-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_training_mid.py
255 lines (200 loc) · 9.21 KB
/
model_training_mid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
from progress_bar import progress_bar
import models.resnet_last_down_extract as resnet_down
import torch.nn.functional as F
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import sys
torch.cuda.empty_cache()
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
parser = argparse.ArgumentParser(description='PyTorch Cifar10 Training with KD')
parser.add_argument('--batch', default=256, type=int, help='batch size')
parser.add_argument('--shuffle', default=True, type=bool, help='shuffle the training dataset')
parser.add_argument('--model', type=str, required=True, help='---Model type: resnet18, resnet34, resnet50---')
parser.add_argument('--model_kd', type=str, required=True, help='---Model type: resnet18, resnet34, resnet50---')
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--pair_keys', type=int, required=True, help='---Indicate pair of keys unique for teacher and student---')
parser.add_argument('--alpha', type=float, default=0.3, help='---Distillation weight (alpha) (default: 0.3)---')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--epoch', default=300, type=int, help='epoch number')
args, unparsed = parser.parse_known_args()
device = 'cuda:1' if torch.cuda.is_available() else 'cpu'
model_names = ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152']
best_acc = 0
train_accuracy = []
val_accuracy = []
train_loss = []
val_loss = []
train_accuracy_kd = []
val_accuracy_kd = []
train_loss_kd = []
val_loss_kd = []
def build_model():
if args.model == 'resnet18':
return resnet_down.__dict__[model_names[0]]()
elif args.model == 'resnet34':
return resnet_down.__dict__[model_names[1]]()
elif args.model == 'resnet50':
return resnet_down.__dict__[model_names[2]]()
elif args.model == 'resnet101':
return resnet_down.__dict__[model_names[3]]()
elif args.model == 'resnet152':
return resnet_down.__dict__[model_names[4]]()
def build_model_kd():
if args.model_kd == 'resnet18':
return resnet_down.__dict__[model_names[0]]()
elif args.model_kd == 'resnet34':
return resnet_down.__dict__[model_names[1]]()
elif args.model_kd == 'resnet50':
return resnet_down.__dict__[model_names[2]]()
elif args.model_kd == 'resnet101':
return resnet_down.__dict__[model_names[3]]()
elif args.model_kd == 'resnet152':
return resnet_down.__dict__[model_names[4]]()
print('Teacher model type: ', args.model)
print('Student model type: ', args.model_kd)
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor()])
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
transform_test = transforms.Compose([
transforms.ToTensor()])
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
trainset = torchvision.datasets.CIFAR10(
root='./cifar10', train=True, download=True, transform=transform_train)
trainLoader = DataLoader(
trainset, batch_size=args.batch, shuffle=args.shuffle, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root='./cifar10', train=False, download=True, transform=transform_test)
testLoader = DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
print('==> Building model..')
def train(model, loader, optimizer):
model.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output1, output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
progress_bar(batch_idx, len(trainLoader), 'Teacher: Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
return correct, train_loss
def train_distil(model, distil_model, loader, optimizer, distil_weights):
model.eval()
distil_model.train()
train_loss_kd = 0
correct_kd = 0
total_kd = 0
for batch_idx, (data, target) in enumerate(loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output1_t, output_t = model(data)
output1_s, output_s = distil_model(data)
kd_loss = F.mse_loss(output1_s, output1_t.detach()) * distil_weights
kd_loss_cls = criterion(output_s, target)
loss_kd = kd_loss + kd_loss_cls
loss_kd.backward()
optimizer.step()
train_loss_kd += loss_kd.item()
_, predicted = output_s.max(1)
total_kd += target.size(0)
correct_kd += predicted.eq(target).sum().item()
progress_bar(batch_idx, len(trainLoader), 'Student: Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss_kd / (batch_idx + 1), 100. * correct_kd / total_kd, correct_kd, total_kd))
return correct_kd, train_loss_kd
def validate(model, loader):
model.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(loader):
data, target = data.to(device), target.to(device)
output_1, output = model(data)
loss = criterion(output, target)
val_loss += loss.item()
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
progress_bar(batch_idx, len(testLoader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (val_loss / (batch_idx + 1), 100. * correct / total, correct, total))
return correct, val_loss
models_teacher = build_model().to(device)
distil_models = build_model_kd().to(device)
criterion = nn.CrossEntropyLoss()
optimizer_teacher = optim.SGD(models_teacher.parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
scheduler_teacher = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_teacher, T_max=200)
optimizer_student = optim.SGD(distil_models.parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
scheduler_student = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_student, T_max=200)
distil_weight = args.alpha
best_loss = sys.maxsize
best_loss_kd = sys.maxsize
print("Training Teacher first... =====>")
for epoch in range(args.epoch):
print('\nTeacher Epoch: %d' % epoch)
train_correct, training_loss = train(models_teacher, trainLoader, optimizer_teacher)
val_correct, validating_loss = validate(models_teacher, testLoader)
scheduler_teacher.step()
train_accuracy.append(train_correct)
train_loss.append(training_loss)
val_accuracy.append(val_correct)
val_loss.append(validating_loss)
torch.cuda.empty_cache()
if epoch >= 0 and (validating_loss - best_loss) < 0:
best_loss = validating_loss
torch.save(models_teacher.state_dict(), f'./vanilla_kd_model_saved_base/{args.model}_teacher.pth')
print('\n')
print("Training Student second... =====>")
for epoch in range(args.epoch):
print('\nStudent Epoch: %d' % epoch)
train_correct_kd, training_loss_kd = train_distil(models_teacher, distil_models, trainLoader, optimizer_student,
distil_weight)
val_correct_kd, validating_loss_kd = validate(distil_models, testLoader)
scheduler_student.step()
train_accuracy_kd.append(train_correct_kd)
train_loss_kd.append(training_loss_kd)
val_accuracy_kd.append(val_correct_kd)
val_loss_kd.append(validating_loss_kd)
torch.cuda.empty_cache()
if epoch >= 0 and (validating_loss_kd - best_loss_kd) < 0:
best_loss_kd = validating_loss_kd
torch.save(distil_models.state_dict(), f'./vanilla_kd_model_saved_base/{args.model}_student.pth')
train_accuracy_np = np.asarray(train_accuracy)
train_loss_np = np.asarray(train_loss)
val_accuracy_np = np.asarray(val_accuracy)
val_loss_np = np.asarray(val_loss)
np.save('./numpy_outputs/train_accuracy_teacher', train_accuracy_np)
np.save('./numpy_outputs/train_loss_teacher', train_loss_np)
np.save('./numpy_outputs/val_accuracy_teacher', val_accuracy_np)
np.save('./numpy_outputs/val_loss_teacher', val_loss_np)
train_accuracy_np_kd = np.asarray(train_accuracy_kd)
train_loss_np_kd = np.asarray(train_loss_kd)
val_accuracy_np_kd = np.asarray(val_accuracy_kd)
val_loss_np_kd = np.asarray(val_loss_kd)
np.save('./numpy_outputs/train_accuracy_student', train_accuracy_np_kd)
np.save('./numpy_outputs/train_loss_student', train_loss_np_kd)
np.save('./numpy_outputs/val_accuracy_student', val_accuracy_np_kd)
np.save('./numpy_outputs/val_loss_student', val_loss_np_kd)