forked from gmberton/Simple_VPR_codebase
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
142 lines (118 loc) · 6.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import numpy as np
import torchvision.models
import pytorch_lightning as pl
from torchvision import transforms as tfm
from pytorch_metric_learning import losses
from torch.utils.data.dataloader import DataLoader
from pytorch_lightning.callbacks import ModelCheckpoint
import utils
import parser
from datasets.test_dataset import TestDataset
from datasets.train_dataset import TrainDataset
class LightningModel(pl.LightningModule):
def __init__(self, val_dataset, test_dataset, descriptors_dim=512, num_preds_to_save=0, save_only_wrong_preds=True):
super().__init__()
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.num_preds_to_save = num_preds_to_save
self.save_only_wrong_preds = save_only_wrong_preds
# Use a pretrained model
self.model = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT)
# Change the output of the FC layer to the desired descriptors dimension
self.model.fc = torch.nn.Linear(self.model.fc.in_features, descriptors_dim)
# Set the loss function
self.loss_fn = losses.ContrastiveLoss(pos_margin=0, neg_margin=1)
def forward(self, images):
descriptors = self.model(images)
return descriptors
def configure_optimizers(self):
optimizers = torch.optim.SGD(self.parameters(), lr=0.001, weight_decay=0.001, momentum=0.9)
return optimizers
# The loss function call (this method will be called at each training iteration)
def loss_function(self, descriptors, labels):
loss = self.loss_fn(descriptors, labels)
return loss
# This is the training step that's executed at each iteration
def training_step(self, batch, batch_idx):
images, labels = batch
num_places, num_images_per_place, C, H, W = images.shape
images = images.view(num_places * num_images_per_place, C, H, W)
labels = labels.view(num_places * num_images_per_place)
# Feed forward the batch to the model
descriptors = self(images) # Here we are calling the method forward that we defined above
loss = self.loss_function(descriptors, labels) # Call the loss_function we defined above
self.log('loss', loss.item(), logger=True)
return {'loss': loss}
# For validation and test, we iterate step by step over the validation set
def inference_step(self, batch):
images, _ = batch
descriptors = self(images)
return descriptors.cpu().numpy().astype(np.float32)
def validation_step(self, batch, batch_idx):
return self.inference_step(batch)
def test_step(self, batch, batch_idx):
return self.inference_step(batch)
def validation_epoch_end(self, all_descriptors):
return self.inference_epoch_end(all_descriptors, self.val_dataset)
def test_epoch_end(self, all_descriptors):
return self.inference_epoch_end(all_descriptors, self.test_dataset, self.num_preds_to_save)
def inference_epoch_end(self, all_descriptors, inference_dataset, num_preds_to_save=0):
"""all_descriptors contains database then queries descriptors"""
all_descriptors = np.concatenate(all_descriptors)
queries_descriptors = all_descriptors[inference_dataset.database_num : ]
database_descriptors = all_descriptors[ : inference_dataset.database_num]
recalls, recalls_str = utils.compute_recalls(
inference_dataset, queries_descriptors, database_descriptors,
trainer.logger.log_dir, num_preds_to_save, self.save_only_wrong_preds
)
print(recalls_str)
self.log('R@1', recalls[0], prog_bar=False, logger=True)
self.log('R@5', recalls[1], prog_bar=False, logger=True)
def get_datasets_and_dataloaders(args):
train_transform = tfm.Compose([
tfm.RandAugment(num_ops=3),
tfm.ToTensor(),
tfm.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
train_dataset = TrainDataset(
dataset_folder=args.train_path,
img_per_place=args.img_per_place,
min_img_per_place=args.min_img_per_place,
transform=train_transform
)
val_dataset = TestDataset(dataset_folder=args.val_path)
test_dataset = TestDataset(dataset_folder=args.test_path)
train_loader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True)
val_loader = DataLoader(dataset=val_dataset, batch_size=args.batch_size, num_workers=4, shuffle=False)
test_loader = DataLoader(dataset=test_dataset, batch_size=args.batch_size, num_workers=4, shuffle=False)
return train_dataset, val_dataset, test_dataset, train_loader, val_loader, test_loader
if __name__ == '__main__':
args = parser.parse_arguments()
train_dataset, val_dataset, test_dataset, train_loader, val_loader, test_loader = get_datasets_and_dataloaders(args)
model = LightningModel(val_dataset, test_dataset, args.descriptors_dim, args.num_preds_to_save, args.save_only_wrong_preds)
# Model params saving using Pytorch Lightning. Save the best 3 models according to Recall@1
checkpoint_cb = ModelCheckpoint(
monitor='R@1',
filename='_epoch({epoch:02d})_step({step:04d})_R@1[{val/R@1:.4f}]_R@5[{val/R@5:.4f}]',
auto_insert_metric_name=False,
save_weights_only=True,
save_top_k=3,
mode='max'
)
# Instantiate a trainer
trainer = pl.Trainer(
accelerator='gpu',
devices=[0],
default_root_dir='./LOGS', # Tensorflow can be used to viz
num_sanity_val_steps=0, # runs a validation step before stating training
precision=16, # we use half precision to reduce memory usage
max_epochs=args.max_epochs,
check_val_every_n_epoch=1, # run validation every epoch
callbacks=[checkpoint_cb], # we only run the checkpointing callback (you can add more)
reload_dataloaders_every_n_epochs=1, # we reload the dataset to shuffle the order
log_every_n_steps=20,
)
trainer.validate(model=model, dataloaders=val_loader)
trainer.fit(model=model, train_dataloaders=train_loader, val_dataloaders=val_loader)
trainer.test(model=model, dataloaders=test_loader)