-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
119 lines (89 loc) · 5.65 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import HypergraphConv, GCNConv
from layers import ReadoutModule, MLPModule, CrossGraphConvolution, HyperedgeConv, HyperedgePool
from utils import hypergraph_construction
class Model(nn.Module):
def __init__(self, args):
super(Model, self).__init__()
self.args = args
self.nhid = args.nhid
self.k = args.k
self.mode = args.mode
self.num_features = args.num_features
self.conv0 = GCNConv(self.num_features, self.nhid)
self.conv1 = HypergraphConv(self.nhid, self.nhid)
self.cross_conv1 = CrossGraphConvolution(self.nhid, self.nhid)
self.pool1 = HyperedgePool(self.nhid, self.args.ratio1)
self.conv2 = HyperedgeConv(self.nhid, self.nhid)
self.cross_conv2 = CrossGraphConvolution(self.nhid, self.nhid)
self.pool2 = HyperedgePool(self.nhid, self.args.ratio2)
self.conv3 = HyperedgeConv(self.nhid, self.nhid)
self.cross_conv3 = CrossGraphConvolution(self.nhid, self.nhid)
self.pool3 = HyperedgePool(self.nhid, self.args.ratio3)
self.readout0 = ReadoutModule(self.args)
self.readout1 = ReadoutModule(self.args)
self.readout2 = ReadoutModule(self.args)
self.readout3 = ReadoutModule(self.args)
self.mlp = MLPModule(self.args)
def forward(self, data):
edge_index_1 = data['g1'].edge_index
edge_index_2 = data['g2'].edge_index
edge_attr_1 = data['g1'].edge_attr
edge_attr_2 = data['g2'].edge_attr
features_1 = data['g1'].x
features_2 = data['g2'].x
batch_1 = data['g1'].batch
batch_2 = data['g2'].batch
# Layer 0
# Graph Convolution Operation
f1_conv0 = F.leaky_relu(self.conv0(features_1, edge_index_1, edge_attr_1), negative_slope=0.2)
f2_conv0 = F.leaky_relu(self.conv0(features_2, edge_index_2, edge_attr_2), negative_slope=0.2)
att_f1_conv0 = self.readout0(f1_conv0, batch_1)
att_f2_conv0 = self.readout0(f2_conv0, batch_2)
score0 = torch.cat([att_f1_conv0, att_f2_conv0], dim=1)
edge_index_1, edge_attr_1 = hypergraph_construction(edge_index_1, edge_attr_1, num_nodes=features_1.size(0), k=self.k, mode=self.mode)
edge_index_2, edge_attr_2 = hypergraph_construction(edge_index_2, edge_attr_2, num_nodes=features_2.size(0), k=self.k, mode=self.mode)
# Layer 1
# Hypergraph Convolution Operation
f1_conv1 = F.leaky_relu(self.conv1(f1_conv0, edge_index_1, edge_attr_1), negative_slope=0.2)
f2_conv1 = F.leaky_relu(self.conv1(f2_conv0, edge_index_2, edge_attr_2), negative_slope=0.2)
# Hyperedge Pooling
edge1_conv1, edge1_index_pool1, edge1_attr_pool1, edge1_batch_pool1 = self.pool1(f1_conv1, batch_1, edge_index_1, edge_attr_1)
edge2_conv1, edge2_index_pool1, edge2_attr_pool1, edge2_batch_pool1 = self.pool1(f2_conv1, batch_2, edge_index_2, edge_attr_2)
# Cross Graph Convolution
hyperedge1_cross_conv1, hyperedge2_cross_conv1 = self.cross_conv1(edge1_conv1, edge1_batch_pool1, edge2_conv1, edge2_batch_pool1)
# Readout Module
att_f1_conv1 = self.readout1(hyperedge1_cross_conv1, edge1_batch_pool1)
att_f2_conv1 = self.readout1(hyperedge2_cross_conv1, edge2_batch_pool1)
score1 = torch.cat([att_f1_conv1, att_f2_conv1], dim=1)
# Layer 2
# Hypergraph Convolution Operation
f1_conv2 = F.leaky_relu(self.conv2(hyperedge1_cross_conv1, edge1_index_pool1, edge1_attr_pool1), negative_slope=0.2)
f2_conv2 = F.leaky_relu(self.conv2(hyperedge2_cross_conv1, edge2_index_pool1, edge2_attr_pool1), negative_slope=0.2)
# Hyperedge Pooling
edge1_conv2, edge1_index_pool2, edge1_attr_pool2, edge1_batch_pool2 = self.pool2(f1_conv2, edge1_batch_pool1, edge1_index_pool1, edge1_attr_pool1)
edge2_conv2, edge2_index_pool2, edge2_attr_pool2, edge2_batch_pool2 = self.pool2(f2_conv2, edge2_batch_pool1, edge2_index_pool1, edge2_attr_pool1)
# Cross Graph Convolution
hyperedge1_cross_conv2, hyperedge2_cross_conv2 = self.cross_conv2(edge1_conv2, edge1_batch_pool2, edge2_conv2, edge2_batch_pool2)
# Readout Module
att_f1_conv2 = self.readout2(hyperedge1_cross_conv2, edge1_batch_pool2)
att_f2_conv2 = self.readout2(hyperedge2_cross_conv2, edge2_batch_pool2)
score2 = torch.cat([att_f1_conv2, att_f2_conv2], dim=1)
# Layer 3
# Hypergraph Convolution Operation
f1_conv3 = F.leaky_relu(self.conv3(hyperedge1_cross_conv2, edge1_index_pool2, edge1_attr_pool2), negative_slope=0.2)
f2_conv3 = F.leaky_relu(self.conv3(hyperedge2_cross_conv2, edge2_index_pool2, edge2_attr_pool2), negative_slope=0.2)
# Hyperedge Pooling
edge1_conv3, edge1_index_pool3, edge1_attr_pool3, edge1_batch_pool3 = self.pool3(f1_conv3, edge1_batch_pool2, edge1_index_pool2, edge1_attr_pool2)
edge2_conv3, edge2_index_pool3, edge2_attr_pool3, edge2_batch_pool3 = self.pool3(f2_conv3, edge2_batch_pool2, edge2_index_pool2, edge2_attr_pool2)
# Cross Graph Convolution
hyperedge1_cross_conv3, hyperedge2_cross_conv3 = self.cross_conv3(edge1_conv3, edge1_batch_pool3, edge2_conv3, edge2_batch_pool3)
# Readout Module
att_f1_conv3 = self.readout3(hyperedge1_cross_conv3, edge1_batch_pool3)
att_f2_conv3 = self.readout3(hyperedge2_cross_conv3, edge2_batch_pool3)
score3 = torch.cat([att_f1_conv3, att_f2_conv3], dim=1)
scores = torch.cat([score0, score1, score2, score3], dim=1)
scores = self.mlp(scores)
return scores