-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathEngine.py
114 lines (86 loc) · 3.23 KB
/
Engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from Board import Board
class Engine(object):
"""
Takes a board position and returns the best move
"""
INF = 1000000
def __init__(self, board, depth=5):
super(Engine, self).__init__()
self.board = board
self.depth = depth
self.best_move = None
def evaluate(self, depth=0):
"""
Returns a numeric evaluation of the position
Written from the perspective of Tiger
"""
winner = self.board.winner
if not winner:
return 300 * self.board.movable_tigers() + 700 * self.board.deadGoats\
- 700 * self.board.no_of_closed_spaces - depth
if winner == Board.Player.G:
return -Engine.INF
elif winner == Board.Player.T:
return Engine.INF
def minmax(self, is_max=True, depth=0, alpha=-INF, beta=INF):
score = self.evaluate(depth)
# if a leaf node is reached, return the score
if depth == self.depth or abs(score) == Engine.INF:
return score
# find the minimum attainable value for the minimizer
if not is_max:
value = 100000000
for move in self.board.generate_move_list():
# first make the move
self.board.make_move(move)
# go deeper in the search tree recursively
value_t = self.minmax(True, depth + 1, alpha, beta)
beta = min(beta, value_t)
if value_t < value:
value = value_t
beta = min(beta, value)
if depth == 0:
self.best_move = move
# then revert the move
self.board.revert_move(move)
if alpha >= beta:
break
return value
# find the maximum attainable value for the maximizer
else:
value = -100000000
for move in self.board.generate_move_list():
# first make the move
self.board.make_move(move)
# go deeper in the search tree recursively
value_t = self.minmax(False, depth + 1, alpha, beta)
if value_t > value:
value = value_t
alpha = max(alpha, value)
if depth == 0:
self.best_move = move
# then revert the move
self.board.revert_move(move)
if alpha >= beta:
break
return value
def best_tiger_move(self):
self.minmax()
assert self.best_move is not None, "best_tiger_move is None."
return self.best_move
def best_goat_move(self):
self.minmax(is_max=False)
assert self.best_move is not None, "best_goat_move is None."
return self.best_move
def make_best_move(self):
if self.board.turn == Board.Player.G:
move = self.best_goat_move()
else:
move = self.best_tiger_move()
self.board.make_move(move)
def get_best_move(self):
if self.board.turn == Board.Player.G:
move = self.best_goat_move()
else:
move = self.best_tiger_move()
return move