-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsgm_classifHybrid.py
575 lines (544 loc) · 32.1 KB
/
sgm_classifHybrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import numpy as np
import tensorflow as tf
import scipy
from sklearn.preprocessing import StandardScaler
import time
import matplotlib.pyplot as plt
N = 30 # N time intervals, N+1 dates
# number of Monte Carlo simulations
Rbar = 0.1 # mean-reversion level of residual demand
Rho = 0.9 # reversion speed of residual demand
Sigma = 0.2 # volatility of residual demand noise
Cmin = 0.0 # minimum charge
C0 = 0.00 # initial charge
Cmax = 1.0 # maximum charge
K = 2.0 # cost multiplier for diesel generator
Gamma = 2.0 # power of cost of diesel generator
Kappa = 0.2 # on/off switching cost of diesel generator
Qm = 10.0 # multiplicative penalty for negative imbalance
Qp=1000.0
R0 = 0.1 # initial residual demand
Amin = 0.05 # alpha_s minimum
Amax=10
M0=0
### Training and Validation sets generation
n_epochs=100
Mbatch=300
n_batches=100
M_training=Mbatch*n_batches*n_epochs # Size of the training set
MBatchValidation=1000 # Size of the validation set
M_validation=n_epochs*MBatchValidation
np.random.seed(1)
SampleTraining=np.zeros((N+1,M_training,3))
SampleTraining[0,:,0]=C0
SampleTraining[0,:,1]=M0
SampleTraining[0,:,2]=R0
SampleTraining[0][:,2:3]
for n in range(N):
print("n=",n)
noise=Sigma*np.random.normal(0,1,(M_training,1))
next_r=Rbar*(1-Rho)+Rho*SampleTraining[n][:,2:3]+noise
next_m=np.random.randint(2, size=(M_training,1))
next_c=np.random.uniform(Cmin,Cmax,size=(M_training,1))
SampleTraining[n+1]=np.concatenate((next_c,next_m,next_r),1)
plt.plot([SampleTraining[i,8,0] for i in range(N)])
scaler= StandardScaler()
SampleTrainingRescaled=[]
for ind in range(len(SampleTraining)):
scaler.fit(SampleTraining[ind])
SampleTrainingRescaled.append(scaler.transform(SampleTraining[ind]))
scaler= StandardScaler()
SampleTrainingRescaled=[]
for ind in range(len(SampleTraining)):
scaler.fit(SampleTraining[ind])
SampleTrainingRescaled.append(scaler.transform(SampleTraining[ind]))
## Validation set
SampleValidation=np.zeros((N+1,M_validation,3))
SampleValidation[0,:,0]=C0
SampleValidation[0,:,1]=M0
SampleValidation[0,:,2]=R0
SampleValidation[0][:,2:3]
for n in range(N):
print("n=",n)
noise=Sigma*np.random.normal(0,1,(M_validation,1))
next_r=Rbar*(1-Rho)+Rho*SampleValidation[n][:,2:3]+noise
next_m=np.random.randint(2, size=(M_validation,1))
next_c=np.random.uniform(Cmin,Cmax,size=(M_validation,1))
SampleValidation[n+1]=np.concatenate((next_c,next_m,next_r),1)
plt.plot([SampleValidation[i,40:45,0] for i in range(N)])
plt.hist(SampleTraining[1,:,2])
plt.hist(SampleValidation[1,:,2])
plt.plot([SampleTraining[i,40,0] for i in range(N)])
SampleValidationRescaled=[]
for ind in range(len(SampleValidation)):
scaler.fit(SampleValidation[ind])
SampleValidationRescaled.append(scaler.transform(SampleValidation[ind]))
############# Neural Network
Scaler=[]
for n in range(N+1):
print("n=",n)
Scaler.append(StandardScaler().fit(SampleTraining[n]))
n_inputs=3
n_hidden1=10
n_hidden2=5
#n_hidden3=10
#n_hidden4=5
n_outputs=1
n_hidden1_A=10
n_hidden2_A=10
#n_hidden3_A=d+5
#n_hidden4_A=d+5
n_outputs_A=3
n_outputs_V=1
init_learning_rate_V=.001
init_learning_rate_A=0.001 #0.001 avant
learning_rate_AV=0.0005
scale=0.001
nbOuterLearning=n_epochs/10
min_decrease_rateA=0.05
min_decrease_rateV=0.05
# Learn the optimal control and value function at time N-1. No pre-training.
def TrainVnnAnnT_(n):
assert(n==N-1)
tf.reset_default_graph()
Amin_t=tf.constant(Amin, dtype="float64")
Amax_t=tf.constant(Amax, dtype="float64")
rho_t=tf.constant(Rho,dtype="float64")
K_t=tf.constant(K,dtype="float64")
Kappa_t=tf.constant(Kappa,dtype="float64")
Gamma_t=tf.constant(Gamma,dtype="float64")
Qm_t=tf.constant(Qm,dtype="float64")
Qp_t=tf.constant(Qp,dtype="float64")
Cmax_t=tf.constant(Cmax,dtype="float64")
Cmin_t=tf.constant(Cmin,dtype="float64")
learning_rate_A=tf.placeholder(tf.float64, name="learning_rate_A")
learning_rate_V=tf.placeholder(tf.float64, name="learning_rate_V")
Xunsc=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Xunsc") #Le batch unscaled
Xsc=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Xsc") #Le batch rescaled
Noise=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Noise") #Bruit gaussien pour le calcul de X au temps n+1
regularizerA=tf.contrib.layers.l2_regularizer(scale)
regularizerV=tf.contrib.layers.l2_regularizer(scale)
he_init = tf.contrib.layers.variance_scaling_initializer()
with tf.name_scope("dnn_A"):
hidden1_A=tf.layers.dense(Xsc,n_hidden1_A, name="Ahidden1"+str(n), activation=tf.nn.sigmoid, kernel_initializer=he_init,kernel_regularizer=regularizerA)
hidden2_A=tf.layers.dense(hidden1_A,n_hidden2_A, name="Ahidden2"+str(n), activation=tf.nn.sigmoid, kernel_initializer=he_init,kernel_regularizer=regularizerA)
#hidden3_A=tf.layers.dense(hidden2_A,n_hidden3_A, name="Ahidden3"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerA)
#hidden4_A=tf.layers.dense(hidden3_A,n_hidden4_A, name="hidden4"+str(n), activation=tf.nn.elu,kernel_initializer=he_init,kernel_regularizer=regularizerA)
controle=tf.layers.dense(hidden2_A, n_outputs_A, name="Aoutput"+str(n),kernel_initializer=he_init,kernel_regularizer=regularizerA)
zeroUn=tf.nn.softmax(controle[:,:2])
injection_temp= tf.nn.sigmoid(controle[:,2:])
injection=Amin_t+tf.multiply(injection_temp,Amax_t-Amin_t)
I_0_n=tf.minimum(tf.nn.relu(-Xunsc[:,2:3]),Cmax_t-Xunsc[:,0:1])
I_sup0_n=tf.minimum(tf.nn.relu(injection-Xunsc[:,2:3]),Cmax_t-Xunsc[:,0:1])
O_0_n=tf.minimum(tf.nn.relu(Xunsc[:,2:3]),Xunsc[:,0:1])
O_sup0_n=tf.minimum(tf.nn.relu(Xunsc[:,2:3]-injection),Xunsc[:,0:1])
S_0_n=Xunsc[:,2:3]+I_0_n-O_0_n
S_sup0_n=Xunsc[:,2:3]-injection+I_sup0_n-O_sup0_n
with tf.name_scope("dnn_V"):
hidden1_V=tf.layers.dense(Xsc,n_hidden1, name="Vhidden1"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerV)
hidden2_V=tf.layers.dense(hidden1_V,n_hidden2, name="Vhidden2"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerV)
#hidden3_V=tf.layers.dense(hidden2_V,n_hidden3, name="Vhidden3"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerV)
#hidden4_V=tf.layers.dense(hidden3_V,n_hidden4, name="Vhidden4"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerV)
output_V=tf.layers.dense(hidden2_V, n_outputs_V, name="Voutput"+str(n), kernel_initializer=he_init,kernel_regularizer=regularizerV)
with tf.name_scope("loss_A"):
reglosses_A=tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_term_A=tf.contrib.layers.apply_regularization(regularizerA, reglosses_A)
running_cost = tf.reduce_mean(zeroUn[:,0:1]*(Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],1.),tf.float64) + Qm_t*tf.nn.relu(-S_0_n) + Qp_t*tf.nn.relu(Xunsc[:,2:3]-Xunsc[:,0:1])) + zeroUn[:,1:2]*(K_t*tf.pow(injection,Gamma_t)+ Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],0.),tf.float64) +Qm_t*tf.nn.relu(-S_sup0_n) +Qp_t*tf.nn.relu(Xunsc[:,2:3]-Xunsc[:,0:1] - injection) ) )
with tf.name_scope("train_A"):
train_vars_A=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Ahidden1"+str(n)+"|Ahidden2"+str(n)+"|Aoutput"+str(n))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate_A)
training_op_A= optimizer.minimize(running_cost+reg_term_A,var_list=train_vars_A)
with tf.name_scope("loss_V"):
reglosses_V=tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_term_V=tf.contrib.layers.apply_regularization(regularizerV, reglosses_V)
pas_active=(K_t*tf.pow(injection,Gamma_t)+ Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],0.),tf.float64) +Qm_t*tf.nn.relu(-S_sup0_n) +Qp_t*tf.nn.relu(Xunsc[:,2:3]-Xunsc[:,0:1] - injection) )
active=(K_t*tf.pow(injection,Gamma_t)+ Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],1.),tf.float64) +Qm_t*tf.nn.relu(-S_sup0_n))
y_target=zeroUn[:,0:1]*(Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],0.),tf.float64) +Qm_t*tf.nn.relu(-S_0_n)) + zeroUn[:,1:2]*(K_t*tf.pow(injection,Gamma_t)+ Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],1.),tf.float64) +Qm_t*tf.nn.relu(-S_sup0_n))
reg_term_print=reg_term_V
lossV=tf.reduce_mean(zeroUn[:,0:1]*tf.square(Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],0.),tf.float64) +Qm_t*tf.nn.relu(-S_0_n) + Qp_t*tf.nn.relu(Xunsc[:,2:3]-Xunsc[:,0:1]) - output_V) + zeroUn[:,1:2]*tf.square(K_t*tf.pow(injection,Gamma_t)+ Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],1.),tf.float64) +Qm_t*tf.nn.relu(-S_sup0_n) +Qp_t*tf.nn.relu(Xunsc[:,2:3]-Xunsc[:,0:1]- injection) -output_V))
with tf.name_scope("train_V"):
train_vars_V=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Vhidden1"+str(n)+"|Vhidden2"+str(n)+"|Voutput"+str(n))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate_V)
training_op_V= optimizer.minimize(lossV+reg_term_V,var_list=train_vars_V)
init = tf.global_variables_initializer()
saver=tf.train.Saver()
with tf.Session() as sess:
init.run()
init_learning_rate_A=0.001
init_learning_rate_V=0.0001
cost_hist=[]
loss_hist=[]
for epoch in range(n_epochs):
val_cost=running_cost.eval(feed_dict={learning_rate_A:init_learning_rate_A,Xunsc: SampleValidation[n][epoch*MBatchValidation:(epoch+1)*MBatchValidation], Xsc:SampleValidationRescaled[n][epoch*MBatchValidation:(epoch+1)*MBatchValidation]})
cost_hist.append(val_cost)
print("VcostControle: ",val_cost)
for batch in range(n_batches):
ind1=n_batches*epoch*Mbatch +batch*Mbatch
ind2=n_batches*epoch*Mbatch +(batch+1)*Mbatch
sess.run(training_op_A, feed_dict={learning_rate_A:init_learning_rate_A, Xunsc: SampleTraining[n][ind1:ind2], Xsc:SampleTrainingRescaled[n][ind1:ind2]}) #
if epoch%nbOuterLearning==0:
mean_cost=np.mean(cost_hist)
if epoch>0:
print("mean_cost=",mean_cost)
print("last_cost_check",last_cost_check)
decrease_rate=(last_cost_check-mean_cost)/last_cost_check
print("decrease_rate=",decrease_rate)
if decrease_rate<min_decrease_rateA:
init_learning_rate_A=np.maximum(1e-6,init_learning_rate_A/2)
print("learningRateA decreased to ", init_learning_rate_A)
last_cost_check=mean_cost
cost_hist=[]
for epoch in range(n_epochs):
val_loss=lossV.eval(feed_dict={Xunsc: SampleValidation[n][epoch*MBatchValidation:(epoch+1)*MBatchValidation], Xsc:SampleValidationRescaled[n][epoch*MBatchValidation:(epoch+1)*MBatchValidation]})
loss_hist.append(val_loss)
print("VLoss: ", val_loss)
for batch in range(n_batches):
ind1=n_batches*epoch*Mbatch +batch*Mbatch
ind2=n_batches*epoch*Mbatch +(batch+1)*Mbatch
sess.run(training_op_V, feed_dict={learning_rate_V:init_learning_rate_V, Xunsc: SampleTraining[n][ind1:ind2], Xsc:SampleTrainingRescaled[n][ind1:ind2]})
if epoch%nbOuterLearning==0:
mean_loss=np.mean(loss_hist)
if epoch>0:
print("mean_loss=",mean_loss)
print("last_loss_check",last_loss_check)
decrease_rate=(last_loss_check-mean_loss)/last_loss_check
print("decrease_rate=",decrease_rate)
if decrease_rate<min_decrease_rateV:
init_learning_rate_V=np.maximum(1e-6,init_learning_rate_V/2)
print("learningRateV decreased to ", init_learning_rate_V)
last_loss_check=mean_loss
loss_hist=[]
save_path=saver.save(sess,"saver/Vfinal"+str(n)+".ckpt")
TrainVnnAnnT_(N-1)
def TrainVnnAnn(n): # Learn the optimal control at time n, for n=N-2,...,0. We use the pre-training trick.
tf.reset_default_graph()
Amin_t=tf.constant(Amin, dtype="float64")
Amax_t=tf.constant(Amax, dtype="float64")
Rbar_t=tf.constant(Rbar, dtype="float64")
rho_t=tf.constant(Rho,dtype="float64")
K_t=tf.constant(K,dtype="float64")
Kappa_t=tf.constant(Kappa,dtype="float64")
Gamma_t=tf.constant(Gamma,dtype="float64")
Qm_t=tf.constant(Qm,dtype="float64")
Qp_t=tf.constant(Qp,dtype="float64")
Cmax_t=tf.constant(Cmax,dtype="float64")
Cmin_t=tf.constant(Cmin,dtype="float64")
Xunsc=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Xunsc") # unscaled batch
Xsc=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Xsc") # rescaled batch
Noise=tf.placeholder(tf.float64, shape=(None,1), name="Noise") #Gaussian noise at time n+1
learning_rate_A=tf.placeholder(tf.float64, name="learning_rate_A")
learning_rate_V=tf.placeholder(tf.float64, name="learning_rate_V")
keep_prob = tf.placeholder(tf.float64)
regularizerA=tf.contrib.layers.l2_regularizer(scale)
regularizerV=tf.contrib.layers.l2_regularizer(scale)
he_init = tf.contrib.layers.variance_scaling_initializer()
with tf.name_scope("dnn_A_next"):
hidden1_A_next=tf.layers.dense(Xsc,n_hidden1_A, name="Ahidden1"+str(n+1), activation=tf.nn.sigmoid,kernel_regularizer=regularizerA)
hidden2_A_next=tf.layers.dense(hidden1_A_next,n_hidden2_A, name="Ahidden2"+str(n+1), activation=tf.nn.sigmoid,kernel_regularizer=regularizerA)
#hidden3_A=tf.layers.dense(hidden2_A,n_hidden3_A, name="Ahidden3"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerA)
#hidden4_A=tf.layers.dense(hidden3_A,n_hidden4_A, name="hidden4"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerA)
controle_next=tf.layers.dense(hidden2_A_next, n_outputs_A, name="Aoutput"+str(n+1), kernel_regularizer=regularizerA)
with tf.name_scope("dnn_A"):
hidden1_A=tf.layers.dense(Xsc,n_hidden1_A, name="Ahidden1"+str(n), activation=tf.nn.sigmoid, kernel_initializer=he_init,kernel_regularizer=regularizerA)
hidden2_A=tf.layers.dense(hidden1_A,n_hidden2_A, name="Ahidden2"+str(n), activation=tf.nn.sigmoid, kernel_initializer=he_init,kernel_regularizer=regularizerA)
#hidden3_A=tf.layers.dense(hidden2_A,n_hidden3_A, name="Ahidden3"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerA)
#hidden4_A=tf.layers.dense(hidden3_A,n_hidden4_A, name="hidden4"+str(n), activation=tf.nn.elu,kernel_initializer=he_init,kernel_regularizer=regularizerA)
controle=tf.layers.dense(hidden2_A, n_outputs_A, name="Aoutput"+str(n),kernel_initializer=he_init,kernel_regularizer=regularizerA)
zeroUn=tf.nn.softmax(controle[:,:2])
injection_temp= tf.nn.sigmoid(controle[:,2:])
injection=Amin_t+tf.multiply(injection_temp,Amax_t-Amin_t)
I_0_n=tf.minimum(tf.nn.relu(-Xunsc[:,2:3]),Cmax_t-Xunsc[:,0:1])
I_sup0_n=tf.minimum(tf.nn.relu(injection-Xunsc[:,2:3]),Cmax_t-Xunsc[:,0:1])
O_0_n=tf.minimum(tf.nn.relu(Xunsc[:,2:3]),Xunsc[:,0:1])
O_sup0_n=tf.minimum(tf.nn.relu(Xunsc[:,2:3]-injection),Xunsc[:,0:1])
S_0_n=Xunsc[:,2:3]+I_0_n-O_0_n
S_sup0_n=Xunsc[:,2:3]-injection+I_sup0_n-O_sup0_n
update_weights_A = [tf.assign(new, old) for (new, old) in zip(tf.trainable_variables("Ahidden1"+str(n)+"|Ahidden2"+str(n)+"|Aoutput"+str(n)), tf.trainable_variables("Ahidden1"+str(n+1)+"|Ahidden2"+str(n+1)+"|Aoutput"+str(n+1)))]
next_r=Rbar_t*(1-rho_t)+rho_t*Xunsc[:,2:3]+Sigma*Noise
next_m=tf.cast(tf.greater_equal(zeroUn[:,1:2],.5),tf.float64)
next_c_0=Xunsc[:,0:1]+I_0_n-O_0_n
next_c_sup0=Xunsc[:,0:1]+I_sup0_n-O_sup0_n
Xnext_unsc_0=tf.concat([next_c_0,next_m,next_r],1)
Xnext_sc_0=(Xnext_unsc_0-Scaler[n+1].mean_)/np.sqrt(Scaler[n+1].var_)
Xnext_unsc_sup0=tf.concat([next_c_sup0,next_m,next_r],1)
Xnext_sc_sup0=(Xnext_unsc_sup0-Scaler[n+1].mean_)/np.sqrt(Scaler[n+1].var_)
with tf.name_scope("dnn_V_next"):
hidden1_V_next_0=tf.layers.dense(Xnext_sc_0,n_hidden1, name="Vhidden1"+str(n+1), activation=tf.nn.elu, kernel_initializer=he_init)
hidden2_V_next_0=tf.layers.dense(hidden1_V_next_0,n_hidden2, name="Vhidden2"+str(n+1), activation=tf.nn.elu, kernel_initializer=he_init)
#hidden3_V_next=tf.layers.dense(hidden2_V_next,n_hidden3, name="Vhidden3"+str(n+1), activation=tf.nn.elu, kernel_initializer=he_init)
#hidden4_V_next=tf.layers.dense(hidden3_V_next,n_hidden4, name="Vhidden4"+str(n+1), activation=tf.nn.elu, kernel_initializer=he_init)
output_V_next_0=tf.layers.dense(hidden2_V_next_0, n_outputs_V, name="Voutput"+str(n+1),kernel_initializer=he_init)
hidden1_V_next_sup0=tf.layers.dense(Xnext_sc_sup0,n_hidden1, name="Vhidden1"+str(n+1), activation=tf.nn.elu, kernel_initializer=he_init,reuse=True)
hidden2_V_next_sup0=tf.layers.dense(hidden1_V_next_sup0,n_hidden2, name="Vhidden2"+str(n+1), activation=tf.nn.elu, kernel_initializer=he_init, reuse=True)
#hidden3_V_next=tf.layers.dense(hidden2_V_next,n_hidden3, name="Vhidden3"+str(n+1), activation=tf.nn.elu, kernel_initializer=he_init)
#hidden4_V_next=tf.layers.dense(hidden3_V_next,n_hidden4, name="Vhidden4"+str(n+1), activation=tf.nn.elu, kernel_initializer=he_init)
output_V_next_sup0=tf.layers.dense(hidden2_V_next_sup0, n_outputs_V, name="Voutput"+str(n+1),kernel_initializer=he_init,reuse=True)
with tf.name_scope("dnn_V"):
hidden1_V=tf.layers.dense(Xsc,n_hidden1, name="Vhidden1"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerV)
hidden2_V=tf.layers.dense(hidden1_V,n_hidden2, name="Vhidden2"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerV)
output_V=tf.layers.dense(hidden2_V, n_outputs_V, name="Voutput"+str(n),kernel_initializer=he_init,kernel_regularizer=regularizerV)
update_weights_V = [tf.assign(new, old) for (new, old) in zip(tf.trainable_variables("Vhidden1"+str(n)+"|Vhidden2"+str(n)+"|Voutput"+str(n)), tf.trainable_variables("Vhidden1"+str(n+1)+"|Vhidden2"+str(n+1)+"|Voutput"+str(n+1)))]
with tf.name_scope("loss_A"):
reglosses_A=tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_term_A=tf.contrib.layers.apply_regularization(regularizerA, reglosses_A)
running_cost = tf.reduce_mean(zeroUn[:,0:1]*(Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],1.),tf.float64) + Qm_t*tf.nn.relu(-S_0_n) + Qp_t*tf.nn.relu(Xunsc[:,2:3]-Xunsc[:,0:1]) + output_V_next_0) + zeroUn[:,1:2]*(K_t*tf.pow(injection,Gamma_t)+ Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],0.),tf.float64) +Qm_t*tf.nn.relu(-S_sup0_n) +Qp_t*tf.nn.relu(Xunsc[:,2:3]-Xunsc[:,0:1] - injection) +output_V_next_sup0) )
with tf.name_scope("train_A"):
train_vars_A=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Ahidden1"+str(n)+"|Ahidden2"+str(n)+"|Ahidden3"+str(n)+"|Aoutput"+str(n))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate_A)
training_op_A= optimizer.minimize(running_cost+reg_term_A,var_list=train_vars_A)
with tf.name_scope("loss_V"):
reglosses_V=tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_term_V=tf.contrib.layers.apply_regularization(regularizerV, reglosses_V)
lossV=tf.reduce_mean(zeroUn[:,0:1]*tf.square(Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],1.),tf.float64) + Qm_t*tf.nn.relu(-S_0_n) + Qp_t*tf.nn.relu(Xunsc[:,2:3]-Xunsc[:,0:1]) + output_V_next_0-output_V) + zeroUn[:,1:2]*tf.square(K_t*tf.pow(injection,Gamma_t)+ Kappa_t*tf.cast(tf.equal(Xunsc[:,1:2],0.),tf.float64) +Qm_t*tf.nn.relu(-S_sup0_n) +Qp_t*tf.nn.relu(Xunsc[:,2:3]-Xunsc[:,0:1] - injection) +output_V_next_sup0-output_V))
with tf.name_scope("train_V"):
train_vars_V=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Vhidden1"+str(n)+"|Vhidden2"+str(n)+"|Voutput"+str(n))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate_V)
training_op_V= optimizer.minimize(lossV+reg_term_V,var_list=train_vars_V)
reuse_vars=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope="Vhidden1"+str(n+1)+"|Vhidden2"+str(n+1)+"|Voutput"+str(n+1)+"|Ahidden1"+str(n+1)+"|Ahidden2"+str(n+1)+"|Aoutput"+str(n+1)) # pre-training
reuse_vars_dict=dict([(var.op.name,var) for var in reuse_vars]) # pre-training
restore_saver=tf.train.Saver(reuse_vars_dict)
init = tf.global_variables_initializer()
saver=tf.train.Saver()
with tf.Session() as sess:
init.run()
restore_saver.restore(sess, "saver/Vfinal"+str(n+1)+".ckpt")
sess.run(update_weights_V)
sess.run(update_weights_A)
init_learning_rate_A=0.000005
init_learning_rate_V=0.00005
cost_hist=[]
loss_hist=[]
for epoch in range(n_epochs):
SampleNoise=np.random.normal(0,1,(Mbatch*n_batches,1))
SampleNoiseValidation=np.random.normal(0,1,(MBatchValidation,1))
val_cost=running_cost.eval(feed_dict={learning_rate_A:init_learning_rate_A,Noise:SampleNoiseValidation, Xunsc: SampleValidation[n][epoch*MBatchValidation:(epoch+1)*MBatchValidation], Xsc:SampleValidationRescaled[n][epoch*MBatchValidation:(epoch+1)*MBatchValidation]})
cost_hist.append(val_cost)
print("VcostControle: ",val_cost)
for batch in range(n_batches):
ind1=n_batches*epoch*Mbatch +batch*Mbatch
ind2=n_batches*epoch*Mbatch +(batch+1)*Mbatch
sess.run(training_op_A, feed_dict={learning_rate_A:init_learning_rate_A, Noise:SampleNoise[batch*Mbatch:(batch+1)*Mbatch], Xunsc: SampleTraining[n][ind1:ind2], Xsc:SampleTrainingRescaled[n][ind1:ind2]}) #
if epoch%nbOuterLearning==0:
mean_cost=np.mean(cost_hist)
if epoch>0:
print("mean_cost=",mean_cost)
print("last_cost_check",last_cost_check)
decrease_rate=(last_cost_check-mean_cost)/last_cost_check
print("decrease_rate=",decrease_rate)
if decrease_rate<min_decrease_rateA:
init_learning_rate_A=np.maximum(1e-6,init_learning_rate_A/2)
print("learningRateA decreased to ", init_learning_rate_A)
last_cost_check=mean_cost
cost_hist=[]
for epoch in range(n_epochs):
SampleNoise=np.random.normal(0,1,(Mbatch*n_batches,1))
SampleNoiseValidation=np.random.normal(0,1,(M_validation,1))
val_loss=lossV.eval(feed_dict={learning_rate_A:init_learning_rate_A,Noise:SampleNoiseValidation,Xunsc: SampleValidation[n], Xsc:SampleValidationRescaled[n]})
loss_hist.append(val_loss)
print("VLoss: ",val_loss)
for batch in range(n_batches):
ind1=n_batches*epoch*Mbatch +batch*Mbatch
ind2=n_batches*epoch*Mbatch +(batch+1)*Mbatch
sess.run(training_op_V, feed_dict={learning_rate_V:init_learning_rate_V,Noise:SampleNoise[batch*Mbatch:(batch+1)*Mbatch],Xunsc: SampleTraining[n][ind1:ind2], Xsc:SampleTrainingRescaled[n][ind1:ind2]})
if epoch%nbOuterLearning==0:
mean_loss=np.mean(loss_hist)
if epoch>0:
print("mean_loss=",mean_loss)
print("last_loss_check",last_loss_check)
decrease_rate=(last_loss_check-mean_loss)/last_loss_check
print("decrease_rate=",decrease_rate)
if decrease_rate<min_decrease_rateV:
init_learning_rate_V=np.maximum(1e-6,init_learning_rate_V/2)
print("learningRateV decreased to ", init_learning_rate_V)
last_loss_check=mean_loss
loss_hist=[]
save_path=saver.save(sess,"saver/Vfinal"+str(n)+".ckpt")
start_time=time.time()
for n in range(N-2,-1,-1):
print("n=",n)
TrainVnnAnn(n)
elapsed_time=time.time()- start_time
print("elapsed_time: ",elapsed_time)
start_time=time.time()
for n in range(1,-1,-1):
print("n=",n)
TrainVnnAnn(n)
elapsed_time=time.time()- start_time
print("elapsed_time: ",elapsed_time)
#### Forward Simulations
def Vnn(n,Xarg): # Take the time and the state as input, and return the corresponding value function.
tf.reset_default_graph()
Amin_t=tf.constant(Amin, dtype="float64")
Amax_t=tf.constant(Amax, dtype="float64")
Rbar_t=tf.constant(Rbar, dtype="float64")
rho_t=tf.constant(Rho,dtype="float64")
K_t=tf.constant(K,dtype="float64")
Kappa_t=tf.constant(Kappa,dtype="float64")
Gamma_t=tf.constant(Gamma,dtype="float64")
Qm_t=tf.constant(Qm,dtype="float64")
Qp_t=tf.constant(Qp,dtype="float64")
Cmax_t=tf.constant(Cmax,dtype="float64")
Cmin_t=tf.constant(Cmin,dtype="float64")
Xunsc=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Xunsc") #unscaled batch
Xsc=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Xsc") #rescaled batch
he_init = tf.contrib.layers.variance_scaling_initializer()
with tf.name_scope("dnn_V"):
hidden1_V=tf.layers.dense(Xsc,n_hidden1, name="Vhidden1"+str(n), activation=tf.nn.elu, kernel_initializer=he_init)#,kernel_regularizer=regularizerV)
hidden2_V=tf.layers.dense(hidden1_V,n_hidden2, name="Vhidden2"+str(n), activation=tf.nn.elu, kernel_initializer=he_init)#,kernel_regularizer=regularizerV)
#hidden3_V=tf.layers.dense(hidden2_V,n_hidden3, name="Vhidden3"+str(n), activation=tf.nn.elu, kernel_initializer=he_init)#,kernel_regularizer=regularizerV)
#hidden4_V=tf.layers.dense(hidden3_V,n_hidden4, name="Vhidden4"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerV)
output_V=tf.layers.dense(hidden2_V, n_outputs_V, name="Voutput"+str(n),kernel_initializer=he_init)#,kernel_regularizer=regularizerV)
reuse_vars=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope="Vhidden1"+str(n)+"|Vhidden2"+str(n)+"|Vhidden3"+str(n)+"|Vhidden4"+str(n)+"|Voutput"+str(n))
reuse_vars_dict=dict([(var.op.name,var) for var in reuse_vars])
restore_saver=tf.train.Saver(reuse_vars_dict)
init = tf.global_variables_initializer()
with tf.Session() as sess:
init.run()
restore_saver.restore(sess, "saver/Vfinal"+str(n)+".ckpt")
Xarg_sc=(Xarg-Scaler[n].mean_)/np.sqrt(Scaler[n].var_) if n>0 else Xarg
return output_V.eval(feed_dict={Xsc:Xarg_sc})
def Ann(n,Xarg): # Take time and state as input, and return the corresponding optimal control
tf.reset_default_graph()
Amin_t=tf.constant(Amin, dtype="float64")
Amax_t=tf.constant(Amax, dtype="float64")
rho_t=tf.constant(Rho,dtype="float64")
K_t=tf.constant(K,dtype="float64")
Kappa_t=tf.constant(Kappa,dtype="float64")
Gamma_t=tf.constant(Gamma,dtype="float64")
Qm_t=tf.constant(Qm,dtype="float64")
Cmax_t=tf.constant(Cmax,dtype="float64")
Cmin_t=tf.constant(Cmin,dtype="float64")
Gamma_t=tf.constant(Gamma,dtype="float64")
learning_rate_A=tf.placeholder(tf.float64, name="learning_rate_A")
learning_rate_V=tf.placeholder(tf.float64, name="learning_rate_V")
Xunsc=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Xunsc") #Le batch unscaled
Xsc=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Xsc") #Le batch rescaled
Noise=tf.placeholder(tf.float64, shape=(None,n_inputs), name="Noise") #Bruit gaussien pour le calcul de X au temps n+1
he_init = tf.contrib.layers.variance_scaling_initializer()
with tf.name_scope("dnn_A"):
hidden1_A=tf.layers.dense(Xsc,n_hidden1_A, name="Ahidden1"+str(n), activation=tf.nn.sigmoid, kernel_initializer=he_init)
hidden2_A=tf.layers.dense(hidden1_A,n_hidden2_A, name="Ahidden2"+str(n), activation=tf.nn.sigmoid, kernel_initializer=he_init)
#hidden3_A=tf.layers.dense(hidden2_A,n_hidden3_A, name="Ahidden3"+str(n), activation=tf.nn.elu, kernel_initializer=he_init,kernel_regularizer=regularizerA)
#hidden4_A=tf.layers.dense(hidden3_A,n_hidden4_A, name="hidden4"+str(n), activation=tf.nn.elu,kernel_initializer=he_init,kernel_regularizer=regularizerA)
controle=tf.layers.dense(hidden2_A, n_outputs_A, name="Aoutput"+str(n),kernel_initializer=he_init)
zeroUn=tf.nn.softmax(controle[:,:2])
injection_temp= tf.nn.sigmoid(controle[:,2:])
injection=Amin_t+tf.multiply(injection_temp,Amax_t-Amin_t)
decision=tf.cast(tf.greater(zeroUn[:,1:2],.5),tf.float64)*injection
reuse_vars=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope="Ahidden1"+str(n)+"|Ahidden2"+str(n)+"|Aoutput"+str(n))
reuse_vars_dict=dict([(var.op.name,var) for var in reuse_vars])
restore_saver=tf.train.Saver(reuse_vars_dict)
init = tf.global_variables_initializer()
with tf.Session() as sess:
init.run()
restore_saver.restore(sess, "saver/Vfinal"+str(n)+".ckpt")
Xarg_sc=(Xarg-Scaler[n].mean_)/np.sqrt(Scaler[n].var_) if n>0 else Xarg
return decision.eval(feed_dict={Xsc:Xarg_sc})
### Plots and forward simulations
Nb_simu=1000
Nb_times=10
res_nn=np.zeros(Nb_times)
for test in range(Nb_times):
Xnn=np.zeros((N+1,Nb_simu,3))
Xnn[0,:,0]=C0
Xnn[0,:,1]=M0
Xnn[0,:,2]=R0
Jnn=np.zeros((N+1,Nb_simu))
for n in range(N):
print("time: ", n)
noise=Sigma*np.random.normal(0,1,(Nb_simu,1))
next_r=Rbar*(1-Rbar)+Rbar*Xnn[n,:,2:3]+noise
controle=Ann(n,Xnn[n])
next_m=1.*np.not_equal(controle,0)
next_c=Xnn[n,:,0:1] + np.minimum(np.maximum(controle-Xnn[n,:,2:3],0.),Cmax-Xnn[n,:,0:1])-np.minimum(np.maximum(Xnn[n,:,2:3]-controle,0.),Xnn[n,:,0:1])
I_n=np.minimum(np.maximum(controle-Xnn[n,:,2:3],0.),Cmax-Xnn[n,:,0:1])
O_n=np.minimum(np.maximum(Xnn[n,:,2:3]-controle,0.),Xnn[n,:,0:1])
S=Xnn[n,:,2:3]-controle+I_n-O_n
running_cost=K*controle**Gamma + Kappa*np.not_equal(Xnn[n,:,1:2],controle) + Qm*np.maximum(-S,0) + Qp*np.maximum(Xnn[n,:,2:3]-Xnn[n,:,0:1]-controle,0.)
Xnn[n+1]=np.concatenate((next_c,next_m,next_r),1)
Jnn[n+1]=Jnn[n]+running_cost[:,0]
res_nn[test]=np.mean(Jnn[N])
np.mean(res_nn)
np.std(res_nn)
Nb_simu=3
plt.figure(figsize=(12,8))
plt.subplot(2,2,1)
for i in range(Nb_simu):
plt.step([i for i in range(N+1)],Xnn[:,i,0])
plt.xlabel("n")
plt.ylabel("P")
plt.grid(True)
plt.subplot(2,2,2)
for i in range(Nb_simu):
plt.step([i for i in range(N+1)],Xnn[:,i,1])
plt.xlabel("n")
plt.ylabel("W")
plt.grid(True)
plt.subplot(2,2,3)
for i in range(Nb_simu):
plt.step([i for i in range(N+1)],Xnn[:,i,2])
plt.xlabel("n")
plt.ylabel("C_1")
plt.grid(True)
plt.subplot(2,2,4)
for i in range(Nb_simu):
plt.step([i for i in range(N+1)],Xnn[:,i,3])
plt.xlabel("n")
plt.ylabel("C_2")
plt.subplots_adjust(wspace=0.2)
plt.grid(True)
plt.title("")
plt.show()
for n in range(N):
test=np.copy(SampleValidation[n,:2000])
test_0=np.copy(test)
test_0[:,1]=0
test_1=np.copy(test)
test_1[:,1]=1
plt.figure(figsize=(12,8))
plt.subplot(2,1,1)
vf_0=Vnn(n,test_0)
plt.scatter(test_0[:,0],test_0[:,2],c=vf_0[:,0])
plt.title('Value function at time n='+str(n)+ ' for m=0')
plt.xlabel("C")
plt.ylabel("R")
plt.colorbar()
plt.subplot(2,1,2)
vf_1=Vnn(n,test_1)
plt.scatter(test_1[:,0],test_1[:,2],c=vf_1[:,0])
plt.title('Value function at time n='+str(n)+' for m=1')
plt.xlabel("C")
plt.ylabel("R")
plt.colorbar()
plt.subplots_adjust(hspace=0.5)
#plt.show()
plt.savefig("7VFresults"+str(n)+'.pdf')
plt.close()
for n in range(N):
test=SampleValidation[n,:4000]
test_0=np.copy(test)
test_0[:,1]=0.
test_1=np.copy(test)
test_1[:,1]=1.
plt.figure(figsize=(15,6))
ax1=plt.subplot(1,2,1)
ax1.spines['right'].set_visible(False)
ax1.spines['top'].set_visible(False)
decision_0=Ann(n,test_0)
plt.scatter(test_0[:,0],test_0[:,2],c=decision_0[:,0],cmap=plt.cm.Reds)
plt.title('Decisions at time n='+str(n)+ ' for m=0')
plt.xlabel("C")
plt.ylabel("R")
plt.colorbar()
ax2=plt.subplot(1,2,2)
ax2.spines['right'].set_visible(False)
ax2.spines['top'].set_visible(False)
decision_1=Ann(n,test_1)
plt.scatter(test_1[:,0],test_1[:,2],c=decision_1[:,0],cmap=plt.cm.Reds)
plt.title('Decisions at time n='+str(n)+' for m=1')
plt.xlabel("C")
plt.ylabel("R")
plt.colorbar()
plt.subplots_adjust(hspace=0.5)
plt.savefig("2Decisions"+str(n)+'.pdf')
plt.close()