-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algorithm.m
137 lines (87 loc) · 4.97 KB
/
genetic_algorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
%% This is the AiAI worksheet 3 task - Genetic Algorithm - Travelling Salesman Problem
% Raphael Nagel
% 06/Nov/2012
clc
clear all
%% VARIABLES !!!!!EDIT HERE!!!!!
popSize=50;
geneLength=50;
generations=100;
maxCycles = 2; %how often to redo different the evolution from initiation
mutationRate=1/geneLength; % we should just about have one mutation per genom
coRate = 1; % how often we cross over
tournament_size = 10;
%
twoPointCO = 0;
%% set up thearray, etc.
%struct to hold the individuals %population=struct('g',{[]},'f',[]); backup in case the other stuff doesntwork
population(1:popSize)=struct('g',{[zeros(1,geneLength)]},'f',[0]);
offspring(1:popSize)=struct('g',{[zeros(1,geneLength)]},'f',[0]);
parents(1:popSize)=struct('g',{[zeros(1,geneLength)]},'f',[0]);
rescued=struct('g',{[]},'f',[]); %will just hold the single best individual from population
% set up output for over time plotting
output=struct('bestFit',zeros(generations,maxCycles),'averageFit',zeros(generations,maxCycles),'avgBest5',zeros(generations,1),'avgAvg5',zeros(generations,1)); %preload the output file for all X cycles with nulls %per evolution
%generate a TSP distance chart
distanceChartTSP = generate_TSP_problem(popSize, 1, 1500);
%% redo the whole GA to show how parameters influence the outcome
for evoCycles = 1:maxCycles
%% initiate the GA with random genes
%population = generate_binary_gene_population(population,popSize,geneLength);
population = generate_TS_population(population,popSize,geneLength);
%% !!!!!! START THE EVOLUTION !!!!!
for genCycles = 1:generations
%% calculate individual fitness by summing each genes with 1 per individual
%population = n1s_fitness(population,popSize,geneLength);
%% calculate individual fitness based on paired genes (gene(n) == gene(n+1))
%population = pair1s_fitness(population,popSize,geneLength);
%% calculate individual fitness based on paired genes
% population = strict_pairs1s_fitness(population,popSize,geneLength);
%% calculate individual fitness for a TSP problem
population = tsp_fitness(population, popSize, geneLength, distanceChartTSP);
%% calculate overall fitness,find and save best individual
totPopFitness=0;
maxFitness = 0;
for x = 1:popSize
totPopFitness = (totPopFitness + population(x).f);
if population(x).f > maxFitness
maxFitness = population(x).f;
rescued(1) = population(x); %save the single surviver
end
end
%% also save in array
output.bestFit(genCycles,evoCycles) = maxFitness;
output.averageFit(genCycles,evoCycles) = (totPopFitness / popSize);
%% find the parents
%Begin summing the fitnesses
%of the individuals in the population again until the running sum is
% greater than or equal to the randomly chosen number.
% parents = roulette_wheel_selection(population,popSize, totPopFitness);
parents = tournament_selection(population,popSize,tournament_size);
%% Recombination - one point cross over
% offspring = one_point_CO(parents,popSize,geneLength);
%% Recombination - two point cross over
%offspring = two_point_CO(parents,popSize,geneLength,coRate);
%% Recombination - uniform cross over
%offspring = uniform_CO(parents,popSize,geneLength,coRate);
%% TSP crossover TBD!!!!!!!!!!!!!
offspring = parents;
%% Mutation
% standart binary mutation
%offspring = binary_mutation(offspring, popSize, geneLength, mutationRate);
% swapTSP mutation
offspring = swapTSP_Mutation(offspring, popSize, geneLength);
%% Survivor Selection
population = offspring; % first overwrite the whole population with offspring
y = randi([1,popSize]); %select random position to overwrite with the rescued surviver
population(y)= rescued(1); %reinsert this fittest individual of the old population
end %ends the evolution
end
output.avgBest5 = mean(output.bestFit,2);
output.avgAvg5 = mean(output.averageFit,2);
hold on
grid on
plot(output.bestFit,'DisplayName','output.bestFit','YDataSource','output.bestFit');figure(gcf)
plot(output.averageFit,'DisplayName','output.averageFit','YDataSource','output.averageFit');figure(gcf)
plot(output.avgBest5,'r','LineWidth',3,'DisplayName','output.avgBest5','YDataSource','output.avgBest5');figure(gcf)
plot(output.avgAvg5,'b','LineWidth',3,'DisplayName','output.avgAvg5','YDataSource','output.avgAvg5');figure(gcf)
xlabel('Generations');ylabel('Fitness');