-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
542 lines (407 loc) · 22.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 10 12:22:43 2017
@author: csten_000
"""
import pickle
from pathlib import Path
import random
import numpy as np
#np.set_printoptions(threshold=np.nan)
import datetime
import os
import copy
import sys
import tweepy
#====own files====
import datasetclass
import word2vec
from lstmclass import plot_test_and_train, test_one_sample, validate, train_and_test
from create_random import random_strings
from downloadAndPreprocess import create_folder, run_all
from create_dataset import create_from_johannes
import generatornetwork
from tweepy_credentials import consumer_key, consumer_secret, access_key, access_secret
#==============================================================================
is_for_trump = True
#==============================================================================
class Config_moviedat(object):
is_for_trump = False
TRAINNAME = "train"
TESTNAME = "test"
VALIDATIONNAME = "validation"
setpath = "./moviesets/"
w2v_usesets = [True, True, True]
use_w2v = False
embedding_size = 128
num_steps_w2v = 200001 #198000 ist einmal durchs ganze movieratings-dataset (falls nach word2vec gekürzt)
maxlen_percentage = .75
minlen_abs = 40
TRAIN_STEPS = 6
longruntrials = 11
batch_size = 32
expressive_run = False
checkpointpath = "./moviedatweights/"
fast_create_antiset = False
allnetworkinitscale = 0.1
generatorhiddensize = 200
max_gen_loss_to_perform = 300
min_disc_acc_to_perform = 0.7
def __init__(self):
if not os.path.exists(self.checkpointpath+"classifier/"):
os.makedirs(self.checkpointpath+"classifier/")
if not os.path.exists(self.checkpointpath+"recognizer/"):
os.makedirs(self.checkpointpath+"recognizer/")
if not os.path.exists(self.checkpointpath+"languagemodel/"):
os.makedirs(self.checkpointpath+"languagemodel/")
class Config_trumpdat(object):
is_for_trump = True
TRAINNAME = "train"
TESTNAME = "test"
VALIDATIONNAME = "validation"
setpath = "./trumpsets/"
w2v_usesets = [True, True, True]
use_w2v = True
embedding_size = 128
num_steps_w2v = 200001
maxlen_percentage = .90
minlen_abs = 15
TRAIN_STEPS = 12
longruntrials = 20
batch_size = 48
expressive_run = False
checkpointpath = "./trumpdatweights/"
fast_create_antiset = False
allnetworkinitscale = 0.1 #kleiner falls mehr iterationen
generatorhiddensize = 200 #könnte auch >1000 sein
max_gen_loss_to_perform = 300
min_disc_acc_to_perform = 0.7
def __init__(self):
if not os.path.exists(self.checkpointpath+"classifier/"):
os.makedirs(self.checkpointpath+"classifier/")
if not os.path.exists(self.checkpointpath+"recognizer/"):
os.makedirs(self.checkpointpath+"recognizer/")
if not os.path.exists(self.checkpointpath+"languagemodel/"):
os.makedirs(self.checkpointpath+"languagemodel/")
#==============================================================================
def to_one_hot(y):
y_one_hot = []
for row in y:
if row == 0:
y_one_hot.append([1.0, 0.0])
else:
y_one_hot.append([0.0, 1.0])
return np.array([np.array(row) for row in y_one_hot])
def get_cmdarguments():
flag_onlyrun = flag_deleteall = flag_longversion = flag_showeverything = flag_shutup = False
if len(sys.argv) > 1:
if "-onlyrun" in sys.argv:
flag_onlyrun = True
else:
flag_onlyrun = input("Do you just want to generate a tweet?") in ('y','yes','Y','Yes','YES')
if not flag_onlyrun:
if "-deleteall" in sys.argv:
flag_deleteall = True
else:
flag_deleteall = input("Do you want to start completely from scratch?") in ('y','yes','Y','Yes','YES')
if "-longversion" in sys.argv:
flag_longversion = True
else:
flag_longversion = input("Do you want to run the long version, which figures out the right amount of training etc automatically?") in ('y','yes','Y','Yes','YES')
if "-showeverything" in sys.argv:
flag_showeverything = True
else:
flag_showeverything = input("Do you want to run the expressive mode, generating lots of output-information?") in ('y','yes','Y','Yes','YES')
if "-shutup" in sys.argv:
flag_shutup =True
return flag_onlyrun, flag_deleteall, flag_longversion, flag_showeverything, flag_shutup
#==============================================================================
def load_dataset(config, include_w2v, include_tsne):
print('Loading data...')
if Path(config.checkpointpath+"dataset_mit_wordvecs.pkl").is_file():
print("Dataset including word2vec found!")
with open(config.checkpointpath+'dataset_mit_wordvecs.pkl', 'rb') as input:
datset = pickle.load(input)
else:
if Path(config.checkpointpath+"dataset_ohne_wordvecs.pkl").is_file():
print("dataset without word2vec found.")
with open(config.checkpointpath+'dataset_ohne_wordvecs.pkl', 'rb') as input:
datset = pickle.load(input)
print(datset.ohnum," different words.")
else:
print("No dataset found! Creating new...")
datset = datasetclass.make_dataset(config.w2v_usesets, config)
#print("Shortening to", datset.shortendata([True, True, True], .75, 40, True, config.embedding_size))
print(""+str(datset.ohnum)+" different words.")
rand = round(random.uniform(0,len(datset.traintargets)))
print('Sample string', datset.trainreviews[rand][0:100], [datset.uplook[i] for i in datset.trainreviews[rand][0:100]])
with open(config.checkpointpath+'dataset_ohne_wordvecs.pkl', 'wb') as output:
pickle.dump(datset, output, pickle.HIGHEST_PROTOCOL)
print('Saved the dataset as Pickle-File')
if include_w2v: #taken from https://www.tensorflow.org/tutorials/word2vec/
print("Starting word2vec...")
word2vecresult, w2vsamplecount = word2vec.perform_word2vec(config, datset)
datset.add_wordvectors(word2vecresult)
with open(config.checkpointpath+'dataset_mit_wordvecs.pkl', 'wb') as output:
pickle.dump(datset, output, pickle.HIGHEST_PROTOCOL)
print("Saved word2vec-Results.")
print("Word2vec ran through",w2vsamplecount,"different strings.")
if config.is_for_trump:
datset.printcloseones("4") #bei twitterdaten sind WIE ERWARTET "4" und "for" nah!!!
datset.printcloseones("evil") #socialism, hach this dataset *_*
datset.printcloseones("trump")
else:
datset.printcloseones("movie")
datset.printcloseones("woman")
datset.printcloseones("<dot>")
datset.printcloseones("his")
datset.printcloseones("bad")
datset.printcloseones("three")
if include_tsne: word2vec.plot_tsne(datset.wordvecs, datset, config.checkpointpath+'tsne.png')
print('Data loaded.')
return datset
def prepare_dataset(config, datset, onlywith = 0, printstuff = False):
if printstuff:
previous_maxlen = datset.showstringlenghts([True, True, True], 1, False)
now_maxlen = datset.shortendata([True, True, True], config.maxlen_percentage, config.minlen_abs, config.expressive_run, config.embedding_size)
if printstuff:
print("So far, there are",len(datset.trainreviews),"strings...")
print("Shortening from max.",previous_maxlen,"words to", now_maxlen,"words (min",str(config.minlen_abs)+")")
print("...afterwards, there are",len(datset.trainreviews),"strings.")
X_train = np.asarray(datset.trainreviews)
y_train = to_one_hot(np.asarray(datset.traintargets))
if onlywith > 0:
X_train = np.concatenate([X_train[:onlywith//2], X_train[-onlywith//2:]])
y_train = np.concatenate([y_train[:onlywith//2], y_train[-onlywith//2:]])
X_test = np.asarray(datset.testreviews)
y_test = to_one_hot(np.asarray(datset.testtargets))
X_validat = np.asarray(datset.validreviews)
y_validat = to_one_hot(np.asarray(datset.validtargets))
percentage = sum([item[0] for item in y_train])/len([item[0] for item in y_train])*100
if printstuff: print(round(percentage),"% of training-data is positive")
assert 20 < percentage < 80, "The training data is bad for ANNs"
return X_train, y_train, X_test, y_test, X_validat, y_validat
#==============================================================================
def create_antiset(config, datset, primitive=False, showsample = False):
print("Creating an anti-dataset...")
if Path(config.checkpointpath+"antiset_with_wordvecs.pkl").is_file():
print("Antiset including word2vec found!")
with open(config.checkpointpath+'antiset_with_wordvecs.pkl', 'rb') as input:
antiset = pickle.load(input)
return antiset
antitrain = random_strings(datset, len(datset.trainreviews), primitive)
antitest = random_strings(datset, len(datset.testreviews), primitive)
antivalid = random_strings(datset, len(datset.validreviews), primitive)
antiset = datasetclass.thedataset(antitrain, [0]*len(datset.traintargets),
antitest, [0]*len(datset.testtargets),
antivalid, [0]*len(datset.validtargets),
copy.deepcopy(datset.lookup), copy.deepcopy(datset.uplook), datset.ohnum)
antiset.add_wordvectors(copy.deepcopy(datset.wordvecs))
try:
antiset.maxlenstring = datset.maxlenstring
except:
print("For both sets, the maxlenstring is missing!")
with open(config.checkpointpath+'antiset_with_wordvecs.pkl', 'wb') as output:
pickle.dump(antiset, output, pickle.HIGHEST_PROTOCOL)
print('Saved the anti-dataset as Pickle-File')
if showsample:
rand = round(random.uniform(0,len(datset.traintargets)))
print('Sample string', antiset.trainreviews[rand][0:100], [antiset.uplook[i] for i in antiset.trainreviews[rand][0:100]])
return antiset
def merge_sets(dataset, antiset):
tr= copy.deepcopy(dataset.trainreviews); tr.extend(antiset.trainreviews)
te= copy.deepcopy(dataset.testreviews); te.extend(antiset.testreviews)
va= copy.deepcopy(dataset.validreviews); va.extend(antiset.validreviews)
merged = datasetclass.thedataset(tr, [1]*len(dataset.traintargets)+[0]*len(antiset.traintargets),
te, [1]*len(dataset.testreviews)+[0]*len(antiset.testreviews),
va, [1]*len(dataset.validreviews)+[0]*len(antiset.validreviews),
copy.deepcopy(dataset.lookup), copy.deepcopy(dataset.uplook), dataset.ohnum-1) #-1 cause it adds some itself
merged.add_wordvectors(copy.deepcopy(dataset.wordvecs))
try:
antiset.maxlenstring = dataset.maxlenstring if dataset.maxlenstring > antiset.maxlenstring else antiset.maxlenstring
except:
print("For both sets, the maxlenstring is missing!")
for i in range(len(merged.trainreviews)):
merged.trainreviews[i] = list(merged.trainreviews[i])
for i in range(len(merged.testreviews)):
merged.testreviews[i] = list(merged.testreviews[i])
for i in range(len(merged.validreviews)):
merged.validreviews[i] = list(merged.validreviews[i])
return merged
def load_and_select_dataset(config, include_tsne = False, is_recognizer = False):
datset = load_dataset(config, include_w2v = config.use_w2v, include_tsne = include_tsne)
if is_recognizer:
datset.traintargets = [1]*len(datset.traintargets)
datset.testtargets = [1]*len(datset.testtargets)
datset.validtargets = [1]*len(datset.validtargets)
mergedsets = merge_sets(datset, create_antiset(config,datset,primitive=config.fast_create_antiset))
datset = mergedsets
return datset
#==============================================================================
def remove_zwischengespeichertes(config):
for whichdir in [config.checkpointpath, os.path.join(config.checkpointpath, "classifier"), os.path.join(config.checkpointpath, "recognizer"), os.path.join(config.checkpointpath, "languagemodel")]:
for filename in os.listdir(whichdir):
if Path(whichdir+filename).is_file():
os.remove(os.path.join(whichdir, filename))
def reset_trump_dataset():
create_folder("Tweets")
run_all() #from downloadandpreprocess
create_from_johannes("./")
os.remove("./Trumpliker.txt")
os.remove("./Trumphater.txt")
os.remove("./Filtered Tweets Positive.txt")
os.remove("./Filtered Tweets negative.txt")
#=============================================================================
#Functions of LSTM-class:
#def plot_test_and_train(config, dataset, amount_iterations, X_train, y_train, X_test, y_test, is_recognizer = False):
#def test_one_sample(config, dataset, string, doprint=False, is_recognizer = False):
#def validate(config, dataset, X_validat, y_validat, bkpath = "", is_recognizer = False):
#def train_and_test(config, dataset, amount_iterations, X_test, y_test, X_train, y_train, is_recognizer = False):
#==============================================================================
def check_disc_accuracy(config, is_recognizer=False):
global checked_rec_acc_already, checked_cla_acc_already
if is_recognizer:
if checked_rec_acc_already:
return True
if perform_classifier(config, validate_only=True, is_recognizer=True) < config.min_disc_acc_to_perform:
print("The recognizer is too bad, at first we have to make it learn!")
perform_classifier(config, short_run=True, is_recognizer=True)
checked_rec_acc_already = True
return True
else:
if checked_cla_acc_already:
return True
if perform_classifier(config, validate_only=True, is_recognizer=False) < config.min_disc_acc_to_perform:
print("The classifier is too bad, at first we have to make it learn!")
perform_classifier(config, short_run=True, is_recognizer=False)
checked_cla_acc_already = True
return True
def check_gen_accuracy(config):
global checked_gen_acc_already
if checked_gen_acc_already:
return True
if perform_generator(config, validate_only=True) > config.max_gen_loss_to_perform:
print("The LanguageModel is too bad yet, at first we have to make it learn!")
perform_generator(config, short_run=True)
checked_gen_acc_already = True
return True
#==============================================================================
#==============================================================================
#==============================================================================
#==============================================================================
def perform_generator(config, validate_only=False, long_run=False, delete_all=False, short_run=False):
print("Looking at the Languagemodel/Generator...")
datset = load_dataset(config, config.use_w2v, False)
if validate_only:
return generatornetwork.validate(datset, config, printstuff=True)
if delete_all:
remove_zwischengespeichertes(config)
if config.is_for_trump:
reset_trump_dataset()
if long_run:
generatornetwork.run_till_loss_lowerthan(datset, config, generatornetwork.LearnConfig())
elif short_run:
generatornetwork.run_train_and_valid(datset, config, generatornetwork.LearnConfig())
def perform_generator_generate(config, harsh_rules=True, checkaccuracy=True):
datset = load_dataset(config, config.use_w2v, False)
if checkaccuracy:
check_gen_accuracy(config)
if harsh_rules:
check_disc_accuracy(config, is_recognizer=True)
check_disc_accuracy(config, is_recognizer=False)
return get_something_to_tweet(config, datset, harsh_rules=harsh_rules)[0]
def perform_classifier(config, is_recognizer=False, validate_only=False, long_run=False, short_run=False, delete_all=False):
subfolder = "recognizer/" if is_recognizer else "classifier/"
if is_recognizer:
print("Starting the actual LSTM... (performing the recognizer)")
else:
print("Starting the actual LSTM... (performing the classifier)")
datset = load_and_select_dataset(config, include_tsne = False, is_recognizer = is_recognizer)
X_train, y_train, X_test, y_test, X_validat, y_validat = prepare_dataset(config, datset)
if validate_only:
return validate(config=config, dataset=datset, X_validat=X_validat, y_validat=y_validat, bkpath=config.checkpointpath+subfolder, is_recognizer=is_recognizer)
if delete_all:
remove_zwischengespeichertes(config)
if config.is_for_trump:
reset_trump_dataset()
if long_run:
print("Best training-set-result after",plot_test_and_train(config=config, dataset=datset, amount_iterations=config.longruntrials, X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, is_recognizer=is_recognizer),"iterations")
try:
validate(config=config, dataset=datset, X_validat=X_validat, y_validat=y_validat, bkpath=config.checkpointpath+subfolder+"ManyIterations/", is_recognizer=is_recognizer)
except:
print("Can't run on the validation set because you didn't agree to copy!")
elif short_run:
train_and_test(config=config, dataset=datset, amount_iterations=config.TRAIN_STEPS, X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, is_recognizer=is_recognizer)
validate(config=config, dataset = datset, X_validat=X_validat, y_validat=y_validat, bkpath = config.checkpointpath+subfolder, is_recognizer=is_recognizer)
def perform_classifier_on_string(config, string, is_recognizer = False, doprint = False, checkaccuracy=True):
if checkaccuracy:
check_disc_accuracy(config, is_recognizer=is_recognizer)
if doprint: print("Testing the classifier on '", string, "'")
datset = load_and_select_dataset(config, include_tsne = False, is_recognizer = is_recognizer)
X_train, y_train, X_test, y_test, X_validat, y_validat = prepare_dataset(config, datset)
result = test_one_sample(config, datset, string, is_recognizer=is_recognizer)
if doprint: print("Positive example" if result else "Negative example")
return result
def get_something_to_tweet(config, dataset, howmany=1, minlen=4, harsh_rules=True): #diese Funktion kann theoretisch endlos laufen, but who cares.
returntweets = []
while len(returntweets) < howmany:
tweets = generatornetwork.main_generate(config, dataset, howmany*2, nounk = True, avglen = 25)
for tweet in tweets:
if len(tweet) < 139:
if harsh_rules:
if perform_classifier_on_string(config, tweet, doprint=False, is_recognizer=True):
if perform_classifier_on_string(config, tweet, doprint=False, is_recognizer=False):
allstartwithat = True
for word in tweet.split():
if word[0] != "@": allstartwithat = False
if not allstartwithat:
if len(tweet.split()) >= minlen:
returntweets.append(tweet)
if len(returntweets) == howmany:
break
else:
returntweets.append(tweet)
if len(returntweets) == howmany:
break
return returntweets
#==============================================================================
#==============================================================================
#==============================================================================
#==============================================================================
if __name__ == '__main__':
global flag_onlyrun, flag_deleteall, flag_longversion, flag_showeverything, flag_shutup
global checked_rec_acc_already, checked_cla_acc_already, checked_gen_acc_already
print('Timestamp: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now()))
try:
#flag_onlyrun, flag_deleteall, flag_longversion, flag_showeverything, flag_shutup = get_cmdarguments()
flag_onlyrun = True
flag_deleteall = flag_longversion = flag_showeverything = flag_shutup = False
if is_for_trump:
config = Config_trumpdat()
else:
config = Config_moviedat()
checked_rec_acc_already = checked_cla_acc_already = checked_gen_acc_already = False
print("Using the","Trump" if config.is_for_trump else "Movie","dataset")
# print("VALIDATING THE DISCRIMINATOR")
# perform_classifier(config, validate_only=True, is_recognizer=False)
#
# print("PERFORMING THE DISCRIMINATOR ON SOMETHING")
# perform_classifier_on_string(config, "@realdonaldtrump #MAGA", doprint=True)
#
# print("GOING FOR THE GENERATOR, YEEEAHHHHH")
# print(perform_generator_generate(config))
totweet = perform_generator_generate(config)
print(totweet)
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_key, access_secret)
api = tweepy.API(auth)
api.update_status(totweet)
# if config.is_for_trump:
# perform_classifier_on_string(config, "@realdonaldtrump #MAGA", True, is_recognizer=False)
# perform_classifier_on_string(config, "Cars now cheap here!", True, is_recognizer=False)
# else:
# perform_classifier_on_string(config, "I hated this movie. It sucks. The movie is bad, Worst movie ever. Bad Actors, bad everything.", True, is_recognizer=False)
# perform_classifier_on_string(config, "I loved this movie. It is awesome. The movie is good, best movie ever. good Actors, good everything.", True, is_recognizer=False)
except ImportError:
print("Import Errors. Did you download Tensorflow and Tweepy?")
print('Timestamp: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now()))