forked from gmberton/Simple_VPR_codebase
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser.py
41 lines (33 loc) · 2.06 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import argparse
def parse_arguments():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Training parameters
parser.add_argument("--batch_size", type=int, default=64,
help="The number of places to use per iteration (one place is N images)")
parser.add_argument("--img_per_place", type=int, default=4,
help="The effective batch size is (batch_size * img_per_place)")
parser.add_argument("--min_img_per_place", type=int, default=4,
help="places with less than min_img_per_place are removed")
parser.add_argument("--max_epochs", type=int, default=20,
help="stop when training reaches max_epochs")
parser.add_argument("--num_workers", type=int, default=8,
help="number of processes to use for data loading / preprocessing")
# Architecture parameters
parser.add_argument("--descriptors_dim", type=int, default=512,
help="dimensionality of the output descriptors")
# Visualizations parameters
parser.add_argument("--num_preds_to_save", type=int, default=0,
help="At the end of training, save N preds for each query. "
"Try with a small number like 3")
parser.add_argument("--save_only_wrong_preds", action="store_true",
help="When saving preds (if num_preds_to_save != 0) save only "
"preds for difficult queries, i.e. with uncorrect first prediction")
# Paths parameters
parser.add_argument("--train_path", type=str, default="data/gsv_xs/train",
help="path to train set")
parser.add_argument("--val_path", type=str, default="data/sf_xs/val",
help="path to val set (must contain database and queries)")
parser.add_argument("--test_path", type=str, default="data/sf_xs/test",
help="path to test set (must contain database and queries)")
args = parser.parse_args()
return args