(* eprintf "sigma ("; *)
(* List.iter (eprintf "%d,") proc_domain; *)
(* eprintf ") = "; *)
(* List.iter (eprintf "%d,") sigma_proc_domain; *)
(* eprintf "@."; *)
(* eprintf "rho ("; *)
(* List.iter (eprintf "%d,") proc_domain; *)
(* eprintf ") = "; *)
(* List.iter (eprintf "%d,") rho_proc_domain; *)
(* eprintf "@."; *)
(* Perform actual swaps on the encoded versions *)
List.iter2 (fun i j ->
(* eprintf " exchanging %a <---> %a@."
Term.print (id_to_term env i) Term.print (id_to_term env j); *)
swap st i j) sigma_proc_sub rho_proc_sub;
(* rho += sigma(proc_domain) |--> rho(proc_domain) *)
HLI.replace rho sigma_proc_domain rho_proc_domain;
with Not_found ->()
) !proc_subs
end
let apply_subst env st sigma =
let st' = Array.copy st in
apply_subst_in_place env st' sigma;
st'
let is_proc env v = env.first_proc <= v && v < env.extra_proc
let find_subst_for_norm env st =
let met = ref [] in
let remaining = ref env.proc_ids in
let sigma = HI.create env.model_cardinal in
for i = 0 to Array.length st - 1 do
let v = st.(i) in
match !remaining with
| r :: tail ->
if is_proc env v && v <> env.extra_proc && (* r <> env.extra_proc && *)
not (List.mem v !met) then begin
met := v :: !met;
remaining := tail;
if v <> r then HI.add sigma v r;
end
| _ -> ()
done;
let not_met = List.filter (fun v -> not (List.mem v !met)) env.proc_ids in
List.iter2 (fun v r -> if v <> r then HI.add sigma v r) not_met !remaining;
sigma
let rec map_with_procs acc procs ord = match procs, ord with
| p :: rp, (_,_,o) :: ro -> map_with_procs ((p, o) :: acc) rp ro
| _, [] -> List.rev acc
| [], _ -> assert false
let find_subst_for_norm2 sigma env st =
(* let sigma = HI.create env.model_cardinal in *)
List.iter (fun order ->
HI.clear sigma;
List.map (fun i ->
let lpi = List.hd (List.rev (HI.find env.reverse_proc_substates i)) in
(i, st.(i), lpi)
) order
|> List.stable_sort (fun (_, v1, _) (_, v2, _) -> compare v1 v2)
|> map_with_procs [] env.proc_ids
|> List.iter (fun (x, y) ->
(* let y = try HI.find sigma y with Not_found -> y in *)
if x <> y then HI.replace sigma x y);
apply_subst_in_place env st sigma;
) [List.hd env.partial_order]
let normalize_state env st =
(* let old = Array.copy st in *)
let sigma = find_subst_for_norm env st in
apply_subst_in_place env st sigma (* ; *)
(* find_subst_for_norm2 sigma env st *)
(* ; *)
(* let same = ref true in *)
(* for i = 0 to Array.length st - 1 do *)
(* same := !same && st.(i) = old.(i) *)
(* done; *)
(* if not !same then eprintf "\nNormalize :@.%[email protected]>@.%a@." *)
(* (print_state env) old *)
(* (print_state env) st *)
let global_envs = ref []
let make_range (low, up) =
let l = ref [] in
for i = up downto low do
l := i :: !l
done;
!l
let abstr_range = make_range num_range
let abstr_add env x y =
let r =
if x = env.minf_int_abstr then
if y <> env.pinf_int_abstr then x
else -1 (* raise Not_found *)
else if x = env.pinf_int_abstr then
if y <> env.minf_int_abstr then x
else -1 (* raise Not_found *)
else
if y = env.pinf_int_abstr || y = env.minf_int_abstr then y
else x + y in
if r < env.low_int_abstr then env.minf_int_abstr
else if r > env.up_int_abstr then env.pinf_int_abstr
else r
let abstr_add env x y =
let r = abstr_add env x y in
if r = env.minf_int_abstr || r = env.pinf_int_abstr then raise Not_applicable;
r
let is_variable env id = id <= env.max_id_vars
let is_int_real = function
| Elem (x,Glob) | Access (x, _) ->
snd (Smt.Symbol.type_of x) = Smt.Type.type_int ||
snd (Smt.Symbol.type_of x) = Smt.Type.type_real
| _ -> false
let all_constr_terms () =
List.rev_map (fun x -> Elem (x, Constr)) (Smt.Type.all_constructors ())
let terms_of_procs = List.map (fun x -> Elem (x, Var))
let rec power_p i p = if p <= 0 then 1 else i * power_p i (p-1)
let table_size nb_procs nb_vars =
let r = min 2_000_009
(max 100 ((power_p (nb_procs * nb_vars) nb_procs) * (nb_procs ))) in
if not quiet then eprintf "table size : %d@." r;
r
let add_pos_to_proc_substate ht
proc_substates reverse_proc_substates =
Term.Set.iter (function
| Access (_, ps) as t ->
let i = HT.find ht t in
let ids_ps = List.map (fun hp -> HT.find ht (Elem (hp, Var))) ps in
let sub_ps = try HLI.find proc_substates ids_ps with Not_found -> [] in
(* List.iter (fun p -> eprintf "%d (%a), " p Term.print t) ids_ps; *)
(* eprintf "at %d@." i; *)
HLI.replace proc_substates ids_ps (i :: sub_ps);
HI.add reverse_proc_substates i ids_ps
| _ -> ()
)
let partial_order ht var_terms nb_vars =
(* let orders = HI.create nb_vars in *)
let map_orders =
Term.Set.fold (fun t acc -> match t with
| Access (a, ps) ->
let i = HT.find ht t in
let ups = List.rev (List.tl (List.rev ps)) in
let t_par = Access (a, ups) in
let others = try TMap.find t_par acc with Not_found -> SI.empty in
let pord = SI.add i others in
TMap.add t_par pord acc
| _ -> acc
) var_terms TMap.empty
in
(* let rec populate_orders = function *)
(* | [] -> () *)
(* | i :: after -> HI.add i after; populate_orders after *)
(* in *)
let orders = TMap.fold (fun _ one_order acc ->
(SI.elements one_order) :: acc
) map_orders [] in
List.sort (fun l1 l2 -> compare (List.hd l1) (List.hd l2)) orders
let init_tables ?(alloc=true) procs s =
let var_terms = Forward.all_var_terms procs s in
let proc_terms = terms_of_procs procs in (* constantes *)
let constr_terms = all_constr_terms () in (* constantes *)
let nb_vars = Term.Set.cardinal var_terms in
let nb_procs = List.length proc_terms in
let nb_consts = nb_procs + List.length constr_terms in
let ht = HT.create (nb_vars + nb_consts) in
let i = ref 0 in
Term.Set.iter (fun t -> HT.add ht t !i; incr i) var_terms;
let max_id_vars = !i - 1 in
let proc_ids = ref [] in
let first_proc = !i in
List.iter (fun t -> HT.add ht t !i; proc_ids := !i :: !proc_ids; incr i)
proc_terms;
(* add an extra process in case we need it : change this to statically compute
how many extra processes are needed *)
let ep = List.nth Variable.procs nb_procs in
let all_procs = procs @ [ep] in
HT.add ht (Elem (ep, Var)) !i;
let extra_proc = !i in
incr i;
List.iter (fun t -> HT.add ht t !i; incr i) constr_terms;
let proc_ids = List.rev !proc_ids in
let perm_procs =
List.filter (fun sigma ->
List.exists (fun (x,y) -> x <> y) sigma
) (Variable.all_permutations proc_ids proc_ids) in
let perm_states = build_state_procs_map ht procs var_terms proc_terms in
if debug then
HT.iter (fun t i -> eprintf "%a -> %d@." Term.print t i ) ht;
let id_true =
try HT.find ht (Elem (Term.htrue, Constr)) with Not_found -> -2 in
let id_false =
try HT.find ht (Elem (Term.hfalse, Constr)) with Not_found -> -2 in
let a_low = !i in
List.iter (fun c ->
HT.add ht (Const (MConst.add (ConstInt (Num.Int c)) 1 MConst.empty)) !i;
HT.add ht (Const (MConst.add (ConstReal (Num.Int c)) 1 MConst.empty)) !i;
incr i) abstr_range;
let a_up = !i - 1 in
(* This is some bookeeping to allow in place substitutions *)
let proc_substates = HLI.create nb_procs in
let reverse_proc_substates = HI.create nb_procs in
add_pos_to_proc_substate ht proc_substates reverse_proc_substates var_terms;
let tsize = table_size nb_procs nb_vars in
{ model_cardinal = nb_procs;
var_terms = var_terms;
nb_vars = nb_vars;
max_id_vars = max_id_vars;
perm_procs = perm_procs;
perm_states = perm_states;
first_proc = first_proc;
extra_proc = extra_proc;
all_procs = all_procs;
proc_ids = proc_ids;
id_terms = ht;
id_true = id_true;
id_false = id_false;
st_trs = [];
low_int_abstr = a_low;
up_int_abstr = a_up;
pinf_int_abstr = a_up + 1;
minf_int_abstr = -3;
proc_substates = proc_substates;
reverse_proc_substates = reverse_proc_substates;
partial_order = partial_order ht var_terms nb_vars;
table_size = tsize;
explicit_states = HST.create (if alloc then tsize else 0);
states = [];
}
let abs_inf =
SAtom.filter (function
| Atom.Comp ((Elem (x, Glob) | Access (x,_)), _, _) ->
if abstr_num then not (Smt.Symbol.has_abstract_type x)
else not (Smt.Symbol.has_infinite_type x)
| _ -> true)
let make_init_cdnf args lsa lvars =
match args, lvars with
| [], _ ->
[lsa]
| _, [] ->
[List.map
(SAtom.filter (fun a ->
not (List.exists (fun z -> Atom.has_var z a) args)))
lsa]
| _ ->
let lsigs = Variable.all_instantiations args lvars in
List.fold_left (fun conj sigma ->
let dnf = List.fold_left (fun dnf sa ->
let sa = abs_inf sa in
let sa = SAtom.subst sigma sa in
try (Cube.simplify_atoms sa) :: dnf
with Exit -> dnf
) [] lsa in
dnf :: conj
) [] lsigs
let rec cdnf_to_dnf_rec acc = function
| [] -> acc
| [] :: r ->
cdnf_to_dnf_rec acc r
| dnf :: r ->
let acc =
List.flatten (List.rev_map (fun sac ->
List.rev_map (SAtom.union sac) dnf) acc) in
cdnf_to_dnf_rec acc r
let cdnf_to_dnf = function
| [] -> [SAtom.singleton Atom.False]
| l -> cdnf_to_dnf_rec [SAtom.singleton Atom.True] l
(* let make_sorts = *)
(* let cpt = ref 0 in *)
(* List.fold_left (fun sa p -> *)
(* incr cpt; *)
(* let s = if !cpt <= 2 then "CId" else "L1Id" in *)
(* let a = Atom.Comp (Access (Hstring.make "Sort", [p]), Eq, *)
(* Elem (Hstring.make s, Constr)) in *)
(* SAtom.add a sa) SAtom.empty *)
(* let add_sorts procs = *)
(* let sorts = make_sorts procs in *)
(* List.map (SAtom.union sorts) *)
let mkinits procs ({t_init = ia, l_init}) =
let lsa = cdnf_to_dnf (make_init_cdnf ia l_init procs) in
(* add_sorts procs *) lsa
let int_of_const = function
| ConstInt n -> Num.int_of_num n
| ConstReal n -> Num.int_of_num (Num.integer_num n)
| ConstName _ -> 1
let int_of_consts cs =
MConst.fold (fun c i acc -> i * (int_of_const c) + acc) cs 0
let write_atom_to_states env sts = function
| Atom.Comp (t1, (Le | Lt as op), (Const _ as t2)) when abstr_num ->
let v2 = HT.find env.id_terms t2 in
let i1 = HT.find env.id_terms t1 in
let l = ref [] in
for i2 = env.low_int_abstr to (if op = Lt then v2 - 1 else v2) do
List.iter (fun st ->
let st = Array.copy st in
st.(i1) <- i2;
l := st :: !l
) sts
done;
!l
| Atom.Comp ((Const _ as t1), (Le | Lt as op), t2) when abstr_num ->
let v1 = HT.find env.id_terms t1 in
let i2 = HT.find env.id_terms t2 in
let l = ref [] in
for i1 = (if op = Lt then v1 + 1 else v1) to env.up_int_abstr do
List.iter (fun st ->
let st = Array.copy st in
st.(i2) <- i1;
l := st :: !l
) sts
done;
!l
| Atom.Comp (t1, Eq, t2) ->
List.iter (fun st ->
st.(HT.find env.id_terms t1) <- HT.find env.id_terms t2) sts;
sts
| Atom.Comp (t1, Neq, Elem(_, Var)) ->
(* Assume an extra process if a disequality is mentioned on
type proc in init formula : change this to something more robust *)
List.iter (fun st -> st.(HT.find env.id_terms t1) <- env.extra_proc) sts;
sts
| _ -> sts
let write_cube_to_states env st sa =
SAtom.fold (fun a sts -> write_atom_to_states env sts a) sa [st]
let init_to_states env procs s =
let nb = env.nb_vars in
let l_inits = mkinits procs s in
let sts =
List.fold_left (fun acc init ->
let st_init = Array.make nb (-1) in
let sts = write_cube_to_states env st_init init in
List.rev_append sts acc
) [] l_inits in
List.map (fun st -> 0, st) sts
let atom_to_st_req env = function
| Atom.Comp (t1, op, t2) ->
HT.find env.id_terms t1, op, HT.find env.id_terms t2
| Atom.True -> raise Not_found
| Atom.False -> env.id_true, Eq, env.id_false
| _ -> assert false
let satom_to_st_req env sa =
SAtom.fold (fun a acc ->
try (atom_to_st_req env a) :: acc
with Not_found -> acc) sa []
type trivial_cond = Trivial of bool | Not_trivial
let trivial_cond env (i, op, v) =
if env.first_proc <= i && i <= env.extra_proc &&
env.first_proc <= v && v <= env.extra_proc then
match op with
| Eq -> Trivial (i = v)
| Neq -> Trivial (i <> v)
| Le -> Trivial (i <= v)
| Lt -> Trivial (i <> v)
else Not_trivial
let trivial_conds env l =
let some_non_trivial = ref false in
if l = [] then Trivial false
else
try
List.iter (fun c -> match trivial_cond env c with
| Trivial true -> ()
| Trivial false -> raise Exit
| Not_trivial -> some_non_trivial := true
) l;
if !some_non_trivial then Not_trivial else Trivial true
with
| Exit -> Trivial false
let swts_to_stites env at sigma swts =
let rec sd acc = function
| [] -> assert false
| [d] -> acc, d
| s::r -> sd (s::acc) r in
let swts, (d, t) = sd [] swts in
(* assert (d = SAtom.singleton True); *)
let t = Term.subst sigma t in
let default =
try match t with
| Arith (t', cs) ->
St_arith (HT.find env.id_terms at,
HT.find env.id_terms t', int_of_consts cs)
| _ ->
St_assign (HT.find env.id_terms at, HT.find env.id_terms t)
with Not_found -> St_ignore
in
List.fold_left (fun ites (sa, t) ->
let sa = SAtom.subst sigma sa in
let t = Term.subst sigma t in
let sta =
try match t with
| Arith (t', cs) ->
St_arith (HT.find env.id_terms at,
HT.find env.id_terms t', int_of_consts cs)
| _ ->
St_assign (HT.find env.id_terms at, HT.find env.id_terms t)
with Not_found -> St_ignore
in
let conds = satom_to_st_req env sa in
match trivial_conds env conds with
| Trivial true -> sta
| Trivial false -> ites
| Not_trivial -> St_ite (satom_to_st_req env sa, sta, ites)
) default swts
let assigns_to_actions env sigma acc tr_assigns =
List.fold_left
(fun acc (h, gu) ->
let nt = Elem (h, Glob) in
match gu with
| UTerm t ->
let t = Term.subst sigma t in
begin
try
let a = match t with
| Arith (t', cs) ->
St_arith (HT.find env.id_terms nt,
HT.find env.id_terms t', int_of_consts cs)
| _ ->
St_assign (HT.find env.id_terms nt, HT.find env.id_terms t)
in a :: acc
with Not_found -> acc
end
| UCase swts -> swts_to_stites env nt sigma swts :: acc
) acc tr_assigns
let nondets_to_actions env sigma acc =
List.fold_left
(fun acc (h) ->
let nt = Elem (h, Glob) in
try (St_assign (HT.find env.id_terms nt, -1)) :: acc
with Not_found -> acc
) acc
let update_to_actions procs sigma env acc
{up_arr=a; up_arg=lj; up_swts=swts} =
let indexes = Variable.all_arrangements_arity a procs in
List.fold_left (fun acc li ->
let sigma = (List.combine lj li) @ sigma in
let at = Access (a, li) in
swts_to_stites env at sigma swts :: acc
) acc indexes
let missing_reqs_to_actions env acct =
List.fold_left (fun acc -> function
| (a, Eq, b) ->
(* variable on lhs *)
let a, b =
if not (is_variable env a) && is_variable env b then b, a
else a, b in
if List.exists
(function St_assign (a', _) -> a = a' | _ -> false) acct
then acc
else (St_assign (a,b)) :: acc
| _ -> acc) acct
let value_in_state env st i =
if i <> -1 && i < env.nb_vars then st.(i) else i
let check_req env st (i1, op, i2) =
let v1 = value_in_state env st i1 in
let v2 = value_in_state env st i2 in
v1 = -1 || v2 = -1 ||
match op with
| Eq -> v1 = v2
| Neq -> v1 <> v2
| Le -> v1 <= v2
| Lt -> v1 < v2
let check_reqs env st = List.for_all (check_req env st)
let neg_req env = function
| a, Eq, b ->
if b = env.id_true then a, Eq, env.id_false
else if b = env.id_false then a, Eq, env.id_true
else a, Neq, b
| a, Neq, b -> a, Eq, b
| a, Le, b -> b, Lt, a
| a, Lt, b -> b, Le, a
let rec print_action env fmt = function
| St_ignore -> ()
| St_arith (i, v, c) ->
fprintf fmt "%a + %d" Atom.print
(Atom.Comp (id_to_term env i, Eq, id_to_term env v)) c
| St_assign (i, -1) ->
fprintf fmt "%a = ." Term.print (id_to_term env i)
| St_assign (i, v) ->
fprintf fmt "%a" Atom.print
(Atom.Comp (id_to_term env i, Eq, id_to_term env v))
| St_ite (l, a1, a2) ->
fprintf fmt "ITE (";
List.iter (fun (i, op, v) ->
eprintf "%a && " Atom.print
(Atom.Comp (id_to_term env i, op, id_to_term env v))
) l;
fprintf fmt ", %a , %a )" (print_action env) a1 (print_action env) a2
let rec apply_action env st sts' = function
| St_assign (i1, i2) ->
begin
try
let v2 = value_in_state env st i2 in
List.iter (fun st' -> st'.(i1) <- v2) sts';
sts'
with Not_found -> sts'
end
| St_arith (i1, i2, c) when abstr_num ->
begin
try
let v2 = value_in_state env st i2 in
List.iter (fun st' -> st'.(i1) <- abstr_add env v2 c) sts';
sts'
with Not_found -> sts'
end
| St_ite (reqs, a1, a2) -> (* explore both branches if possible *)
let sts'1 =
if check_reqs env st reqs then
let sts' = List.map Array.copy sts' in
apply_action env st sts' a1
else [] in
let sts'2 =
if List.exists (fun req -> check_req env st (neg_req env req)) reqs
then
let sts' = List.map Array.copy sts' in
apply_action env st sts' a2
else [] in
begin
match sts'1, sts'2 with
| [], [] -> sts'
| _::_, [] -> sts'1
| [], _::_ -> sts'2
| _, _ -> List.rev_append sts'1 sts'2
end
| _ (* St_ignore or St_arith when ignoring nums *) -> sts'
let apply_actions env st acts =
let st' = Array.copy st in
List.fold_left (apply_action env st) [st'] acts
let print_transition_fun env name sigma { st_reqs = st_reqs;
st_udnfs = st_udnfs;
st_actions = st_actions } fmt =
fprintf fmt "%a (%a)\n" Hstring.print name Variable.print_subst sigma;
fprintf fmt "requires { \n";
List.iter (fun (i, op, v) ->
fprintf fmt " %a\n" Atom.print
(Atom.Comp (id_to_term env i, op, id_to_term env v))
) st_reqs;
List.iter (fun dnf ->
fprintf fmt " ";
List.iter (fun r ->
List.iter (fun (i, op, v) ->
fprintf fmt "%a &&" Atom.print
(Atom.Comp (id_to_term env i, op, id_to_term env v))
) r;
fprintf fmt " || ";
) dnf;
fprintf fmt "\n";
) st_udnfs;
fprintf fmt "}\n";
fprintf fmt "actions { \n";
List.iter (fun a ->
fprintf fmt " %a\n" (print_action env) a;
) st_actions;
fprintf fmt "}\n@."
let rec ordered_subst = function
| [] | [_] -> true
| (_, x) :: ((_, y) :: _ as r) ->
Hstring.compare x y <= 0 && ordered_subst r
let ordered_fst_subst = function
| [] -> true
| (_, x) :: _ as sb ->
Hstring.equal x (List.hd Variable.procs) && ordered_subst sb
(****************************************************)
(* Instantiate transitions and transform to closure *)
(****************************************************)
let transitions_to_func_aux procs env reduce acc
{ tr_info = { tr_args = tr_args;
tr_reqs = reqs;
tr_name = name;
tr_ureq = ureqs;
tr_assigns = assigns;
tr_upds = upds;
tr_nondets = nondets }} =
if List.length tr_args > List.length procs then acc
else
let d = Variable.all_permutations tr_args procs in
(* do it even if no arguments *)
let d = if d = [] then [[]] else d in
(* let d = List.filter ordered_subst d in *)
List.fold_left (fun acc sigma ->
let reqs = SAtom.subst sigma reqs in
let t_args_ef =
List.fold_left (fun acc p ->
try (Variable.subst sigma p) :: acc
with Not_found -> p :: acc) [] tr_args in
let udnfs = Forward.uguard_dnf sigma procs t_args_ef ureqs in
let st_reqs = satom_to_st_req env reqs in
let st_udnfs = List.map (List.map (satom_to_st_req env)) udnfs in
let st_actions = assigns_to_actions env sigma [] assigns in
let st_actions = nondets_to_actions env sigma st_actions nondets in
let st_actions = List.fold_left
(update_to_actions procs sigma env)
st_actions upds in
let st_actions = missing_reqs_to_actions env st_actions st_reqs in
let f = fun st ->
if not (check_reqs env st st_reqs) then raise Not_applicable;
if not (List.for_all (List.exists (check_reqs env st)) st_udnfs)
then raise Not_applicable;
apply_actions env st st_actions
in
let st_vars =
List.fold_left (fun acc (_, x) ->
Hstring.HSet.add x acc) Hstring.HSet.empty sigma in
let st_tr = {
st_name = name;
st_reqs = st_reqs;
st_udnfs = st_udnfs;
st_actions = st_actions;
st_vars = st_vars;
st_args = t_args_ef;
st_f = f;
} in
if debug then print_transition_fun env name sigma st_tr err_formatter;
reduce acc st_tr
) acc d
let transitions_to_func procs env =
List.fold_left
(transitions_to_func_aux procs env (fun acc st_tr -> st_tr :: acc)) []
let post st visited trs acc cpt_q depth =
if limit_forward_depth && depth >= forward_depth then acc
else
List.fold_left (fun acc st_tr ->
try